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Abstract

Stream temperature (Tw) is a critical parameter for water quality, aquatic communities, and
socio-economic activities, but our understanding of its spatio-temporal variability induced by
anthropogenic impoundments and climate change at a large scale is limited. These issues have
been addressed here using both observed Tw data and Tw simulated by the T-NET physical
process-based thermal model coupled with the EROS semi-distributed hydrological model at
the scale of the entire Loire River basin in France (105 km2 with 52 278 reaches).

First, observed Tw data are rarely available to identify the influence of impoundments, and
novel “thermal signatures” based on observed stream-air temperature relationships are intro-
duced here. These thermal signatures highlighted two dominant modes of thermal alteration
induced by dams and ponds in the basin. Large dams decrease summer Tw by 2 °C and delay
the annual Tw peak by 23 days relative to the natural regimes. In contrast, the cumulative ef-
fects of upstream ponds increase summer Tw by 2.3 °C and increase the synchronicity with air
temperature regimes.

Natural Tw stations identified through the thermal signature analysis were then used to as-
sess T-NET performance over the Loire basin. Improvements related to hydraulic geometry and
riparian shading led to a decrease in model bias. Moreover, the difference between simulated
(natural) and observed (influenced) Tw at altered stations were used to quantify the influence of
dams and ponds. Results showed that the impacts of impoundments in a hot year could be 2-4
times larger than in a cool year.

The improved T-NET model was then used to reconstruct Tw over the 1963-2019 period
to estimate the magnitude of past trends in natural Tw, and assess their relation with hydro-
climate changes and landscape characteristics. Results revealed that Tw increased for almost
all reaches in all seasons (+0.38 °C/decade) with the largest increases in spring and summer.
Rates of stream temperature increases were larger than for air temperature across seasons for
the majority of reaches. Spring and summer increases were typically the greatest in the southern
headwaters (up to +1 °C/decade) and in the largest rivers. Importantly, the largest Tw increases
were accompanied by similar trends in air temperature (up to +0.71 °C/decade) and the largest
decreases in streamflow (up to 16%/decade). Critically, riparian vegetation shading mitigated
stream temperature increases in smaller streams by 0.16 °C/decade.
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Finally, the T-NET model was used to project Tw under different future climate projections
over the whole 21st century from 3 climate modeling chains under three emissions scenarios.
A consistent increase in future Tw towards the end of the century was projected over the whole
Loire River basin. The median Tw changes are in the range of [+0.72 °C ; +2.68 °C] across cli-
mate projections and seasons in the middle of the century, and in the range of [+0.47 °C ; +4.95 °C]
at the end of the century, and the largest future summer Tw was found for the largest rivers. The
largest Tw anomalies synchronized with the largest negative Q anomalies regardless of the sea-
son. Moreover, positive Tw changes and negative Q changes were concomitant in the majority
of the reaches, mostly in the southern headwaters. Importantly, riparian vegetation shading
could mitigate the increase in future summer Tw by [+3.3 °C ; +4.6 °C]. These findings under-
score that there is a need to grow and maintain Tw sensor networks. They can also help assess
the various stresses on freshwater habitat sustainability due to human impacts and develop ap-
propriate management strategies to mitigate extreme thermal events induced by such human
impacts and conserve thermal refugia.
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Résumé

La température des cours d’eau (Tw) est un paramètre critique affectant la qualité de l’eau, des
communautés aquatiques et les activités socio-économiques. Cependant, notre compréhension
actuelle de sa variabilité spatio-temporelle induite par les retenues d’eau et le changement cli-
matique à grande échelle est documentée. Ces problèmes ont été abordés ici en utilisant à la
fois les données Tw observées et les Tw simulées par le modèle thermique basé sur les pro-
cessus physiques T-NET couplé au modèle hydrologique semi-distribué EROS à l’échelle de
l’ensemble du bassin de la Loire en France (105 km2 avec 52 278 tronçons).

Premièrement, les données Tw observées sont rarement disponibles pour identifier l’influence
des aménagements anthropiques, et de nouvelles « signatures thermiques » basées sur les re-
lations observées entre la température des cours d’eau et de l’air sont introduites ici. Ces sig-
natures thermiques ont mis en évidence deux modes dominants d’altération thermique induits
par les barrages et les étangs du bassin. Les grands barrages diminuent la Tw estivale de 2 °C
et retardent le pic annuel de la Tw de 23 jours par rapport aux régimes naturels. En revanche,
les effets cumulatifs des étangs en amont augmentent la Tw estivale de 2,3 °C et augmentent la
synchronicité avec les régimes de température de l’air.

Les stations Tw naturelles identifiées grâce à l’analyse de la signature thermique ont ensuite
été utilisées pour évaluer les performances du T-NET sur le bassin de la Loire. Les améliora-
tions liées à la géométrie hydraulique et à l’ombrage de la végétation rivulaire ont entraîné une
diminution du biais du modèle. De plus, la différence entre la Tw simulée (naturelle) et ob-
servée (influencée) aux stations modifiées a été utilisée pour quantifier l’influence des barrages
et des étangs. Les résultats ont montré que les impacts des retenues pendant une année chaude
pourraient être 2 à 4 fois plus importants que pendant une année froide.

Enfin, le modèle T-NET a été utilisé pour projeter Tw sous différentes projections clima-
tiques futures sur l’ensemble du 21e siècle à partir de 3 chaînes de modélisation climatique
sous trois scénarios d’émissions. Une augmentation constante du futur Tw vers la fin du siècle
a été projetée sur l’ensemble du bassin de la Loire. Les changements médians de Tw sont de
l’ordre de [+0,72 °C ; +2,68 °C] selon les projections climatiques et les saisons au milieu du siè-
cle, et de l’ordre de [+0,47 °C ; +4,95 °C] à la fin du siècle, et la plus grande Tw estivale a été
trouvé pour les plus grands fleuves. Les plus grandes anomalies Tw synchronisées avec les plus
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grandes anomalies Q négatives quelle que soit la saison. De plus, des changements positifs de
Tw et des changements négatifs de Q étaient concomitants dans la majorité des tronçons, prin-
cipalement dans le cours supérieur sud. Il est important de noter que l’ombrage de la végétation
rivulaire pourrait atténuer l’augmentation de la future Tw estivale de [+3,3 °C -; +4,6 °C].

Ces résultats soulignent qu’il est nécessaire de développer et de maintenir les réseaux de
capteurs Tw. Ils peuvent également aider à évaluer les divers stress sur la durabilité de l’habitat
d’eau douce dus aux impacts humains et développer des stratégies de gestion appropriées pour
atténuer les événements thermiques extrêmes induits par de tels impacts et conserver les refuges
thermiques.
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CHAPTER1
State of art and objectives

1.1 Stream temperature in a changing world

Stream (water) temperature (Tw) is a critical parameter affecting the eutrophication of wa-
ter bodies (Minaudo et al., 2018; Le Moal et al., 2019; Zhao et al., 2022), water quality, and
the distribution of aquatic communities (Cox and Rutherford, 2000; Poole and Berman, 2001;
Caissie, 2006). Changes in natural thermal conditions affect metabolism, the life cycle (Elliott
and Elliott, 2010) and spatial distribution of aquatic organisms (Comte et al., 2013; Morales-
Marín et al., 2019), and a wide range of biogeochemical processes (Ouellet et al., 2020). In
addition to these consequences, changes in the natural thermal regime of rivers can also have
economic and social impacts (Van Vliet et al., 2012b; Ouellet et al., 2020). Recently, alterations
induced by impoundments (e.g., lakes, reservoirs, and ponds) along the river continuum have
come to light as a critical factor in nitrogen removal (Harrison et al., 2009; Schmadel et al.,
2018), and storage of phosphorus (Grantz et al., 2014) and sediments (Vörösmarty et al., 2003).
An emerging concern is the cumulative effects of impoundments on thermal regimes (Olden and
Naiman, 2010). Indeed, it is important to develop a more general understanding of these effects
since the global change will likely exacerbate them if the number of future dams or ponds or the
capacity of current ones increases. For instance, in some countries, recurrent droughts have led
to a recent increase in the number of small farm dams storing water for later use in irrigation
(Habets et al., 2018).

There is also growing evidence that stream warming is occurring around the world (e.g.,
Isaak et al., 2012; Orr et al., 2015; Michel et al., 2020; Wilby and Johnson, 2020), decreasing
dissolved oxygen, increasing phytoplankton biomass during the growth period, and reducing
it afterward (Ducharne, 2008). Stream warming also affects freshwater ecosystems through
structural and functional changes in biological communities throughout the food web (Wood-
ward et al., 2010; O’Gorman et al., 2012; Scheffers et al., 2016). Deleterious warming effects
are documented from bottom-dwelling microorganisms (e.g., Romaní et al., 2016; Majdi et al.,
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2020) up to macroinvertebrates (e.g., Floury et al., 2013; Bruno et al., 2019) and fish communi-
ties (e.g., Maire et al., 2019; Stefani et al., 2020). Moreover, more frequent and severe droughts
(Mantua et al., 2010; Giuntoli et al., 2013; Prudhomme et al., 2014) and earlier low flows due
to climate change (van Vliet et al., 2013; Michel et al., 2020) can lead to a more synchronous
timing of maximum temperature and low flow (Arismendi et al., 2013b; van Vliet et al., 2013;
Arevalo et al., 2020), doubling the trouble for cold-water biota.

These intense and fast changes do not let organisms adapt to the new environment, leading
to a decline in aquatic species’ population and ultimately their extinction. There is thus a need
for larger-scale assessments of spatio-temporal variability in thermal regimes, especially in light
of confounding factors like land use, hydro-climate forcings, and hydraulic conditions. Such
assessments could also have implications for understanding the freshwater habitat sustainability,
and the spatial distribution and persistence of aquatic organisms. To address these issues, large-
scale ecological studies typically use air temperature (Ta) as a proxy for Tw due to a lack of Tw
data (e.g., Buisson et al., 2008; Buisson and Grenouillet, 2009; Tisseuil et al., 2012; Domisch
et al., 2013). However, Ta can be an imprecise surrogate for Tw (Caissie, 2006). Indeed, many
natural drivers (e.g., stream discharge (Q), streambed, morphology, topography, and vegetation
cover) (Hannah and Garner, 2015), as well as anthropogenic drivers (e.g., lakes, reservoirs,
ponds, and climate change) contribute to the spatio-temporal variability of Tw (Figure 1.1). In
the following sections, the influence of these drivers on thermal regimes will be explained.

Milieu marin

Soil

Low Tw

HighTw Pond/lake

Vegetation

Dam

Aquifer

Solar radiation

Atmospheric
longwave radiation

Longwave radiation 
emitted from water Evaporation/Convection

Industrial
wastewater

Groundwater inputs
(Advection)

Bed conduction

Figure 1.1: The natural and anthropogenic drivers of thermal regimes over the summer period at a large scale. The
heat fluxes at the water-air and water-stream bed interface are also presented.
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1.2 Natural drivers of thermal regimes

Cumulative effects of multivariate and nested at macro-, meso- and micro scales natural drivers
produce dynamics of natural thermal regimes (Hannah and Garner, 2015; Dugdale et al., 2017,
and see Figure 1.1). The first-order driver is climate, which drives the magnitude and seasonal
variability in Tw at the regional scale (Ward, 1985; Garner et al., 2014). The second-order
drivers are basin characteristics, which moderate the influence of climate and modify thermal
regimes. The third-order drivers are reach-specific factors (or local factors) such as topogra-
phy, riparian vegetation shading, hyporheic exchanges, and groundwater inputs, which further
moderate the influence of climate on thermal regimes.

For instance, riparian vegetation may obstruct solar radiation –which is the dominant heat
flux at the water-atmosphere interface (Hannah et al., 2004; Caissie, 2006), decreasing Tw re-
sponse to Ta (Johnson, 2004; Loicq et al., 2018). At midday in July, about 74% decrease can
be observed in net energy from an open reach under full sun to a full shaded reach (Johnson,
2004). It should be noted that riparian vegetation shading can greatly decrease the tempera-
ture of small rivers (Moore et al., 2005; Loicq et al., 2018), whereas it has a limited effect on
larger rivers since only a small part of their width can be shaded. However, Loicq et al. (2018)
showed that the cooling effect can remain above 1 °C even for medium rivers with width larger
than 40 m. Johnson and Wilby (2015) showed that approximately 0.5 km of complete shade is
necessary to offset stream temperature by 1 °C at midday in July in headwaters whereas 25 km
downstream, 1.1 km of shade is required. Riparian clear-cutting can also increase maximum
daily water temperature by up to 8 °C (Johnson and Jones, 2000; Gomi et al., 2006), which can
gradually return to pre-harvest temperature after a 15-year regrowth period (Caissie, 2006). The
riparian shading may decrease not only the maximum daily Tw but also the amplitude of the
diurnal cycle (Moore et al., 2005; Imholt et al., 2010; Loicq et al., 2018). It can also mitigate
the heating effects in thermal regimes induced by ponds (Maxted et al., 2005). Nevertheless,
the efficacy of riparian planting and riparian shading is also highly dependent upon the type
and structure of forest stands (Dugdale et al., 2018), channel orientation, canopy density, and
within-reach residence times (Garner et al., 2017).

In addition to the riparian shading, groundwater inputs can also moderate the influence of
climate, and disrupt the Tw-Ta relationship. The linear relationship between the stream and
air temperature over the year (Kinouchi et al., 2007; Ducharne, 2008) is strong (R2 > 0.8) for
large rivers, and becomes weaker for headwaters or rivers with groundwater inputs (Caissie,
2006; O’Driscoll and DeWalle, 2006; Kelleher et al., 2012; Beaufort et al., 2020a). Indeed,
streams with high groundwater discharge are less sensitive to climate change than streams
with low groundwater discharge (Chu et al., 2008). Groundwater mainly affects rivers ther-
mal regime through summer cooling and winter warming. In fact, the groundwater temperature
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has a weaker amplitude than stream temperature, but it keeps a seasonal cycle similar to that of
stream temperature (Hannah et al., 2009). The geological composition of the substrate (Karst)
and the geometry of the watercourse can affect the amount of such groundwater inputs into the
river and modify energy intake or loss (O’Driscoll and DeWalle, 2006; Garner et al., 2014).

Figure 1.2 shows the parsed effects of natural drivers over the Loire River basin (105 km2),
a temperate region. First of all, as it can be seen in the figure, Tw has a sinusoidal pattern with
the lowest temperatures occurring in winter and the highest ones in summer (Caissie, 2006)
following the same intra-annual fluctuations as Ta. This figure clearly shows that Ta is an
imprecise proxy for Tw since Ta has a lower variability than Tw at a large scale, indicating
the influence of other drivers on Tw. Indeed, streams altered by both the groundwater inputs
and the riparian shading are the most moderated thermal regimes. These streams are thus less
sensitive to Ta. The annual amplitude of Tw in these streams is half of the annual amplitude
of Ta. Conversely, stations located on large streams with a large distance from the source
have the closest regimes to Ta regimes. In fact, these streams are less sensitive to moderating
drivers such as groundwater inputs and riparian shading due to their larger conveyed volumes
and greater thermal inertia (Smith and Lavis, 1975; Webb and Walling, 1993; Caissie, 2006;
Kelleher et al., 2012). This highlights the importance of large-scale assessments to parse the
effects of natural drivers on thermal regimes. However, the paucity of detailed and long-term
time series of Tw (Webb and Walling, 1996; Nelson and Palmer, 2007; Webb et al., 2008; Arora
et al., 2016), has impaired such assessments to date.

Figure 1.2: The monthly regimes of Ta and Tw, and the parsed effects of natural drivers of Tw at the scale of the
Loire River basin (105 km2). The Tw stations are on natural thermal regimes. This figure is adopted from Beaufort
et al. (2020a).
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1.3 Anthropogenic drivers of thermal regimes

In addition to natural drivers, the variation in stream temperature can be the result of anthro-
pogenic drivers such as urbanization (LeBlanc et al., 1997; Nelson and Palmer, 2007), industrial
wastewaters (Kinouchi et al., 2007), effluents from power plants (Prats et al., 2012; Bae et al.,
2016), deforestation (Moore et al., 2005; Caissie, 2006), impoundments, and reservoirs (e.g., for
irrigation and hydroelectricity) (Sinokrot et al., 1995; Lowney, 2000; Preece and Jones, 2002;
Olden and Naiman, 2010; Maheu et al., 2016c; Chandesris et al., 2019), and climate change (see
van Vliet et al., 2013; Wanders et al., 2019, at a global scale). However, among these drivers, the
cumulative effects of impoundments on thermal regimes are poorly understood. Such effects
are expected to be exacerbated if the number of future dams or ponds or the capacity of current
ones increases in order to satisfy water demand in the context of climate change. Moreover,
recently, there is more impetus to investigate alterations in thermal regimes associated with cli-
mate change for assessing future needs for thermal resilience of river ecosystems (Ouellet et al.,
2020).

1.3.1 Impacts of impoundments

The impacts of impoundments on thermal regimes depend strongly on their individual charac-
teristics and overall spatial distributions, complicating the scales of inference and prediction.
For example, anthropogenic features like dams and ponds appear to have contrasting effects
on stream temperature, which itself mainly depends on the reservoir volume, stream order, dis-
tance from the dam, and mode-of-operation (Webb, 1996; Webb et al., 2008; Olden and Naiman,
2010; Kędra and Wiejaczka, 2018, and see Figure 1.3 for different impoundments). The pre-
ponderance of studies on the regional scale effects of anthropogenic structures uses physical
process-based models that are highly parameterized (Van Vliet et al., 2012a; Niemeyer et al.,
2018; Yearsley et al., 2019; Cheng et al., 2020), limiting their broad applicability (Dugdale
et al., 2017). Hence, there is a need for simpler, data-based tools that can identify and predict
such anthropogenic effects on stream temperature and subsequent consequences to ecosystems,
particularly at large scales relevant to water management.

Large dams tend to reduce stream temperature and shift annual cycles

The effects of large dams on river thermal regimes are well studied at the site scale (Webb
and Walling, 1993, 1996, 1997; Lowney, 2000; Preece and Jones, 2002; Casado et al., 2013).
These studies typically compare observed stream temperature regimes above and below the
dam, before and after dam construction, or in regulated and unregulated streams, with unreg-
ulated streams being located nearby regulated streams with a similar climate. Results provide
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High Tw

Low Tw

Large dams Shallow reservoirs and ponds/lakes

Figure 1.3: Schematic representation of different impoundments with different mode-of-operation regulating ther-
mal regimes.

strong evidence that large dams generally reduce downstream temperatures by releasing cold,
hypolimnetic water in summer (Olden and Naiman, 2010), and that they delay the annual cycle
of both flow (Lehner et al., 2011) and stream temperature regimes (Webb and Walling, 1993;
Webb, 1996). Additionally, through discharge regime regulation (Petts and Gurnell, 2005),
large dams may also modify stream temperature by affecting thermal capacity without nec-
essarily modifying the components of the heat budget (Webb and Walling, 1996; Poole and
Berman, 2001). While some subsequent works have used physical process-based models to
upscale these effects across river networks and regions (Van Vliet et al., 2012a; Niemeyer et al.,
2018; Cheng et al., 2020; Daniels and Danner, 2020), large-scale empirical assessments remain
scarce (but see Steel and Lange, 2007; Hill et al., 2013; Maheu et al., 2016c). Hence, there is
still a major gap in our regional scale understanding of dam-induced alterations.

Ponds and shallow reservoirs tend to increase stream temperature

Pond and shallow (< 15 m in height based on ICOLD (2011)) reservoirs and their effects on
stream temperature differ from those of large dams due to their mode of downstream water
release. A global review of the impacts of these kinds of impoundments Mbaka and Wan-
jiru Mwaniki (2015) revealed that the majority of studies on small impoundments (73%) show
no significant influence of small impoundments on downstream Tw. However, a few studies
(26%) suggest that the surficial water release from these structures – as opposed to hypolim-
netic release from large dams (Figure 1.3) – tends to increase downstream stream temperature
(e.g., Sinokrot et al., 1995; Maxted et al., 2005; Bae et al., 2016; Maheu et al., 2016b; Chan-
desris et al., 2019; Zaidel et al., 2020). Indeed, these anthropogenic features increase water
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travel time, leading to more exposure of water to the atmosphere and an increase in downstream
Tw (Maheu et al., 2016c). The greatest increase in stream temperature occurs during low-flow
periods due to their smaller conveyed volumes and greater sensitivity to alteration (Webb and
Nobilis, 1995).

Specifically, these structures increase not only the average stream temperature but also its di-
urnal range and the frequency and duration of high temperatures (Maheu et al., 2016c,b; Chan-
desris et al., 2019). Furthermore, the increase in downstream temperature induced by ponds
and shallow reservoirs is weakly compensated by natural processes, leading to minimal down-
stream recovery to baseline temperature (Boon and Shires, 1976; Fraley, 1979; Maxted et al.,
2005; Dripps and Granger, 2013). However, thermal alterations from small impoundments are
far less studied than those of large dams, and their cumulative effects on river thermal regimes
at the regional scale are barely known.

1.3.2 Impacts of climate change

As Ta increases worldwide due to climate change, Tw is expected to follow a similar trajectory
(Mohseni et al., 1999; Kaushal et al., 2010; Van Vliet et al., 2011; Isaak et al., 2012; Arora et al.,
2016). Few studies have shown a clear trend in Tw at a large scale over the last decades (but see
Orr et al., 2015; Arora et al., 2016; Wanders et al., 2019; Michel et al., 2020). This Tw warming
was also anticipated to continue and be more pronounced for the extreme scenarios and toward
the end of the century (Mantua et al., 2010; Selbig, 2015; Michel et al., 2021). Moreover,
rising groundwater temperature (Taylor and Stefan, 2009; Gunawardhana et al., 2011; Kurylyk
et al., 2013, 2014) and reduced groundwater flows (Gunawardhana et al., 2011; Kurylyk et al.,
2014) due to climate change may further contribute to upward Tw trends (Meisner, 1990; Arora
et al., 2016), leading to asymmetric controls (vis-à-vis Ta) on Tw (Moatar and Gailhard, 2006),
especially in headwaters (Caissie, 2006; Kelleher et al., 2012; Mayer, 2012).

Finally, the intensification of the water cycle (Huntington, 2006), with more frequent and
severe droughts (Mantua et al., 2010; Giuntoli et al., 2013; Prudhomme et al., 2014), as well as
more intense and sudden floods (Blöschl et al., 2019) can decouple Ta-Tw trends, exacerbating
Tw increases that will most likely be evident during summer low flows when thermal capacity
and flow velocity are at their minima (Webb, 1996; Webb et al., 2008). For instance, van Vliet
et al. (2013) and Michel et al. (2021) found that an increase in Tw happened where an increase in
Ta and a decrease in Q occurred coincidentally. This may also lead to the synchronicity of high
temperatures and low flows, doubling the problem for cold-water aquatic communities (Aris-
mendi et al., 2013b; Arevalo et al., 2020). There is thus a clear need to improve our estimates
of Tw changes to assess how stream ecosystems will respond in the face of a changing climate.
Unfortunately, extrapolating trend estimates and changes derived from short time series may
lead to paradoxical results, e.g., cooling streams in a warming world (Arismendi et al., 2012).
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This discrepancy in short- and long-term dynamics is likely due to confounding influences of
Ta and hydrology, with implications for the persistence of specialized aquatic organisms (e.g.,
for cold-water biota, as shown by Arismendi et al., 2013b) and the completion of their life cycle
(e.g., for diadromous fish, Arevalo et al., 2020). Hence, from an ecological perspective, it will
be critical to understand and deconvolve the joint influence of changing Tw and Q regimes from
the past to the future using long-term time series.

1.4 Longitudinal profile of stream temperature

The cumulative effects of both natural and anthropogenic drivers on thermal regimes lead to
the propagation of the thermal signal from low upstream Tw to high downstream Tw at a whole
basin scale (see Figure 1.1). Indeed, Tw starts with some upstream temperature (T0) and then
undergoes some changes as the result of heat exchange with ambient conditions. After traveling
some time, it tends towards an equilibrium temperature (Te) (Figure 1.4; cf. Mohseni and Stefan,
1999). Te is the temperature at which the heat exchange between Tw and the atmosphere is null.
There are two types of T0 (see Figure 1.4): 1) T0 may be warm and similar to the groundwater
temperature in winter or the temperature of released water from the top of small impoundments
(see Figure 1.3). 2) T0 may be cool and similar to groundwater temperature in summer or the
temperature of released water from the bottom of large reservoirs (see Figure 1.3). Indeed, the
temperature of water released from the bottom of a large reservoir is cool due to the stratification
phenomenon, and it can reduce downstream Tw (Olden and Naiman, 2010, and see Figure 1.3).
Such cool T0 can be also due to snowmelt in spring.

Our understanding of the longitudinal variation of Tw is improving thanks to programmable
digital thermometers (Webb et al., 2008; Steel et al., 2017). In recent years, the non-invasive
method of thermal infrared remote sensing (TIR) has provided measurements for unshaded
medium and large rivers (Handcock et al., 2006; Lalot et al., 2015). Such method however
remains limited, costly, complex, and temporally limited as well as being sensitive to cloud
cover (satellite), or weather conditions (airborne) (Handcock et al., 2012). Thus, we still have a
limited understanding of longitudinal variations of Tw at a large scale.

1.5 Modeling stream temperature

To better understand the impacts of impoundments and global climate changes on Tw at a large
scale, and in the absence of more robust data sources, modeling Tw is an indispensable tool.
Models can provide us with detailed, long-term data over a large scale. However, model selec-
tion entails important considerations. For example, Tw can be estimated through a statistical
(or stochastic) model based on multiple independent drivers (Benyahya et al., 2007), a common
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point temperature measurements used in the vapor
pressure potential calculations were from Wichita
for Fig. 7(a), and from International Falls for Fig.
7(b). The two figures do not represent the actual
vapor pressure potential at the air/water interface
because dew point temperature is a function of the
amount of moisture transported into the region plus
the amount of evaporation from the river. Despite this
deficiency, the average vapor pressure potential for air
temperatures below 208C increases slowly but around
208C it begins to rise rapidly. For air temperatures
below 208C, a much smaller difference between dew
point temperature and equilibrium temperature leads
to the conclusions that the last term on the right-hand
side of Eq. (13) is nearly constant; the equilibrium
temperature/air temperature relationship therefore
stays linear at low to moderate air temperatures. The
constant of the linear section of the equilibrium

temperature/air temperature relationship must be
smaller thanB1.

2.2. Longitudinal stream temperature profile

Fig. 8 illustrates longitudinal stream temperature
profiles. Stream temperature starts with some
upstream valueT0 and tends towards equilibrium
temperature downstream. There are two types of
upstream conditions: a controlled upstream condition,
e.g. a reservoir release, or a free flowing condition.
Reservoir releases may be from a surface layer
(epilimnion) or a bottom layer (hypolimnion). Epilim-
netic releases are usually warm in summer and follow
air temperatures closely, while hypolimnetic releases
are usually cooler in summer and with smaller seaso-
nal gradients (Sinokrot et al., 1995). Under free flow-
ing conditions, upstream water temperature is
weather-controlled. It is about 08C during the winter
and snowmelt season in cold regions, it can be near
the dew point temperature for small streams during
storm events, and it can be near the groundwater
temperature in spring-fed streams throughout the
year, or a combination of all three temperatures.
Groundwater temperature is 1–28C higher than the
mean annual air temperature of a region (Todd,
1980). If the groundwater temperature varies at all,
it varies very slowly with a significant lag with respect
to air temperature, and the amplitude of the seasonal
variations is small.

The equilibrium temperature varies with weather.
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Fig. 7. (a) Weekly vapor pressure potentials versus weekly air
temperatures at the air/water interface of the Salt Fork of the Arkan-
sas River. Dew point temperatures and air temperatures were
obtained from Wichita, KS. (b) Weekly vapor pressure potentials
versus weekly air temperatures at the air/water interface of the
Partridge River. Dew point temperatures and air temperatures
were obtained from International Falls, MN.
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Fig. 8. Schematic representation of the influence of the upstream
water temperature on stream temperature with respect to distance.
Stream temperature after some travel time becomes equilibrium
temperature: (a) a warm upstream water temperature (e.g. ground-
water inflow in winter); (b) a cold upstream water temperature (e.g.
snowmelt in spring or groundwater in summer).

Figure 1.4: Schematic representation of the influence of the upstream Tw on the longitudinal profile. This figure is
adopted from Mohseni and Stefan (1999). Tw after some travel time tends towards an equilibrium temperature: (a)
a warm upstream Tw (e.g., groundwater input in winter or released water from small impoundments); (b) a cold
upstream Tw (e.g., groundwater in summer, hypolimnetic water from a reservoir), or snowmelt in spring.

practice for large scale studies (e.g. Mantua et al., 2010; Isaak et al., 2012, 2017; Jackson et al.,
2017, 2018). However, such statistical models lack mechanisms. In fact, they cannot reveal
specific energy transfer mechanisms that are responsible for the spatio-temporal patterns of Tw
(Dugdale et al., 2017). They are also unable to predict Tw for periods other than those used
for their calibration, due to a non-stationary relationship between Ta and Tw (Arismendi et al.,
2014).

Alternatively, physically-based (or deterministic) models are entirely mechanistic. They
predict Tw dynamics over time and space through a heat budget, accounting for energy ex-
changes at the water-air and water-stream bed interfaces (see Figure 1.1), and the cumulative
effects of controlling factors on energy transfer (Sinokrot et al., 1995; Webb and Walling, 1997;
Yearsley, 2009; van Vliet et al., 2013). There are five heat fluxes at the water-air interface
(Hannah et al., 2008; Dugdale et al., 2017): 1) net solar radiation, which is typically the largest
heat flux (Webb and Zhang, 1997), 2) atmospheric longwave radiation, 3) long-wave radiation
emitted from the water, 4) convection, and 5) evaporation. At the water-stream bed, the heat is
exchanged through advection (groundwater inputs or tributary inflows) and conduction.

The physical process-based thermal models face some limitations like their statistical counter
partners. For instance, they can be data-intensive. They may also lack routines representing the
heat flux from snowmelt, precipitation, soil water, and in-stream chemical and biological pro-
cess. They may also disregard the influence of impoundments and reservoirs (Dugdale et al.,
2017). Nevertheless, they can be used not only to reconstruct past time series but they can be
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used in forecasting or predicting Tw response to projected climate or land-use changes (Caissie
et al., 2007; Dugdale et al., 2017). A range of physical process-based thermal models have al-
ready been developed and published, but they may differ in terms of representation of each heat
flux component, output resolution/output storage, complexity, coupling with other models (i.e.,
hydraulic or hydrological models), applicability to other regions, accessibility, and finally and
importantly, spatial and temporal resolution (Dugdale et al., 2017). Such consideration should
be taken into account by users when selecting a thermal model.

1.6 Objectives of the dissertation

The main objective of this study is to understand and explain current and future Tw changes un-
der the impact of impoundments and climate change at a large scale. For this aim, the Loire river
basin (105 km2) is selected as the study area since it presents several advantages: 1) it is one
of the largest European basins; 2) it covers contrasting land use/land cover and climatic condi-
tions (Moatar and Dupont, 2016); 3) it hosts contrasting impoundments (i.e., dams and ponds);
4) many Tw measurements data are available for this region; and 5) finally, a high-resolution
physical process-based thermal model (T-NET, Temperature-NETworkT-NET) (Beaufort et al.,
2016a; Loicq et al., 2018) coupled with a semi-distributed hydrological model (EROS) has al-
ready been developed over this basin (Thiéry, 1988; Thiéry and Moutzopoulos, 1995; Thiéry,
2018).

The most important challenge in this effort is to identify the influence of dams and ponds on
stream temperature. Indeed, firstly, the T-NET thermal model is a process-based thermal model
that does not consider the influence of impoundments on thermal energy balance and thus could
only produce “natural” thermal regimes. Therefore, the thermal model can not be used at this
point. Secondly, observed Tw data above and below the impoundments, and before and after
impoundments construction are not available for comparing thermal regimes and addressing the
impacts of dams and ponds, a traditional practice favored by existing literature.

Consequently, the first objective of this dissertation is to distinguish between altered and
natural regimes and to identify the influence of dams and ponds without prior information on
the source of modification or upstream water temperature conditions using a simple and data-
based approach. The second objective of this work is to make some modifications to the T-NET
thermal model (to improve hydraulic geometry and riparian shading). The third objective is to
use the modified T-NET thermal model outputs to infer and quantify the impacts of dams and
ponds at the altered stations identified through the first objective. The fourth objective is to
reconstruct Tw over the past decades using the T-NET thermal model outputs to estimate the
magnitude of past trends in simulated Tw and to assess the variation in such trends in relation
to hydroclimate changes and landscape diversity. Finally, the last objective is to use the T-NET
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thermal model to project Tw under different future climate projections, estimate the magnitude
of changes in projected Tw under such projections over the 21st century, and assess the influence
of hydroclimate changes and landscape diversity on such changes. The schematic diagram
illustrating these dissertation objectives is given in Figure 1.5.

1.7 Chapters of the dissertation

This doctoral project is constituted of 3 articles. One of these articles has already been pub-
lished, one is under revision and the last one is in progress. The dissertation is structured as
follows:

• Chapter 2 presents the characteristics of the Loire River basin as well as surface waters,
datasets of meteorological variables, observed Tw data, and observed Q data.

• Chapter 3 presents a simple and data-based approach to distinguish between altered and
natural thermal regimes. Here, borrowing the concept of hydrological signatures, we in-
troduce the novel “thermal signatures” based on observed stream-air temperature linear
regression and seasonality analysis to identify the influence of dams and ponds, and to
determine their spatial distribution at a regional scale without prior information on the
source of modification or upstream water temperature conditions. The content of this
chapter was published in the journal of Science of Total Environment: Seyedhashemi,
H., Moatar, F., Vidal, J.-P., Diamond, J. S., Beaufort, A., Chandesris, A., and Valette, L.
(2020). Thermal signatures identify the influence of dams and ponds on stream tempera-
ture at the regional scale. Science of The Total Environment, page 142667.

• Chapter 4 presents the principles and input datasets for both the EROS hydrological
model and the T-NET thermal model. In this chapter, the modifications to the T-NET
thermal model i.e. modifications to hydraulic geometry and to the riparian vegetation
shading are described. Then, the performance of both the EROS and T-NET models is
assessed at near-natural hydrometric and Tw stations. For assessing the performance of
the T-NET thermal model, the natural stations identified in the previous chapter are used.
Finally, the thermal model bias (i.e., the difference between simulated Tw and observed
Tw) at influenced stations identified in the previous chapter is used to infer and quantify
the influence of dams and ponds.

• Chapter 5 deals with the reconstruction of natural Tw and Q time series over the past
57 years (1963–2019) at the scale of the Loire River basin and at the reach resolution
by using the EROS and the T-NET models. The ability of both the EROS and the T-
NET models to capture long-term temporal trends is assessed by using a few long-term
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Figure 1.5: Schematic diagram illustrating dissertation objectives.
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observations, with continuous daily data. The magnitude of trends in Tw (reconstructed
by the T-NET thermal model), Q (reconstructed by the EROS hydrological model), and Ta
(provided by the SAFRAN reanalysis data described in Chapter 2) are then estimated over
the past 57 years. Finally, variations of decadal trends in seasonal and annual simulated
Tw are discussed in relation to hydro-climatic changes (i.e., trends in Ta and Q), network
size, spatial heterogeneity in the landscape, and riparian shading. The content of this
chapter is published as a preprint in the journal of Hydrology and Earth System Science

and is under review: Seyedhashemi, H., Vidal, J.-P., Diamond, J. S., Thiéry, D., Monteil,
C., Hendrickx, F., Maire, A., and Moatar, F. (2021). Regional, multi-decadal analysis
reveals that stream temperature increases faster than air temperature. Hydrology and
Earth System Sciences Discussions, pages 1–31.

• Chapter 6 first presents the state-of-the-art for future climate projections used in the
present study. Natural Tw and Q time series are then projected under selected varied
future climate projections over the 21st century at the scale of the Loire River basin and
at the reach resolution by using the EROS and the T-NET models. The magnitude of Tw,
Ta, and Q changes under different future climate projections is estimated, and the spatial
and temporal links between Tw changes and hydro-climate changes are studied. The
performance of projections is assessed beforehand by comparing meteorological variables
and Tw in projections with those in the retrospective simulation (obtained from Chapter
5) over the recent decades. Finally, future Tw is studied as a function of stream size and
riparian shading.
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CHAPTER2
The Loire River basin and data

2.1 General information

The Loire River basin is one of the largest in Europe (105 km2, 1 012 km), and represents
20% of French territory. This basin includes five main tributaries: Allier (18 700 km2), Cher
(13 700 km2), Indre (4 000 km2), Vienne (20 000 km2), and Maine (21 300 km2). It encom-
passes an area with contrasting land use/land cover, climatic conditions (Moatar and Dupont,
2016), and anthropogenic impoundments (Figure 2.1)– characteristics that make it an ideal case
study to disentangle the drivers of the spatio-temporal heterogeneity in Tw. The variability in
mean annual precipitation (P) (549–2130 mm), mean annual potential evapotranspiration (PET)
(550–850 mm), mean annual Ta (6.0–12.5°C) (Figure 2.2) and altitude (10–1850 m) (Figure 2.1,
right panel) provide spatial heterogeneity in Tw regimes.

There are five main HydroEco Regions (hereafter referred to as “HER”) in this basin, which
were previously categorized based on climate, lithology, and relief (Wasson et al., 2002). Since
two of these HERs are very small compared to the other ones, they are merged with the nearest
HER (see Figure 2.3). Thus, three main HERs are considered in this study (Figure 2.1). This is
consistent with a previous study on this basin conducted by Beaufort (2015).

Granite and basalt dominate the south headwaters of the catchment in HER A (mostly in
the Massif Central; 45 600 km2) (Figure 2.1, left panel). The lower values of mean annual Ta
(Median=10 °C) and PET, and higher values of mean annual liquid (median=824 mm) and solid
(median=35 mm) P are found in this HER (Figure 2.2). The high-altitude areas are also in this
part of the basin (Figure 2.1, right panel). Sedimentary rocks occupy the middle reaches in HER
B, with a potential for groundwater input (53 200 km2), followed by granite and schist in the
lower reaches in HER C (11 200 km2). The higher values of mean annual Ta (median=11.5 °C)
and PET (> 750 mm), and lower values of mean annual liquid (median=740 mm) and solid
(median=12 mm) P are found in these two HERs. The percentage of riparian vegetation cover
(mean over both sides of a river bank at a buffer of 10 m, Valette et al., 2012) is more important
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in HER A (median=73%) and in HER B (median=68%) (Figure 2.1, middle panel). In HER
C, the presence of riparian vegetation is quite heterogeneous (median=50%). These HERs are
considered the main controls of landscape diversity and are used to explain spatial heterogeneity
in Tw in the following chapters.

2.2 Surface waters

There are 13000 impoundments (reservoirs, lakes, and ponds) in the Loire River basin. These
surface waters cover approximately 0.8% of the Loire River basin (obtained from BD CARTHA-
GE® , IGN, 2006), and include 11 natural lakes and numerous artificial ponds, shallow reser-
voirs (6 m< height< 15 m), and large dams (height⩾ 15 m) (Figure 2.1, right panel). Un-
fortunately, there is no information about mode-of-operation of reservoirs and ponds, and the
dimensions of all ponds. Therefore, reservoirs with the height⩾ 15 m are considered large
reservoirs and are called "dams" in the current study. Dams constitute 0.5% of surface waters,
and therefore, over 99% of surface waters are actually shallow reservoirs (6 m< height< 15
m), natural lakes, and ponds. Up to 70% of surface waters have a surface area of less than 10
ha, and less than 0.6% of the surface waters (by number) are shallow reservoirs and natural
lakes. Hence, over 98% of surface waters are artificial ponds, commonly dedicated to irrigation
or recreation. Based on these observations, this study considers surface waters that are not dams
to be “ponds”, while recognizing that a small proportion of these so-called ponds may indeed
be shallow reservoirs or natural lakes. Height and volume estimates are unavailable for most of
these artificial ponds.

In addition to ponds and natural lakes, the Loire River basin houses 73 large dams (total
storage capacity=999 Mm3; see Figure 2.1, right panel), which are used for hydroelectricity
(734 Mm3), drinking water (57 Mm3), recreation (32 Mm3) and navigation (234 Mm3). The
two largest dams in the basin are: 1) Naussac dam (190 Mm3, height=50 m), and 2) Villerest
dam (138 Mm3, height=59 m). These large dams are located in the upstream part of the basin
(HER A), with granite and basalt lithology, and little influence of groundwater input. The data
on dams’ characteristics (location, height, and volume) are provided by the Loire-Bretagne
water agency (AELB) (Chandesris and Pella, 2006).
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CHAPTER 2. THE LOIRE RIVER BASIN AND DATA 2

Figure 2.2: Annual mean Ta, liquid and solid P, and PET over the 1958–2019 period. These data are derived from
the SAFRAN reanalysis data (Quintana-Segui et al., 2008; Vidal et al., 2010, and see section 2.3.1).

Before merging After merging
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B

C

A

A

A

B

C

D
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F

Figure 2.3: The HydroEco Regions (HER) in the Loire basin. Two of these HERs (left panel) are merged with the
nearest HER (right panel).
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2.3 Meteorological and hydrological data

The following sections describe all the datasets of meteorological variables, observed Tw data,
and observed Q used in the next chapters.

2.3.1 Meteorological data

Hourly Ta (°C), specific humidity (g.kg−1), wind velocity (m.s−1), shortwave radiation (W.m−2),
longwave radiation (W.m−2) (see Le Moigne et al., 2020, for more information about the recent
changes and biases), solid and liquid precipitation (P) (mm), and potential evapotranspiration
(PET) (mm, and calculated using Penman-Monteith equation, Allen et al., 1998) are provided
by the 8 km gridded SAFRAN atmospheric reanalysis data released by Météo France over the
1958–2019 period (Vidal et al., 2010). SAFRAN is a mesoscale analysis system for atmospheric
variables near the surface. It uses surface observations, combined with global meteorological
models to produce hourly variables at the French national scale through data assimilation with
an optimal interpolation algorithm (Quintana-Segui et al., 2008). The first guess of SAFRAN
comes from ERA-40 (Uppala et al., 2005), a reanalysis of the global atmosphere and surface
conditions produced by ECMWF (European Centre for Medium-Range Weather Forecasts).
These meteorological variables are used in Chapter 4 as the input data of both the EROS and
T-NET models. The daily Ta is used in Chapter 3, and Ta at each Tw station is derived from the
daily-averaged data of the closest SAFRAN grid cell to the Tw station.

2.3.2 Observed stream temperature

Daily observed Tw data are available at 694 stations (which are scattered over the Loire River
basin, and include natural and influenced thermal regimes) over the 2000–2018 period. Most of
these stations are managed by the French Agency for Biodiversity (http://www.naiades.eaufrance.fr)
and the National Fishing Federation (https://www.federationp-eche.fr) (22% and 67% of the
stations, respectively). These data were collected in the “TIGRE” project (Beaufort et al.,
2020b, and see https://thermie-rivieres.inrae.fr/). In that project (conducted at the national
scale), hourly temperature measurements were considered to be outliers when they exceeded
a certain threshold or when the variation between two hours (at the hourly time step), intraday,
or between two consecutive days (at the daily time step) seemed too strong to be considered
natural. Then, the resulting hourly data were screened visually before being averaged into the
mean daily stream temperature (Beaufort et al., 2020b).

In the current study, corrected hourly Tw times series from the TIGRE project over the Loire
River basin are averaged into mean daily stream temperature. Here, these daily Tw time series
are again checked visually before being used. This visual analysis allows for the diagnosis of
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measurement errors in some of the daily time series (see Figure 2.4 as an example), through
the comparison of daily Tw with daily Ta. Indeed, Tw is expected to be close to Ta, and no big
difference between the daily time series of these variables (like the ones displayed in Figure 2.4)
should be observed. In our visual assessment, 6 % of the original 694 Tw stations are removed
due to the diagnosed errors. Finally, after removing measurement errors, stations with at least
one complete year of daily Tw data are retained. The data availability of the final stations with
complete-year data over the 2000–2018 period is presented in Figure 2.5.
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Figure 2.4: One example of the errors found in observed Tw data. Tw–Not–cor: Tw before correction; Tw–corr:
Tw after correction; Ta: air temperature.

Figure 2.5: Data availability of observed daily Tw over the 2000–2018 period, from 392 stations with at least one
complete year of daily data.
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Indeed, there are very few stations with complete-year daily data over the 2000–2007 period
(see Figure 2.5). Thus 392 stations with missing years over the 2008-2018 period are retained.
These Tw stations are scattered homogeneously around the Loire river basin (see Figure 2.1,
middle panel). 14 stations of these 392 Tw stations have the long-term continuous daily (≥ 8
years) data between 1977 and 2019, most of which are located on medium and large rivers (Ta-
ble 2.1; see red points in Figure 2.1, middle panel). These 14 stations with long-term continuous
daily data are mainly used in Chapter 5 for assessing the ability of the T-NET thermal model to
capture the long-term temporal trends.

Table 2.1: The 14 Tw stations with long-term data. See red points in Figure 2.1, middle panel for the position of
these stations. The ID of each station corresponds to the numbers (in red) shown in the Figure 2.1, middle panel.

ID River (Location) Catchment area (km2) Record period Total years Source of data

1 Loire (Chinon) 57043 1977–2019 43 EDF
2 Loire (St-Laurent) 38088 1977-2019 43 EDF
3 Loire (Dampierre) 36212 1977–2019 43 EDF
4 Loire (Bellevile) 35172 1979–2019 41 EDF
5 Vienne (Civaux) 5795 1997–2017 21 EDF
6 Artière (Clermont-Ferrand) 48 2005–2017 13 DREAL Auvergne
7 Oudon (Segré) 1342 2004–2014 11 DREAL PDL
8 Mayenne (Ambrières-les-Vallées) 825 2004–2014 11 DREAL PDL
9 Bedat (Saint-Laure) 419 2008–2017 10 DREAL Auvergne
10 Credogne (Puy-Guillaume) 84 2008–2017 10 DREAL Auvergne
11 Loir (Flée) 6215 2010–2017 8 DREAL PDL
12 Huisne (Montfort-le-Gesnois) 1931 2010–2017 8 DREAL PDL
13 Jouanne (Forcé) 413 2010–2017 8 DREAL PDL
14 Merdereau (Saint-Paul-le-Gaultier) 123 2010-2017 8 DREAL PDL

Most of these 392 Tw stations (50%) have at least 5 years of data, with only 1.7% having
complete 11 years of temperature data and 33% having less than 3 years of data (see Figure 2.5).
64% of these stations are located in HER A, 29% are situated in HER B, and the remaining
stations belong to HER C. These stations represent a wide range of river discharge (mean annual
discharge 72–1050 mm.y−1) and width (1.5–181 m), with 75% of the stations located on rivers
with a Strahler order from 2 to 4. The mean annual Tw (over the 2008–2018 period) varies
mainly between 8 °C in the upstream part of the basin and 14 °C in the western downstream
part (Figure 2.6). The vegetation cover (mean over both sides of a river bank at a buffer of 10
m; Valette et al., 2012) at these stations ranges between 0% and 100%.

2.3.3 Observed streamflow

There are 352 hydrometric stations with at least 10 years of daily observations available be-
tween 1971 and 2018 in the Loire River basin (range=40-1600 km2; mean=300 km2). Observed
daily Q data at these stations are extracted from the French national Banque Hydro database
(http://www.hydro.eaufrance.fr/). Stations along the main Loire and Allier rivers are highly
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Figure 2.6: The interannual mean of Tw and Ta over the 2008–2018 period at 392 Tw stations. The daily Ta at
each Tw station is derived from the daily-averaged data of the closest SAFRAN grid cell to the Tw station (see
section 2.3.1).

influenced by the management of large dams, notably through summer releases to sustain low-
flows (https://www.eptb-loire.fr/). Time series for these stations have been naturalized by EDF
(electricity producer) by taking into account dam storages and releases. These naturalized Q
time series are provided by Céline Monteil (from EDF). The list of these stations can be found
in Table A.3 in Appendix A. These 352 stations are mainly used in Chapter 4 for calibrating the
EROS hydrological model.

Of these 352 hydrometric stations, 44 are part of the French Reference Hydrometric Net-
work (RHN) described by Giuntoli et al. (2013), which gathers stations with long-term continu-
ous high-quality data gauging near-natural catchments. These 44 RHN stations with long-term
continuous daily data are mainly used in Chapter 5 for assessing the ability of the EROS hydro-
logical model to capture the long-term temporal trends. These 352 and 44 hydrometric stations
are presented with black and red points, respectively, in Figure 2.1 (right panel). The list of all
hydrometric stations can be found in Tables A.1 and A.2 in Appendix A.
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CHAPTER3
Thermal signatures identify the influence of

dams and ponds on stream temperature

Anthropogenic impoundments (e.g., large and small reservoirs, and ponds) are expanding in
number globally, influencing downstream temperature regimes in a diversity of ways that de-
pend on their structure and position along the river continuum. However, there has been a
paucity of studies characterizing the cumulative effects of these impoundments on thermal
regimes at the catchment scale, and differentiating regimes altered by them from natural ones.
This issue is due to the lack of detailed information about the heat budget in large-scale as-
sessments (Webb and Zhang, 1997). To overcome the lack of Tw data, Ta is commonly used
as a proxy for computing the river heat budget. Simple linear regression between water and
air temperature is a common proxy technique to infer stream thermal regimes (Stefan and
Preud’homme, 1993; Pilgrim et al., 1998; Mohseni et al., 1999; Erickson and Stefan, 2000;
Caissie et al., 2004), but regression parameters are highly spatially variable. For instance, the
river reaches without groundwater input typically have steep regression slopes with low inter-
cepts, but opposite relations can emerge for groundwater-dominated reaches (Caissie, 2006;
O’Driscoll and DeWalle, 2006; Kelleher et al., 2012). The relationship between Tw and Ta may
also be altered by different types of anthropogenic disturbances, leading to a weaker correlation
and/or a smaller regression slope (Erickson and Stefan, 2000; Webb et al., 2008; Bae et al.,
2016).

These spatially variable relationships can therefore be used to infer the controls and drivers
of stream temperature. Here, such relationships between observed Tw and Ta are also used to
distinguish between altered and natural regimes. To do so, stations subject to alterations induced
by impoundments are first selected. Then, analogous to “hydrological signatures" (Gupta et al.,
2008), some “thermal signatures” based on the Tw-Ta relationship are defined to identify the
influence of dams and ponds through a clustering approach. The derived clusters are validated
in different ways. Finally, the characteristics of altered regimes are compared with natural ones.
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CHAPTER 3. THERMAL SIGNATURES IDENTIFY THE INFLUENCE OF DAMS AND
PONDS ON STREAM TEMPERATURE 3

Note that, in this chapter, the observed Tw data at the 392 stations with missing years between
2008 and 2018 described in section 2.3.2 (p. 46) are used.

3.1 Selecting stream temperature stations sensitive to alter-
ations induced by impoundments

Stations are selected based on their potential to be influenced by anthropogenic structures. This
effectively eliminates large rivers from the dataset because they are weakly sensitive to thermal
regime alterations due to their larger conveyed volumes and their greater thermal inertia (Smith
and Lavis, 1975; Webb and Walling, 1993; Caissie, 2006; Kelleher et al., 2012). Moreover,
because large river temperatures are approximately in equilibrium with air temperature (Moatar
and Gailhard, 2006; Bustillo et al., 2014), information extracted from regression-type analyses
is often equivocal. Therefore, this study focuses on smaller rivers to identify altered regimes.

To subset the original dataset to focus on smaller rivers, stations that are in equilibrium
with air temperature are removed using a distance-from-source threshold. To calculate this
threshold, the interannual summer (June–August, referred to as “JJA” throughout) temperature
average is regressed for both stream and air temperature on distance from headwater source (as
derived from the Theoretical Hydrographic Network for France (RHT), Pella et al., 2012), and
the intersection of the two regression lines is selected (Figure 3.1, left panel). Sites above the
distance-from-source value at this intersection are then removed from further analysis.

The distance-from-source analysis exhibits that a distance of 100 km approximately delin-
eates the designation between small and large rivers (Figure 3.1). Large rivers in this sense
are rivers with stream temperature in equilibrium with air temperature and less sensitive to the
human-induced alterations (Figure 3.1, right panel). These stations are therefore excluded, re-
sulting in 330 stations with a median catchment area of 232 km2 (range = 3–1600 km2) and
median width of 7m (range=1.5–34 m) (as derived RHT, Pella et al., 2012).

The majority of these 330 stations (∼80%) have artificial ponds in their contributing area.
There are 38 stations downstream of large dams (median distance = 6 km). However, no in-
formation on the mode-of-operation (e.g., peaking, run-of-river, storage, etc.) of these dams is
available. Only four stations are located downstream of natural lakes (median distance = 4.15
km).
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Figure 3.1: (left) Interannual mean summer Tw and Ta versus the distance from the source for 392 observed Tw
stations. 38 stations with a large upstream dam are excluded in this preselection to avoid incidentally removing
them. Indeed, in this step, it is assumed that all large dams alter downstream thermal regimes. Solid lines represent
linear regression lines with a 95% confidence interval. The dashed grey line shows the exact intersection value, 80
km. It was decided to round this value to 100 km based on our judgment of the stations, and the objective of includ-
ing as many stations as possible. Note that there are only nine stations with a distance from the source between 80
km to 100 km (the selected threshold for the rest of the work). (right) Annual air and stream temperature regimes
of stations on large rivers. Shaded areas represent the 10th-90th percentile band, and the solid line represents the
median value.

3.2 Defining “thermal signatures” of altered regimes

Typically, upstream reference conditions are used to identify the downstream thermal alterations
of anthropogenic structures (Webb and Walling, 1993, 1996, 1997; Lowney, 2000; Preece and
Jones, 2002; Casado et al., 2013; Chandesris et al., 2019). Since such information is in practice
rather limited, the air temperature may be used as a proxy for the heat budget reference condi-
tions. As such, a novel concept of “thermal signatures” based on air-water temperature relation-
ships is suggested here to characterize regimes altered by anthropogenic influences. The choice
of the name thermal signatures derives from the analogous concept of “hydrological signatures”
(Gupta et al., 2008), which uses a statistical analysis of flow regimes to provide information
about broader controls on hydrological behavior (e.g., dominant flow processes, strength, and
spatiotemporal variability of the rainfall-runoff response; see Berhanu et al., 2015; McMillan
et al., 2017). Hydrological signatures may also be based on soil moisture (Branger and McMil-
lan, 2019) and snow data (Horner et al., 2020). Similarly, thermal signatures capitalize on
indicators extracted from the statistical structure of local stream-air temperature relationships
to identify the dominant processes (e.g., anthropogenic influences) that generate the observed
stream temperature time series.

The choice of thermal signatures in the current study is based on a preponderance of liter-
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ature evidence on the known impacts of dams and ponds and visual assessments. For instance
in section 1.3.1 (p. 30), we saw that large dams delayed the annual cycle of thermal regimes,
and ponds increased downstream Tw. Examples of visual assessments are also provided in Fig-
ures 3.2 and 3.4. Figure 3.2 compares the parameters of summer stream-air linear regression
(slope and coefficient of determination) at two different stations. One of these stations (Fig-
ure 3.2, left panel) is downstream of a large dam, Queuille dam (5.9 Mm3, height =28 m). The
other (Figure 3.2, left panel) is downstream of a lot of ponds on Vincou stream (with 1.3 %
ponded upstream catchment area; see Figure 3.3). The linear regression parameters (slope and
coefficient of determination) at the station influenced by ponds (Figure 3.2, right panel), are
greater than those at the station influenced by a dam (left panel) (slope=0.45 vs 0.19; and R2=
0.5 vs 0.2).
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Figure 3.2: Examples of summer stream-air temperature regressions over a single year (left panel) downstream
the large Queuille dam (5.9 Mm3, height=28 m), and (right panel) downstream the highly ponded Vincou stream
(with 1.3 % ponded upstream catchment area). Ponds lead to a higher stream-air temperature slope and coefficient
of determination than the large dam.

Other examples of impacts of dams and ponds are provided in Figure 3.4, which depicts
the time series of two groups of stations: 1) (top) stations influenced by an upstream dam, and
2) (bottom) stations influenced by ponds. Figure 3.4 (top left and top middle panels) shows
the 30-days moving average of Tw and Ta time series upstream and downstream of Sidiailles
dam (5.6 Mm3, height = 22 m) in 2009. There is no difference between the annual peak of Tw
and Ta in the upstream part of the Sidiailles dam. However, downstream part of this dam, the
annual peak of Tw is shifted compared to that of Ta. Figure 3.4 (top right panel), downstream of
Queuille dam (5.9 Mm3, height = 28 m), also shows a shift in the annual peak of Tw compared
to that of Ta in 2012. Unfortunately, there is no year with concomitant Tw data upstream and
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Tw station 
on Vincou stream and with
a lot of ponds in upstream
catchment area

Figure 3.3: The Tw station downstream of the highly ponded Vincou stream (with 1.3 % ponded upstream catch-
ment area). The blue polygons show the surface waters.

downstream of the dam.

Figure 3.4 (bottom left and bottom middle panels) shows the 30-days moving average of Tw
and Ta time series upstream and downstream of the natural Chambon lake in 2014. There is no
difference between the annual peak of Tw and that of Ta upstream and downstream of this lake.
However, Tw regime is shifted up by 4 °C compared to Ta regime in the downstream part of
the lake. Such a shift can also be seen at a station downstream of a lot of ponds on the Vincou
stream in 2009 (see Figure 3.4, bottom right panel). Therefore, our thermal signatures can be
defined based on these relationships.

Five thermal signatures are proposed to identify the dominant process of a thermal regime
(Figure 3.5 and Table 3.1). The first two signatures are based on daily, summertime stream-
air temperature linear regressions (see Figure 3.5, top panels). Stream-air temperature linear
regression analysis may be conducted on annual data (Kelleher et al., 2012; Beaufort et al.,
2020a) or summer data only (Mayer, 2012). The summer period is selected in the current study
to capture the higher influence of large dam operations on stream temperature during these
months.

The first derived thermal signature is the regression slope between the stream and air tem-
perature, which is termed “thermal sensitivity”, or TS (°C.°C−1, or unitless [-]), because it indi-
cates how sensitive stream temperature is to changes in air temperature (Kelleher et al., 2012).
In natural streams, TS is greater when the climate is the main control on stream temperature, but
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Figure 3.4: Examples of impacts of (top) dams and (bottom) ponds on stream temperature time series with respect
to air temperature time series. (top left and middle) Influence of Sidiailles dam (5.6 Mm3, height =22 m) with
both upstream and downstream Tw data, and (top right) influenced of Queuille dam (5.9 Mm3, height =28 m) with
only downstream Tw data. (bottom left and middle) Influence of the natural Chambon lake with both upstream and
downstream Tw data, and (bottom right) impact of the highly upstream ponded Vincou stream (with 1.3 % ponded
upstream catchment area) with only downstream Tw data.

TS is lower where groundwater inputs are large (Caissie, 2006; Mayer, 2012; Beaufort et al.,
2020a) or when dams reduce the temporal coupling between the stream and air temperature
(like in Figure 3.2, left panel).

The second thermal signature is the coefficient of determination (R2) of the regression be-
tween the stream and air temperature, which indicates the predictive capacity of air temperature
on stream temperature, and therefore shows how strongly these variables are coupled (Kelleher
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et al., 2012). In natural streams, R2 is high, whereas in streams with an upstream dam, R2 is
low, similar to TS (like in Figure 3.2, left panel).

Figure 3.5: Conceptual representation of thermal signatures. Top row: daily stream-air temperature linear regres-
sion showing (left) lower TS (Thermal Sensitivity) and lower R2 downstream of a dam, and (right) higher TS and
higher R2 downstream of ponds. Bottom row: stream and air temperature regimes showing (left) the lagged annual
cycle of stream temperature relative to air temperature downstream of a dam, and (right) greater heating effect and
thermal effect occurring more often downstream of ponds. See Table 3.1 for the detailed description of thermal
signatures.

Table 3.1: Signatures used to identify altered and natural thermal regimes. Signatures are grouped into two groups
based on their hypothesized ability to detect thermal effects from their respective anthropogenic structures: dam
signatures and pond signatures. Note that these signatures are calculated based on interannual averages.

Signatures Definition Rationale

Dam signatures

Thermal sensitivity (TS) Daily JJA stream-air temperature linear regression slope Dams reduce TS
R2 Daily JJA stream-air temperature coefficient of determi-

nation
Dams reduce R2

Lag time Lag time between the annual peak in 30-days moving av-
erage Tw and Ta regimes

Dams increase lag
time

Pond signatures

Heating effect Mean positive difference of daily stream-air temperature
(Tw-Ta) from March to October

Ponds increase dis-
tributed energy stor-
age, leading to heat-
ing

Thermal effect Mean overall difference of daily stream-air temperature
(Tw-Ta) from March to October

Ponds increase en-
ergy storage, even in
the presence of natu-
ral cooling

The remaining three thermal signatures are derived from daily stream and air temperature
time series (see Figure 3.5, bottom panels). The first one is the “lag time” (in days) between
the annual peak of the two 30-days moving average time series. This signature detects how
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dams delay the annual cycle. The next signature, which is termed the “heating effect” (°C), is
the mean positive difference of daily stream-air temperature (Tw-Ta) from March to October.
This period is selected to avoid any snowmelt effect on stream temperature and to have the
greatest increase in stream temperature due to ponds during the low-flow period. This heating
effect indicates how energy storage in ponds increases downstream stream temperature. The
last signature, which is termed the “thermal effect” (°C), is the mean overall difference of daily
stream-air temperature (Tw-Ta) from March to October. The thermal effect indicates the overall
temperature effects of ponds on downstream waters, accounting for potential natural cooling
and mitigation of heating effects.

As presented in Table 3.1, it is hypothesized that because TS, R2, and lag time would be
able to capture the impacts of managed dams (indeed, dams would decrease TS and R2 (Webb
et al., 2008), and delay the annual cycle (Webb and Walling, 1993; Webb, 1996)), they would
reveal dam signatures on thermal regimes. Similarly, It is hypothesized that the remaining two
signatures (namely, the heating effect and the thermal effect) would detect the influence of en-
ergy storage observed in the presence of artificial ponds (Dripps and Granger, 2013; Chandesris
et al., 2019), and thus reveal ponds signature on thermal regimes (Table 3.1). These thermal sig-
natures are calculated for 330 stations over the basin. The five signatures are calculated at each
station for each year with data and their interannual means are computed for further analysis.

Over the basin, thermal signature distributions tend to group together based on their hy-
pothesized thermal signature (i.e., dam or pond; Figure 3.6). TS is spatially variable across the
region and lacks clear patterning although most low TS (i.e., TS< 0.2) stations are located in
the upstream part of the basin (Figure 3.6). In contrast, spatial distributions of R2 and lag time
vary much less, covary with each other, and are more spatially homogeneous. Indeed, 83% of
stations have both high R2 (i.e., > 0.6), and short lag times (i.e., < 20 days). Visual inspection
reveals that stations with low TS coincide with lower values of R2 (< 0.6), and higher values of
lag time (> 30 days) in the upstream part of the basin. Ranges of heating and thermal effects
are 0.05 °C to 4 °C and -4.9 °C to 3.7 °C, respectively, but the interquartile ranges are much
narrower: 0.54 °C to 1.14 °C and -1.58 °C to 0.16 °C, respectively. Stations with larger heating
effects (e.g., > 1 °C), tend to exhibit greater thermal effects (e.g., > 1 °C) as well (r=0.9).
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3.3 Identifying altered regimes through clustering

The objective of this step is to cluster stations using the scaled values of the five thermal signa-
tures defined in Table 3.1. For this aim, K-means clustering (with Euclidean distance) is used.
This method is an unsupervised learning algorithm that partitions n observations into k clusters,
where each observation belongs to the cluster with the nearest mean, serving as a representative
of the cluster. In theory, thermal regimes that are in the same group should have similar catch-
ment properties and/or features, while thermal regimes in different groups should have highly
dissimilar catchment properties and/or features. The optimal number of clusters is obtained us-
ing the NbClust R package (Charrad et al., 2014; R Core Team, 2013). This package provides
30 popular indices that determine the number of clusters in a dataset by using the k-means clus-
tering method and offers the user the best clustering scheme based on different results. The
number of clusters suggested by the majority of these indices is selected.

The greatest proportion of indices (11 out of 30) suggests an optimal number of three clus-
ters based on the five thermal signatures. Figure 3.7 represents these clusters as the colors of
individuals/stations on the principal component map. Indeed, this map shows there is a clear
difference between the 3 obtained clusters. Furthermore, Figure 3.6, bottom right panel shows
the different spatial distributions of the obtained clusters. Stations in cluster 1 are located in the
upstream part of the basin (HER A). Stations in cluster 2 are scattered over the basin, and 60%
of the stations in cluster 3 tend to be found in the upstream part of the basin.
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Figure 3.7: Representation of individual stations on the principal component map and their corresponding cluster.
The numbers are showing ID of each station.

At this point, the question arises which clusters are showing altered regimes. To answer
this question, first, the obtained clusters are labeled. The statistical distribution of thermal
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signatures within each cluster suggests the proper labeling of the obtained clusters with regard
to the underlying physical processes (Figure 3.8).

First, the lowest median values of TS (0.22) and R2 (0.23) are observed in cluster 1, along
with the greatest median value of lag time (26 days). Therefore, cluster 1 is labeled as “dam-
like". Second, the greatest median values of TS (0.42), heating effect (1.38°C), and thermal
effect (0.65°C) are found in cluster 2. The second cluster is thus labeled as “pond-like". Finally,
the median value of TS in stations that belongs to cluster 3 (0.34) is closer to the median value
of TS in the stations in the pond-like cluster than that of the stations in the dam-like cluster.
Stations in cluster 3 also exhibit the highest median value of R2, and the smallest median values
of heating effects. In this regard, cluster 3 is labeled as “natural-like".
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3.4 Cross validating derived clusters

The derived clusters are validated in three ways, each based on the expectation that stations
clustered together would have similar catchment properties and anthropogenic features.

3.4.1 Presence-absence test

In a first step, a simple presence/absence test is used for upstream human constructions (i.e., to
answer whether the station has an upstream pond or dam). The odds ratios are then calculated
for each cluster from the presence/absence counts of upstream dams or ponds to determine
the strength of the association between the clustering based on thermal signatures and known
anthropogenic influence. For example, for a cluster with dam thermal signatures, the ratio is
calculated between the odds of being in that cluster given the presence of a dam and the odds
of being in the cluster given the absence of a dam.

In support of the chosen labeling scheme, 71 % of stations (15 out of 21) in the dam-like
cluster have an upstream dam, and if a site contains an upstream dam, it is 31.1 times more likely
(p< 0.001) to be in the dam-like cluster than if it does not have an upstream dam. Similarly,
94 % of stations (90 out of 96) in the pond-like cluster (N=96) have ponds in their catchment
and if a site contains an upstream pond, it is 6.5 times more likely (p< 0.001) to be in the pond-
like cluster than if it does not have an upstream pond. The lower odds ratio for the pond-like
cluster is due to the high proportion of stations (49 % of all stations) outside of this cluster that
does have upstream ponds (i.e., false negatives). Indeed, 72 % of stations in the natural-like
cluster (153 out of 213) have ponds in their catchment.

The presence/absence test of dams and ponds is the first and simple validation. Indeed, the
presence of dams and ponds in the upstream part of a station does not by itself prove that the
regime is altered, and so more validation is needed.

63



3.4. CROSS VALIDATING DERIVED CLUSTERS 3

3.4.2 Dam and pond characteristic distributions

To test how well the clusters align with specific anthropogenic features, statistical distributions
of dam and pond characteristics, described in Table 3.2, are compared among the clusters us-
ing ANOVA and the post-hoc Tukey’s Honestly Significant Difference t-test with Bonferroni
adjustment. Prior to any analysis, the homogeneity of variances and normality is ensured by
using log-transformation when necessary. Because the cross-validation data rely on measured
dam and pond characteristics, these analyses are conducted on subsets of stations with known
dams (n=38) and ponds (n=253). It is hypothesized that stations from the respective dam- or
pond-like clusters would have greater or lower values of their respective feature characteristics.
For example, it is expected that stations from the dam-like cluster would have a much smaller
distribution of distance to the closest dam than the other clusters, or stations from the pond-like
cluster are expected to have a higher proportion of ponded surface area than the other clusters.
Hence, this provides a more detailed validation than the simple presence/absence test.

Results show that the statistical distribution of dam descriptive variables differs from one
cluster to another—IRI (p=0.01), ddam (p=0.005), and IRI/ddam (p=0.035). This provides strong
support for the clustering results (Figure 3.9). Dam-like stations are located closer to their
upstream dam (median=4.8 km) compared to pond-like stations (median=10 km; p=0.001) and
natural-like stations (median=6.5 km; p=0.014). Similarly, dam-like stations have upstream
dams that are an order of magnitude larger (implied by larger values of IRI, median=14.3 %)
than dams upstream of pond-like stations (median=0.36 %; p=0.003) and natural-like stations
(median=3.7 %; p=0.012).

The mean values of pond descriptive variables also differ from each other among the clus-
ters, but the differences are less pronounced than for dam descriptive variables— fpond,reach

(p=0.97), f̄pond,reach (p=0.854), and fpond,catchment (p=0.003) (Figure 3.10). Although statisti-
cally non-significant, pond-like stations have over twice as much ponded reach area than nat-
ural like stations at both the local reach scale (median fpond,reach=1.4% versus 0.6%; p=0.578)
and the catchment scale (median f̄pond,reach=6.5% versus 3.0%; p=0.815). These results are
mirrored by the overall proportional ponded area at the catchment scale (i.e., not just along
reaches) for pond-like and natural-like stations (median fpond,catchment=0.14% versus 0.07%;
p=0.001). The dam-like cluster is not analyzed with t-tests because it is assumed that the stream
temperature regime resets at the dam position and the cumulative effects of ponds will be lost.
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Table 3.2: Descriptive variables tested for assessing the links between thermal signatures and dam/pond char-
acteristics. Mean and standard deviation values (SD) are shown for the 330 stations selected in the study.

Notation Variable Mean SD Unit

Dam characteristics a

ddam Distance from the closest upstream large dam 6.6 4.2 km
IRI Impounded Runoff Index of the closest large dam b 11 16 %
IRI/Ddam IRI/distance from the closest large dam c 10 25.5 %/km

Pond characteristics d

fpond,reach Fraction of station’s reach surface area that is ponded e 7.5 12 %
f̄pond,reach Fraction of station’s reach surface area that is ponded; 1.6 2.7 %

averaged over all upstream reaches
fpond,catchment Fraction of the catchment area that is ponded f 0.17 0.8 %

Catchment characteristics g

Ta Annual mean Ta at station 12 1.5 °C
Acatchment Catchment area 232 300 km2

Alt Altitude at station 399 290 m
S Upstream mean slope 0.037 0.03 m/km
D Distance from the source 30 20 km
Wq Width for median discharge h 8.7 6.3 m
Dq Depth for median discharge h 0.3 0.16 m
q Mean annual specific discharge i 10 4.9 l/s/km2

CI Concavity index j 0.4 0.08 -
Veg Rate of vegetation cover k 83 22 %

a The data on dams’ characteristics (location, height, and volume) are provided by the Loire-Bretagne water
agency (AELB) (Chandesris and Pella, 2006).
b Ratio of dam volume to mean annual runoff.
c To capture the interaction between the dam characteristic and the position of a station from the dam.
d The surface areas of ponds are extracted from BD CARTHAGE® (IGN, 2006).
e Extracted from SYRAH-CE database (Valette et al., 2012). The final nodes of each considered river segment
are at important confluences and topologically important places.
f A proxy of cumulative effects of upstream ponds.
g These variables are available on the Theoretical Hydrographic Network for France (RHT, Pella et al., 2012).
h From the ESTIMKART empirical model developed by Lamouroux et al. (2010).
i Based on geostatistical interpolation on the Theoretical Hydrographic Network for France (RHT, Pella et al.,
2012). (Sauquet et al., 2000; Pella et al., 2012).
j CI: (Q10-Q99)/(Q1-Q99); represents the shape of the dimensionless flow duration curve. This descriptor is a
measure of the contrast between low-flow and high-flow regimes. Values close to 1 are observed where there
are large aquifers or storage in snowpacks. Values close to 0 are related to catchments exposed to contrasting
weather (Sauquet and Catalogne, 2011).
k Derived from remote sensing on both sides of reaches with a buffer of 10 m at the station, as reported in
SYRAH-CE database (Valette et al., 2012).

65



3.4. CROSS VALIDATING DERIVED CLUSTERS 3

 *** *** ** **

IRI (%)

1 2 3 1 2 3 1 2 3
0

0.01

10

100

0

20

40

60

0

5

10

15

20

Cluster

Cluster

1.dam−like

2.pond−like

3.natural−like

ddam (km) IRI/ddam (%/km)

 ** **

Figure 3.9: Boxplots of dam descriptive variables for all 38 stations with an upstream dam. The information about
the volume of six of these stations is missing. The t-test has been done with the reference group of the dam-like
cluster. ***, **, and * indicates that the dam characteristics for the group of the dam-like cluster are significantly
different from those in the other two clusters at the 1, 5, and 10% confidence levels, respectively.
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Figure 3.10: Boxplots of pond descriptive variables for all 253 stations that have upstream ponds. For dam-like
stations, the impounded surface water by an upstream dam is removed from the calculations wherever there is
information on it. ***, **, and * indicates that the pond characteristics for the group of pond-like cluster is
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3.4.3 Multiple regression with catchment variables

The dam/pond thermal signatures clustering is also validated by using catchment-specific dam
and pond characteristics in the presence of other natural landscape predictors as controlling
factors. To do so, forward and backward stepwise linear regression is used (MASS package in
R; Venables and Ripley, 2002) to select the catchment, dam, or pond characteristics (Table 3.2)
that best explain their respective thermal signatures. The catchment descriptive variables are se-
lected based on hypothesized controls on thermal regimes, and a preliminary multi-collinearity
assessment using various diagnostic tests from the mctest R package (Imdadullah et al., 2016).
Note that the most contributive predictors i.e. ones leading to significant performance improve-
ment to the model are selected at the end.

The stepwise multiple regression procedure broadly supports the clustering results and indi-
cates that dam and pond characteristics are the strongest controls on thermal signatures. Indeed,
of the 10 considered catchment variables (see Table 3.2), only two arise as being important pre-
dictors of or controlling factors on thermal signatures (Table 3.3). Please note that the descrip-
tive variables (see Table 3.2) that do not appear in Table 3.3 are not selected by the algorithm
(stepwise linear regression), and are thus irrelevant.

Table 3.3: Stepwise multiple linear regression results for cross-validation approach relating descriptive variables
for dam and pond thermal signatures. ***, **, and * denote significance at the 1, 5, and 10% confidence levels,
respectively. Scaled coefficients are shown in parentheses for comparison among predictor variables.

Dam signatures

Descriptive variable TS (−) R2 (-) lag time (days)

S [m/km] − − 232.85±92.891**
(0.377±0.151)

ddam[km] 0.015±0.005***
(0.458±0.140)

0.029±0.010**
(0.385±0.141)

-1.6±0.560***
(-0.425±0.151)

IRI [%] -0.002±0.001**
(-0.306±0.145)

-0.009±0.002***
(-0.484±0.146)

−

Adjusted R2 0.43 0.482 0.3
F statistic (df) 12.37 (29) 15.43 (29) 7.64 (29)
p-value < 0.001 < 0.001 0.002

Pond signatures

Descriptive variable Heating effect (°C) Thermal effect (°C) −

Veg [%] -0.003±0.002*
(-0.164±0.102)

− −

fpond,catchment [%] 0.62±0.211***
(0.296±0.102)

0.762±0.305**
(0.257±0.102)

−

Adjusted R2 0.1 0.060 −
F statistic (df) 5.442 (87) 3.872 (87) −
p-value 0.006 0.024 −
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For dam thermal signatures, only lag time is influenced by the catchment slope, and for the
pond signature, the heating effect is reduced by vegetation. More important are dam charac-
teristics: the closer a station is to a dam (low ddam), and the bigger the dam (high IRI), the
lower the TS and R2 are. Lag time also increases at stations that are closer to a dam. The
influence of ddam on TS is approximately 50% stronger than IRI, but ddam influence on R2 is
approximately 20% weaker than IRI (based on scaled regression coefficients, Table 3.3). For
lag time signature, the influence of ddam is 13% stronger than the catchment slope. For ponds,
ponded catchment area ( fpond,catchment) is the most important predictor variable of both heat-
ing and thermal effects, but percentage vegetation cover (Veg%) appears to partially mitigate
heating effects (at approximately half the influence of fpond,catchment).

Finally, the significant relationship between dam thermal signatures and dam descriptive
variables as well as the significant relationship between pond thermal signatures and pond de-
scriptive variables (see Table 3.3) demonstrate the derived clusters correspond to their con-
sidered label. Therefore, thermal signatures helped to distinguish between altered and natural
regimes and to identify the influence of dams and ponds. Note that Tw stations and their corre-
sponding clusters are presented in Table B.1.

3.5 Characterizing identified thermal regimes

3.5.1 Variability of thermal metrics for altered and natural thermal regimes

At this point, the altered thermal regimes are sought to be placed in the context of widely
used ecological metrics. In fact, thermal metrics are the components of a thermal regime that
help describe it in terms of magnitude, amplitude, frequency, duration, and timing (Olden and
Naiman, 2010; Maheu et al., 2016a; Steel et al., 2017). There is a diversity of metrics, which
can be used depending on the user’s purpose. In Figure 3.11, some examples of these metrics
are presented.

For instance, monthly mean Tw (in orange), mean of Tw over the hottest month (in red),
annual maximum or minimum Tw (in blue), and finally annual mean Tw (in black dashed line)
are describing the magnitude feature of a thermal regime. The time corresponding to the max-
imum or minimum Tw (in brown) can be considered as the metric that describes the timing
feature of a thermal regime. The solid horizontal lines (referred to as high and low thresholds)
in Figure 3.11 correspond to lethal temperatures of aquatic communities, and the frequency and
duration of days below or above these thresholds can be applied as the descriptors of a thermal
regime (Olden and Naiman, 2010).

In the current study, a group of metrics is gathered from biodiversity and stream ecology
(Verneaux et al., 1977; Buisson et al., 2008; Steel et al., 2017) to quantitatively evaluate the
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Figure 3.11: Examples of thermal metrics that can describe a thermal regime in terms of magnitude, amplitude,
frequency, duration, and timing. The original figure can be found in Olden and Naiman (2010).

anthropogenic effects in altered regimes compared to natural ones. The means of these thermal
metrics are compared from the altered regimes to those from natural regimes using ANOVA and
the post-hoc Tukey’s Honestly Significant Difference t-test with Bonferroni adjustment (natural
regimes are used as the reference group). False-positives (e.g., stations that are identified in the
dam-like cluster, but do not have a dam) are excluded from this analysis to avoid misinterpreta-
tion of true anthropogenic effects.

Figure 3.12 shows that altered thermal regimes (i.e., dam- and pond-like) clearly separate
from natural regimes along ecological metrics: T̄w,summer (p<0.001), max(Tw,monthly) (p<0.001),
NTw >20 (p<0.001), DTw >15 (p<0.001), and max(∆Tw) (p<0.001). Magnitude and fre-
quency (T̄w,summer and NTw >20) thermal metrics are lower for dam-like stations than for natural-
like stations (by 2 °C, p=0.02; and 4 days, p=0.001), but frequency, duration and rate of change
thresholds are equivocal.

Furthermore, altered thermal regimes from ponds also differ from natural regimes along
every thermal metric considered here, with:

• a 2.3°C increase in average T̄w,summer (p<0.001),

• a 2.5 °C increase in max(Tw,monthly) (p<0.001),

• a 15-day increase in NTw >20 (p<0.001),

• a 39-day increase in DTw >15 (p<0.001), and
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Table 3.4: Selected ecologically-relevant thermal metrics for comparison between altered regimes and natural ones.
The biological importance (last column) is adopted from Steel et al. (2017).

Regime feature Metric Description Biological importance

Magnitude T̄w,summer Mean Tw in summer
(June–August)

Differences in mean temperature
across river systems contribute
to determining which species are
present and which are absent

Magnitude max(Tw,monthly) Maximum of the 30-
day moving average daily
mean Tw

Used in the biotypology accord-
ing to the formula proposed by
Verneaux et al. (1977)

Frequency NTw > 20 Number of days that daily
mean Tw> 20 °C

Species-specific differences in re-
sponse to high temperatures pro-
vide preferential advantages to par-
ticular species

Duration DTw > 15 Duration of consecu-
tive days with mean
Tw> 15 °C

Accumulated stress may trigger mi-
gration and other major life-history
transitions

Rate of change ∆Tw Difference between mean
Tw in August and Febru-
ary

The competitive advantage of one
species over another may be deter-
mined by conditions in both sum-
mer and winter

• a 2.6 °C increase in ∆Tw (p<0.001).

3.5.2 Annual thermal regime at altered and natural stations

Finally, the thermal regimes of the derived clusters are characterized by comparing their aggre-
gate stream and air temporal behaviors and comparing the natural regime with altered regimes
together. The goal is to create a portrait of how the respective cumulative effects of dams and
ponds modulate stream temperature relative to air temperature and relative to so-called “natu-
ral” regimes. In this step, as it is expected that large dams to be responsible for altered regimes
partitioned in the dam-like cluster, we consider stations (N=15) with an upstream dam for the
dam-like cluster. Similarly, we consider stations with upstream ponds (N=90) for the pond-like
cluster.

The annual regimes from the three clusters depicted in Figure 3.13 support the current un-
derstanding of how anthropogenic structures influence stream and river thermal regimes. Com-
pared to natural regimes, temperatures of dam-like stations exhibits a downshifted regime (by
2°C) and a lag in summer thermal peaks (by 23 days), with less clear differences in winter
(Figure 3.1, left panel). In contrast, the stream temperature of pond-like stations remains above
air temperature over the whole year and is nearly synchronous with air temperature, mimicking
the regime of large rivers (Figure 3.1, right panel). Indeed, the annual stream temperature am-
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Figure 3.12: Statistical distribution of ecologically-relevant thermal metrics in each cluster: 1) dam-like with 15
stations that have a large upstream dam, 2) pond-like with 90 stations, and 3) natural-like with 213 stations. The
t-test is conducted with the reference group of the natural-like cluster. ***, **, and * indicate that the metric for
the group of altered regimes is significantly different from natural regimes at the 1, 5, and 10% confidence levels,
respectively. The “ns” shows that the metric for the group of the altered regime is non-significantly different from
natural regimes.

plitude of pond-like stations is 14 °C, 2.5 °C less than that of large rivers (16.5°C), but 2-4 °C
greater than that of dam-like or natural stations. Natural-like stations stand out in that their
summer peaks are cooler than pond-like stations, but are warmer and more synchronous with
air temperature than dam-like stations.

3.6 Discussion

The above results demonstrate that five simple signatures derived from stream-air temperature
time series are capable of identifying the extent and characteristics of both altered and natural
thermal regimes. Using these signatures, it is possible to accurately parse the divergent thermal
regimes.
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Figure 3.13: The annual air and water temperature regimes of altered (by dams and ponds) and natural streams.
Shaded areas represent the 10th-90th percentile band over all stations in each cluster, and solid lines represent the
median value: 1.dam-like with 15 stations that have a large upstream dam; 2.pond-like with 90 stations that have
upstream ponds; 3.natural-like with 213 stations.

3.6.1 Large dam thermal signatures

Spatial clustering of dam thermal signatures in the upstream part of the Loire River basin aligns
with the known distribution of dams there (Figure 2.1 (right panel), p. 44). This thermal sig-
nature approach may therefore be useful in identifying areas with the strong thermal alteration
from dam proliferation, like in the Amazon headwaters (Anderson et al., 2018).

The mode of operation of dams affects its degree of effect in the downstream thermal regime
(Olden and Naiman, 2010; Maheu et al., 2016c) and should be reflected in its emergent thermal
signatures. Observed dam thermal signatures are based on hypothesized cooling effects from
hypolimnetic release, and although most stations downstream of large dams exhibit this signa-
ture, many do not. This suggests alternative modes of operation. Hence, in future works, using
alternative thermal signatures to capture other modes of operation may be explored. Even dams
with similar purposes could have different modes of operation (Maheu et al., 2016c).

The interannual variability driven by climate adds an additional layer of complexity that
may be difficult to assess with this method. To see the influence of interannual variability, in
the present study, the 10th percentile of (Tw-Ta) is taken as a measure of dam regulation. This
measure is much more variable from one year to another in dam-like stations (median=1.95°C)
than in the other stations due to the interannual variability of dam operations (median of 0.74°C
and 0.97°C for pond-like and natural-like clusters, respectively) (see Figure 3.14). Therefore,
even the relatively simple approach adopted here is largely successful in identifying altered
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thermal regimes. For instance, along with other studies, it is observed that dams that release
hypolimnetic water disrupt the stream-air temperature relationship (R2) (Buendía et al., 2015),
and delay the annual stream temperature peak (Olden and Naiman, 2010) (Figures 3.8 and 3.13).
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Figure 3.14: Interannual variability of the 10th percentile of (Tw-Ta) in each cluster. Only 130 stations with more
than 6 years of available data are considered here to insure a robust estimation of the interannual variability.

The extent of a dam thermal alteration depends on the reservoir volume, the stream order,
and the distance from the dam (Webb et al., 2008; Batalla et al., 2004). Here, the channel slope
is an important confounding factor on dam influence, which appears to amplify lag time effects
(Table 3.3): the steeper the channel, the smaller water exposure time to air, and the greater the
lag time between the stream and air temperature. Cross-validation results also highlight the
critical effect of dam volume on thermal regimes, underscoring previous works that identified
a critical impoundment threshold of 5–20% of the mean annual runoff (Buendía et al., 2015;
Maheu et al., 2016c). Importantly, It is found that IRI> 20% (see Figure 3.15, left panel)
completely erase stream-air temperature correlation (cf. Buendía et al., 2015; Maheu et al.,
2016c). Stations with the weakest dam signatures are far from large dams, supporting the
known reduction of dams influence on thermal regimes (an increase of TS) with distance (see
Figure 3.15, right panel) due to the heat exchange with ambient conditions (cf. Preece and
Jones, 2002; Buendía et al., 2015). The coupling of greater distance from dam and lower IRI
of upstream dam lead to weaker downstream alteration induced by an upstream dam. This may
provide additional explanation as to why 17 stations with known dams do not cluster into our
dam-like thermal signature. Indeed, the smaller ratio of IRI/Ddam (Figure 3.9, right panel)
of stations with an upstream large dam in the other clusters also confirms not only that these
stations are located further from the upstream dam, but also that the volume of the dam is not
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large enough relative to the stream annual runoff to cause the downstream alteration.
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Figure 3.15: Examples of the influence of dams on thermal signatures based on dam descriptive variables. (left)
R2 with respect to Impounded Runoff Index (see Table 3.2), and (right) TS (thermal sensitivity) with respect
to the distance from the dam. The three colors correspond to the stations in each cluster. Solid lines represent
logarithmic/linear regressions with a 95 % confidence interval. Please note that the information about the volume
of six of these stations is missing, limiting us to calculate IRI.

Changes induced by dams in ecologically-relevant thermal metrics on downstream temper-
ature are moderate. We observe the effects of a decreased summer stream temperature and
a decrease in the frequency of high temperature, in accordance with previous works (Olden
and Naiman, 2010; Maheu et al., 2016c). Nevertheless, little evidence for the effects of other
ecologically-relevant thermal metrics is found compared to natural systems. However, the focus
of selected ecologically-relevant thermal metrics in the current study is biased towards increased
thermal alterations, and further metrics and analyses would benefit future inference.

3.6.2 Pond thermal signatures

Ponds and shallow reservoirs impound water for different purposes that depend on location
and local needs. Ponds are evenly distributed throughout the Loire River basin, with no clear
clustering of sizes (Figure 2.1 (right panel), p. 44). In support of this observation, pond-like
thermal signatures are evident throughout the basin (Figure 3.6), located mostly on medium-
size streams (median of distance from source = 40 km).

Ponds typically release warm water from overflow, increasing downstream temperature syn-
chronically with air temperature (Dripps and Granger, 2013; Maheu et al., 2016b). The pond
thermal signatures identified here align with other empirical results (Chandesris et al., 2019;
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Zaidel et al., 2020) and the general conceptual model (Figures 3.5 and 3.13).

Stations influenced by small dams experience a small reduction in R2 compared to natural
stations (cf. Bae et al., 2016, and see Figure 3.8). The extent of the change induced by ponds
depends mostly on the surface area and residence time (Maxted et al., 2005; Chandesris et al.,
2019). The lack of data on the depth of the pond/shallow reservoirs at this scale prevented
us from using residence time. A larger surface area, or a larger residence time increases the
time of exposure to air temperature and incoming solar radiation, leading to a greater sensitivity
of stream temperature to air temperature (increased TS) (Maheu et al., 2016b; Michel et al.,
2020). Here, a greater TS (thermal sensitivity) for pond-like stations is also detected (see Fig-
ure 3.8). Moreover, Figure 3.16 shows that the heating effect of more than 1 °C and positive
thermal effect can clearly partition pond-like stations from natural-like ones. The single best
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Figure 3.16: Heating effect and thermal effect at the whole natural-like and pond-like stations over the Loire River
basin (see Figure 3.8).

signature of the pond thermal alteration is the proportion of a station’s catchment that is ponded
( fpond,catchment), strongly implying that ponds have an emergent, cumulative effects on stream
temperature regimes. Indeed, two other descriptors based on reach-scale characteristic (at the
station and averaged over upstream), could not differentiate the thermal signatures (see Table
3.3 and Figure 3.10). However, reach scale metrics are defined based on recorded surface waters
in 2011 and are perhaps not temporally aligned with stream and air temperature measurements
used here. Importantly, the cross-validation (see Table 3.3) suggests that the thermal influence
of ponds may be mitigated by vegetation cover (Maxted et al., 2005), suggesting the strategic
planting of canopy cover species in thermal restoration efforts.

Finally, ponds can have substantial effects on ecologically-relevant thermal metrics. They
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increase the summer temperature and the frequency and duration of high temperature values (cf.
Lessard and Hayes, 2003; Maheu et al., 2016c,b; Chandesris et al., 2019, and see Figure 3.12).

3.6.3 Natural regimes

The thermal regimes of natural-like stations are those that are most strongly driven by natural
factors like climate, topography, vegetative shading, and stream discharge (Poole and Berman,
2001; Kelleher et al., 2012; Hannah and Garner, 2015). These natural regimes should therefore
arise in regions with minimal anthropogenic influence, which is observed in their spatial dis-
tribution. They are predominately located in the upstream part of the Loire River basin, HER
A, where there is the largest proportion of vegetation cover (cf. Beaufort et al., 2020a, and see
Figure 2.1 (middle panel), p. 44). These natural-like stations are located on small streams (me-
dian of distance from source = 24 km) and have typically a larger proportion of vegetation cover
(median of vegetation cover within a 10-meter buffer = 100%).

Natural-like regimes, unlike altered ones, have a strong correlation with air temperature (cf.
Webb et al., 2008) and exhibit minimal lag time, heating, or thermal effects (see Figure 3.8).
In accordance with Beaufort et al. (2020a) those who studied the natural controlling factors of
natural regimes of the Loire River basin, TS at stations located on large rivers (median=0.43)
(where the climate is the key driver of stream temperature) is greater than TS in natural-like sta-
tions (median=0.34). However, TS in the current study is smaller than the TS values reported
by Beaufort et al. (2020a), since the present study focused on summer TS values. A similar
result (median of TS=0.45) was obtained in an analysis focused on August stream temperature
by Mayer (2012). In the current study, TS of the stations located in HER B – which has the
greatest potential for groundwater input – is lower than TS in stations located in HER A and C
(median TS=0.29 versus 0.35). Mayer (2012) also attributed a lower summer TS to groundwater
input (Mayer, 2012). Supporting the thermal signature approach, the annual amplitude for sta-
tions with natural thermal regimes (median=11°C) was in direct accordance with observations
in Beaufort et al. (2020a) for natural Tw stations (9–14°C; and see Figure 1.2, p. 29).

3.6.4 Limitations of the study

The obtained results show that stations can be clearly partitioned into three clusters without
information on the upstream catchment characteristics and water temperature, and by only using
thermal signatures that compare stream and air temperature time series. The lack of long-term
continuous data forces us to use all existing observed stream temperature stations, despite the
heterogeneity of data availability between years during the 2008-2018 period (see Figure 2.5,
p. 47). However, there is a concern about the sensitivity of thermal signatures to interannual
data heterogeneity (i.e., years with gaps over the study period) since the five thermal signatures
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are based on interannual means.
Figure 3.17 shows that the mean values of all thermal signatures are however reasonably

constant with respect to the number of years used for their computation. The only exception is
lag time signature, which can be heavily influenced by year-to-year variations in both climate
and upstream reservoir management. Here, stations with complete annual data are used, but,
the other concern may be within-year data availability. Less complete databases may be less
adequate for the outlined approach, which should be assessed further.
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Figure 3.17: Maximum of the normalized yearly absolute deviation of thermal signatures from the interannual
mean for all stations, with respect to the number of years with available data. For calculating the maximum
deviation (y-axis), the deviation of desired signatures is calculated from the interannual mean (considered in the
calculations) at each station for each year (if the data is available). Then, the maximum observed deviation for
each station is considered. Then, it is divided by the interannual mean (considered in the calculations) to get a
normalized value which let compare the different stations. The x-axis shows the number of years with available
data for each station from 2008 to 2018.

The large sample size used in the present study, the presence of different types of reservoirs
over the study area, and the blind-eye toward dam operations may have some implications for
generalizing our findings. For example, in regions with more variable dam operations, different
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clusters may arise, or it may be difficult to perform a cluster analysis without additional thermal
signatures.

In this study, there is a low possibility of station pseudo-replication due to the high reso-
lution of SAFRAN data (8 km): only 20% of the SAFRAN grid cells include more than one
station, and only 12% of the grid cells include the stations from the same cluster. However, it is
imperative to verify and cross-validate this approach when applied to new datasets.

3.6.5 Implications and perspectives

The proposed thermal signature approach allows a simple, rapid, and accurate workflow to iden-
tify river reaches that are highly influenced by dams and ponds. The methodology is inherently
regional, aligning in scale with the jurisdictions of most environmental agencies and work-
ing groups. The thermal signature results can be used to identify hotspots and target specific
reaches for restoration and further investigation and to more broadly design strategic measure-
ment networks (Jackson et al., 2016). Thermal signatures can also identify natural reaches as
benchmarks for restoration or aquatic species habitat protection. Indeed, there is much interest
in predicting the phenological and spatial diversity for species of interest or their prey (Steel
et al., 2017). Moreover, because climate change will likely exacerbate the degree of thermal
alterations (Michel et al., 2020) through increasing air temperature, decreasing streamflow, and
increasing demand for ponds and dams (Webb and Walling, 1996; Moatar and Gailhard, 2006),
the thermal signature framework could be used to plan pond and dam placement to minimize
cumulative downstream effects.

The proposed thermal signatures may also be used by modelers to develop a reference-
condition model by using natural regimes (Hill et al., 2013), or to assess the performance of
distributed water temperature models that do not take into account anthropogenic activities.
The difference between simulated and observed thermal signatures at altered stations can serve
to correct biases found in simulations by using a known dam or pond descriptive variables.
Such implications will be explored in the next chapter to assess the performance of the T-NET
thermal model at natural stations identified in this chapter. The T-NET thermal model bias (i.e.,
the difference between simulated and observed Tw) at altered regimes identified in this chapter,
will also be used to infer and quantify the influence of dams and ponds.

The thermal signature approach is flexible and can easily be reimagined for purposes other
than detection and characterization of altered regimes from anthropogenic impoundments. For
example, the stream-air temperature linear regression calculated on annual data could identify
varied thermal regimes of natural streams (with a focus on TS and the intercept) like Kelleher
et al. (2012); Maheu et al. (2016a); Beaufort et al. (2020a) (see also Figure 1.2, p. 29). In ad-
dition to parsing the natural drivers of thermal regimes, spots with the potential of inputs from
shallow groundwater may be traced by using the lag time signature (Briggs et al., 2018). Iden-
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tifying such streams is important since shallow groundwater will warm in response to climate
change (Kurylyk et al., 2015) and increase Tw. Moreover, the synthesis of thermal signatures
and hydrological signatures could be applicable to analyzing fish and macroinvertebrate com-
munities.
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3.7 Conclusion on the impacts of dams and ponds on stream
temperature

The cumulative effects of anthropogenic impoundments on stream temperature at a large scale
are barely known. To address this issue, five thermal signatures based on the stream-air temper-
ature relationship are defined in this chapter. These signatures enable a rapid way to distinguish
between altered and natural regimes and to identify the influence of dams and ponds without
prior information about the source of the modification and upstream Tw condition through a
clustering approach. The derived thermal regimes or clusters are then cross-validated with sev-
eral known catchment characteristics. The results demonstrate that five simple signatures are
capable of identifying the extent and characteristics of both altered and natural thermal regimes.

The results further reveal that the thermal regimes altered by dams arise in the upstream part
of the basin where there are mostly large dams, and the degree of induced alteration depends
on the dam’s IRI (Impounded Runoff Index) and distance from the upstream dam. Along with
the other studies, dams with IRI>20% completely erase stream-air temperature correlation.
Nevertheless, alterations induced by dams disappear when moving further downstream from the
dam. On the other hand, the degree of alteration induced by ponds depends on the proportion
of a station’s catchment that is ponded, strongly implying that ponds have cumulative effects on
stream temperature regimes. Nevertheless, such effects of ponds can be mitigated by vegetation
cover, suggesting the strategic planting of canopy cover species in thermal restoration efforts.

0

2

4

6

8

10

12

14

16

18

20

22

100 200 300

Influenced by dams 

Natural

100 200 300

Influenced by ponds 

Natural

Julian day

W
at

er
 te

m
pe

ra
tu

re
 (°

C
)

Figure 3.18: Altered regimes vs natural regimes.

Moreover, comparing Tw regime of altered stations with those of natural ones exhibits that
large dams decrease summer temperature by 2 °C, and delay the annual stream temperature
peak by 23 days at local scales (Figure 3.18, right panel). In contrast, the cumulative effects of
upstream ponds increase summer stream temperature by 2.3 °C, and increase the synchronicity
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with air temperature regimes (Figure 3.18, left panel).
Therefore, due to the wide availability of air temperature data and the rapid growth of wa-

ter temperature datasets, thermal signatures can be applied at large scales, facilitating regional
assessments of stream temperature variability. Thermal signatures further allow tracing of sys-
tematic changes introduced by anthropogenic structures like dams or ponds, and identification
of highly influenced reaches at a large scale.

In the next chapter, the implications of the parsed thermal regimes will be explored. Tw
at the identified natural stations will be used to assess the performance of the T-NET thermal
model. Furthermore, the T-NET thermal model bias (i.e., the difference between simulated
(natural) and observed (influenced) Tw) at the identified altered stations will be used to infer
and quantify the influence of dams and ponds.
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CHAPTER4
The hydrological and thermal models

To overcome the lack of Tw data, large scale studies commonly use Ta as a proxy of Tw (e.g.,
Buisson et al., 2008; Tisseuil et al., 2012; Domisch et al., 2013). However, Ta is a not a good
surrogate for Tw (Caissie, 2006), and other drivers (e.g., stream discharge (Q), streambed, mor-
phology, topography, and vegetation cover) contribute to the spatio-temporal variability of Tw
(Hannah and Garner, 2015). Moreover, recently, Kirk and Rahel (2021) showed that using Ta
instead of Tw led to over-predicting changes to stream fish assemblages with climate warm-
ing. Thus, modeling Tw with considering not only Ta but also other drivers is needed to have
long-term and detailed Tw data at a large scale.

Here, the T-NET physical process-based thermal model coupled with the EROS semi-
distributed hydrological model is used over the Loire River basin (Beaufort et al., 2016b; Loicq
et al., 2018) to produce Q and Tw data at a large scale and a high spatial resolution. The inputs
of these models are provided by the SAFRAN reanalysis data (section 2.3.1, p. 46). In this
chapter, the principles and input data of both the EROS and T-NET models are first presented.
Then, some improvements are made to the T-NET thermal model. The first improvement is
related to hydraulic geometry (river width and depth) for which a recently developed model is
considered. This new hydraulic geometry model is based on catchment physical characteris-
tics, and uses a Random Forest approach (Morel et al., 2020). The next improvement is the
implementation of dynamic riparian shading as a function of tree height, river width, solar ele-
vation angle, vegetation density (using the approach proposed by Li et al., 2012), and phenology
instead of considering a constant riparian shading.

Afterwards, the performance of both the EROS and the T-NET models is assessed at weakly
influenced stations since both models produce natural outputs. For the EROS model, two types
of stations are considered: calibration stations with data between 1971 and 2018 (N=352), and
stations from the Reference Hydrometric Network (RHN) with long-term continuous daily data
(N=44) (see section 2.3.3, p. 48). The performance of the T-NET model with new features
in simulating daily Tw is assessed at stations with a natural thermal regime identified in the

84



CHAPTER 4. THE HYDROLOGICAL AND THERMAL MODELS 4

previous chapter (see Figure 3.8, p. 62) with missing years over the 2008–2018 period (N=275).
The performance of the T-NET thermal model in simulating seasonal Tw is also assessed at
stations with continuous daily data over the 2010–2014 period (N=67). Note that, these 67
Tw stations are derived from the Tw stations with missing years over the 2008–2018 period.
Then, the ability of the T-NET model to derive longitudinal profile of stream temperature, and
to capture alterations resulting from groundwater inputs is also investigated at the Loire River.
Finally, the bias of the T-NET thermal model i.e. the difference between simulated Tw (provided
by the T-NET model) and observed Tw at altered stations identified in the previous chapter (see
Figure 3.8, p. 62), is used to infer and quantify the influence of dams and ponds.

4.1 The EROS hydrological model

The EROS semi-distributed hydrological model simulates daily discharge (Thiéry, 1988; Thiéry
and Moutzopoulos, 1995; Thiéry, 2018). This model is made up of a network of sub-basins in
which each sub-basin is subjected to rainfall, snowfall and potential evapotranspiration. The
water balance in the sub-basin is modeled by a lumped model using three reservoirs (Figure 4.1)
as follows:

1. the first reservoir represents the soil that is subjected to evapotranspiration and precipita-
tion;

2. the second non-linear reservoir represents the vadose zone, models the percolation time,
and determines the partition between runoff and infiltration;

3. the third reservoir represents the underlying aquifer characterized by a recession time,
and characterizes the groundwater flow.

The contribution flow of each sub-basin is the sum of the runoff and the groundwater flow.
The total flow at the outlet of each sub-basin is the sum of its contribution and the total flow of
the upstream sub-basins (delayed by a transfer function representing their propagation time).

Water abstractions, dams and ponds are not considered in the EROS model, and the hydro-
meteorological balance in each sub-basin is carried out at a daily time step. This hydrological
model was already used in several studies on the impacts of climate change (Ducharne et al.,
2011; Moatar et al., 2013; Habets et al., 2013; Bustillo et al., 2014).

The EROS hydrological model uses Ta (°C), solid and liquid precipitation (mm), and ref-
erence evapotranspiration (ET0, mm) to produce daily Q and groundwater flows over the Loire
River basin (Thiéry, 1988; Thiéry and Moutzopoulos, 1995). Meteorological inputs are pro-
vided by the SAFRAN atmospheric reanalysis data (Vidal et al., 2010, see section 2.3.1, p. 46).
ET0 is computed from the SAFRAN variables with the Penman-Monteith equation (Allen et al.,
1998).

85



4.1. THE EROS HYDROLOGICAL MODEL 4

Figure 4.1: Schematic figure of the EROS model operation for each sub-basin.

In the Loire River basin, there are 368 sub-basins within which the climate, land use and ge-
ology are quite homogeneous (Figure 4.2). The EROS model is calibrated at 352 out of the 368
sub-basins over the 1971–2018 period where observed Q is available (see section 2.3.3, p. 48).
Time series at these calibration stations have been naturalized by EDF (electricity producer) by
taking into account dam storages and releases (see section 2.3.3, p. 48).

A 3-year warm-up period (1971-1974) is discarded from the calibration period. The calibra-
tion aims at adjusting all unknown parameters (soil capacity, recession times and propagation
times) in each sub-basin by maximizing the Nash-Sutcliffe efficiency (NSE) criterion (Nash
and Sutcliffe, 1970) on the square root of sub-basin streamflow, and minimizing the sub-basin
absolute value of the relative bias. The relative bias is the average streamflow bias divided
by the mean streamflow. The square root of the streamflow is a classic transformation (Oudin
et al., 2006; Garcia et al., 2017) that helps reducing the heteroscedasticity of model residuals.
Maximizing the NSE criteria on the untransformed streamflow favors the goodness of fit of the
hydrograph for high flows. Using the NSE criterion on the square roots of the flows provides
an estimate of model performance without favoring either high or low flows.

The simulation is then carried out for all 368 sub-basins. Although meteorological variables
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are available over the 1958–2019 period (see section 2.3.1, p. 46), the first years are discarded
from the outputs of simulation for the sake of the EROS model’s convergence, and thus daily
simulations at the outlet of 368 sub-basins is considered over the 1963–2019 period. Figure 4.3
presents in summary different periods considered for the EROS model in different steps.

Note that the EROS model is calibrated and executed by Dominique Thiéry from BRGM
(French Geological Survey). We only provide him with meteorological input data for each
sub-watershed.

Figure 4.2: The 368 sub-basins over the Loire River basin. The climate, land use and geology are quite homoge-
neous within each sub-basin.
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Final used period

Removing first years for EROS convergence

Simulation

Removing a 3−year warm−up period
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Meteorological variables
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Figure 4.3: Summary of considered period in each step for the EROS model.

The majority of 44 RHN stations (see section 2.3.3, p. 48) do not have detailed data before
1968 (see Figure 4.4). They mostly have long-term continuous high-quality data over the 1968–
2019 period. Indeed, they have data for more than 90% of days in each year, and more than 84%
of years over the 1968–2019 period (see Figure 4.4). Thus, the 1963–1967 period is discarded
from the study period of 44 RHN stations. The performance of the EROS hydrological model
is assessed at both 352 calibration stations (between 1971 and 2018) and 44 RHN stations (over
the 1968–2019 period).
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Figure 4.4: The data availability of RHN stations over the 1963–2019 period. Colored years have data >90% of
days.
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4.2 The T-NET thermal model

4.2.1 Principles of the T-NET model

The T-NET (Temperature-NETwork) thermal model is a physical process-based model devel-
oped by Beaufort et al. (2016b) and Loicq et al. (2018) over the Loire River basin. This model
computes Tw along the longitudinal dimension of the hydrographic network (a GIS polyline)
of the Loire River basin based on two main steps: 1) computation of equilibrium temperature
(Te), and 2) upstream-downstream propagation of the thermal signal. The combination of these
two steps makes it possible to take into account the thermal propagation and spatio-temporal
variations of the heat energy balance as well as hydraulic conditions.

The thermal propagation approach is based on a hydrographic network of the Loire River
basin adopted from the BD CARTHAGE® (IGN, 2006). This network was modified by re-
moving all unconnected watercourses as well as all braided channels. The final hydrographic
network of the model (see Figure 4.5) consists of 52 278 reaches delimited either by confluences
of two streams or a headwater source (i.e., first-order reaches). Therefore, each reach is priori-
tized according to Strahler’s classification knowing that the Strahler order of a reach without a
tributary is 1, and that the Strahler order of the Loire at the outlet is 8. The median (resp. mean)
reach length in the model is 1.3 km (resp. 1.7 km), and 74% of the reaches have a Strahler order
lower than 3. In the following, the two main steps of the the T-NET model are explained.
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Figure 4.5: The hydrographic network of the Loire River basin. For sake of the readability, small reaches with
Strahler order (OSTRAHLER)< 2 are not shown. Solid black lines show the Hydro-Ecoregion delineation (see
Figure 2.1, p. 44).
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4.2.1.1 Computation of equilibrium temperature (Te)

The 1D heat equation for vertically well-mixed streams (Sinokrot and Stefan, 1993) is written
as:

∂T
∂ t

+V
∂T
∂x

+DL
∂ 2T
∂x2 =

ΣHi(t)
ρw.cpw.D

(4.1)

with D: the river dpeth (m), V: water velocity (m.s−1), Tw: the water temperature (°C), cpw: the
specific heat of water, ρw: the water density, Hi: the sum of energy heat fluxes at the water-air
interface and the water-stream bed interface (see Figure 4.6).

Figure 4.6: The heat exchanges at the water-air and water-stream bed interfaces.

By considering steady condition (∂T
∂ t ≈ 0) and assuming negligible diffusion at the basin

scale (DL
∂ 2T
∂x2 ≈ 0), the 1D heat equation for a rectangular channel (V = Q

D∗B ) can be written as:

∂T
∂x

=
ΣHi(t).B
ρw.cpw.Q

(4.2)

To solve Equ. 4.2 in a simple way, the concept of equilibrium temperature (Te) is used
(Edinger et al., 1968). Te is the temperature at which the net heat exchange at the body of water
is null (ΣHi = Hns+Hla−Hlw+Hc−He+Hg = 0). All the parameters required for calculating
the six energy fluxes and the net heat exchange at the body of water are detailed in Table 4.1.
It is also assumed that the net heat exchange is proportional to the difference between Tw and
Te (Edinger et al., 1968). Therefore, the net heat exchange can be linearized by establishing a
proportional relationship between the difference of Te and Tw:

ΣHi = Ke(Te −Tw) (4.3)

By substituting Equ. 4.3 in Equ. 4.2:

∂T
∂x

=
Ke.B

ρw.cpw.Q
(Te −Tw) (4.4)
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Table 4.1: Formulas and parameters used to determine heat fluxes at the water-air and water-stream bed interfaces
(Brutsaert and Stricker, 1979; Sridhar et al., 2004; Bustillo et al., 2014; Beaufort et al., 2016a). These heat fluxes were
presented before in Figure 1.1, p. 27.

Heat flux (W.m−2) Formulas Parameters Assumptions

Net solar radiation
(Hns)

Hns = (1−Alb).Rg.(1−SF) Alb: surface water albedo

Rg: shortwave radiation (W.m−2) Alb = 0.6
SF: shading factor (see sec-
tion 4.2.2.3)

Long wave radiation
(Hla)

extracted from the Safran re-
analysis data

Long wave emitted
radiation (Hlw)

Hlw = εw.(σ)(Tw+273.15)4 εw: water emissivity εw = 0.96σ

Tw: water temperature (°C)

Convection (Hc) Hc = B. f (x).(Ta −Tw) B: Bowen’s coefficient B= 0.62 mb.k−1

f (w) : aw+b : wind function a=4 w.m−3.mb−1

w :wind speed at 2 m (m.s−1) b=7.4 w.m−2.mb−1

Evaporation (He) He = f (x).(es − ea) es : water vapour pressure in air
(mb)

Magnus–Tetens
approximation:

es :saturation vapour pressure for
Tw (mb)

es = 6.11exp 17.27Tw
237.3Tw

Groundwater inputs
(Hg)

Hg = ρw.Cpw.
Qg
A (Tg −Tw) ρw: density of water (kg.m−3)

Cpw: specific heat capacity
(J.kg−1.°K−1)
Qg: groundwater flow m3.s−1

A: exchange area between ground-
water and river (m2)
Tg: groundwater temperature (°C)
(approximated by adding 1°C to the
moving average of Ta over 365 days
(Todd and Mays, 2004))

In this equation, Ke is rate at which the Tw responds to different heat exchange processes and is
expressed in W/m2/K. It is determined using a theoretical formula (Poulin, 1980; Bustillo et al.,
2014; Beaufort et al., 2016b) as the partial derivative of heat fluxes (ΣHi) with respect to Te:

Ke =
−Σ∂H i

∂T e

Ke = 4εσ(Tw+273.15)+ f (w)(0.62+6.11 17.27×2371.3
(237.3+Tw(t))2)

×exp 17.27Tw(t)
237.3+Tw(t))+ρw.Cpw.

Qg(t)
A (4.5)

The parameters in this equation can be found in Table 4.1.
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4.2.1.2 Upstream-downstream propagation of the thermal signal

The headwater temperature, or in other words, boundary condition (Tw of a reach with a Strahler
order 1), is considered as groundwater temperature (Tg) approximated by adding 1°C to the
moving average of Ta over 365 days (Todd and Mays, 2004). To satisfy the steady condition
(∂T

∂ t ≈ 0), each reach is cut into segments (∆x) that water travels in 1h (Figure 4.7, left panel),
a period of time for which the model’s inputs data i.e. the meteorological variables (at the
hourly time step) and discharges (at the daily time step, but are considered constant over 24h)
are constant (see sections 2.3.1, p. 46 and 4.1 for more detailed information about these inputs
data).

longwave radiation emitted from the water surface, evaporative heat
flux, convective heat flux, and groundwater heat inflow. To compute
these terms, the model uses the following parameters as gridded input
data: air temperature [°C], specific humidity [kg·kg−1], wind velocity
[m·s−1], atmospheric longwave radiation [W·m−2] and direct and dif-
fuse solar radiation [W·m−2]. Parameters are allocated to each river
reach as a function of the ratio between the length of the reach within
a grid cell and the total reach length. All meteorological parameters ex-
cept solar radiation are derived from the SAFRAN atmospheric reanalysis
dataset (Vidal et al., 2010). These data are produced by Météo-France
from both observations and modelling at an hourly time step and a spa-
tial resolution of 8 km. Direct and diffuse solar radiation are derived from
the Helioclim3-v5 dataset (Marchand et al., 2017), generated with the
help ofMeteosat satellite imagery at an hourly time step and a resolution
of ~3 × 5 km. Inputs pertaining to river discharge and groundwater con-
tributions to river flow are also required by the model. These are com-
puted at a daily time step with the semi-distributed hydrological
model EROS (Thiéry and Moutzopoulos, 1992). Both parameters are
modelled at the outlets of sub-basins for which river discharge observa-
tions are available for calibration. They are then scaled to the reaches in-
side each sub-basin using the partial area concept. T-NET simulates
longitudinal variability in water temperature between the upstream
and downstream nodes of each reach, with a spatial resolution depend-
ing on the travel time (Fig. 1). Water velocity is given by the ratio be-
tween discharge and channel cross-section, which is computed using
the ESTIMKART empirical model developed by Lamouroux et al.
(2010). At the confluence of two reaches, the output temperature is de-
fined as the sum of the product of the two confluences' temperature and
discharge divided by the sum of the discharge of the two confluences. T-
NET was thus designed to be applied on well mixed streams and not on
standing waters or large estuaries, where 2D (Cole and Wells, 2006;
Becker et al., 2010; Ouellet et al., 2014) or 3D models (Maderich et al.,
2008) are more suitable.

2.2. Net solar radiation calculation

In order to improve T-NET's ability to model the impact of riparian
vegetation on solar radiation, modifications were made to the original
model detailed by Beaufort et al. (2016). Similar to the approach of
LeBlanc et al. (1997), net solar radiation (Hns) is now computed as:

Hns ¼ Rdir 1−αdirð Þ 1−SFð Þ þ SF τð Þ þ Rdiff 1−αdiff
� �

1−TVFð Þ þ TVF τð Þ ð1Þ

where Rdir and Rdiff are the direct and diffuse solar radiation [W·m−2] de-
rived from the Helioclim3-v5 product, αdir and αdiff are the water surface
albedo associated with direct and diffuse radiation respectively, τ is the
transmissivity of riparian vegetation (i.e. the fraction of solar radiation
that passes through the canopy), SF is the shadow factor and TVF is the
tree view factor. αdiff was held at a constant of 0.09, following the

recommendation of Sellers (1965) and αdir was computed using the for-
mulation of Anderson (1954):

αdir ¼ 1 if Ψb1:24 °

αdir ¼ 1:18�Ψ−0:77 otherwise
ð2Þ

whereΨ is the angle between the horizon and the sun in degrees.
τwas fixed at 50% inwinter and 15% in summer. These values are the

averages of global solar radiation transmissivities given by Cantón et al.
(1994), Sattin et al. (1997) and Konarska et al. (2014) for deciduous
tree species. Transitions between winter and summer values are de-
scribed with an ascending and descending logistic regression whose
equation is:

τ ¼ κ
1þ exp �γ:DoY−βð Þ þ μ ð3Þ

whereDoY is the day of year and κ,β, γ and μ are the parameters fitted by
least squares adjustment to an averaged annual cycle of ground-based
NDVI measured from oak trees during 2008–2012 (Soudani et al.,
2012). These trees are located in the forest of Fontainebleau (60 km to
the south of Paris and ~150 km away from the centre of the Loir catch-
ment). Data from Lebourgeois et al. (2008) indicate that, for oak trees,
there is little phenologic difference between Fontainebleau and the Loir
catchment. However, remote sensing observations from Muller (1995)
show that, in 1987 and in the region of Toulouse (South of France), leaf
emergence of riparian trees occurs about 15 days earlier than for oaks.
In order to take into account this difference between oak and riparian
species, we hence considered an enlarged growing season compared to
oak's phenology (β − 15 days in spring, β + 15 days in autumn). After
fitting the four parameters on NDVI values, κ and μ, representing the
upper and lower values, are adjusted tofit thewinter and summer values
of transmissivity (50 and 15%, respectively).

2.3. Shadow factor and view factor calculations

In order to test the influence of different riparian shading algorithms
onwater temperatures simulatedwith T-NET, we used three approaches
to compute both the shadow factor (SF) and the tree view factor (TVF).

In the first approach (hereafter referred to as the constantmethod),
SF and TVF are held as coefficients that are constant in time but vary as a
function of Strahler order based on the equation:

SF ¼ TVF ¼ vc� k ð4Þ

where vc is vegetation cover (%) computed at the reach scale in a buffer
of 10 m around the river, and k is a coefficient aiming to account for the
influence of the reach width on shadow (where 1 (maximum impact)
denotes a Strahler order of 1 and 0 (no impact) is associated with a
Strahler order of 8). This approach is used in Beaufort et al. (2015, 2016).

In the second approach (hereafter referred to as the variablemethod),
SF and TVF are derived from geometric calculations made at the reach
scale, taking into account river width, tree height, vegetation cover, and
position of the sun (for the shadow factor).

To compute SF at an hourly time step, the model of Li et al. (2012)
was implemented in its simplest version, i.e. considering rectangular
trees, located at the edge of the bank, without overhang:

SF ¼ H � cotΨ� sinδ
W

� vc ð5Þ

where H is tree height,W is river width,Ψ is the solar elevation angle, δ
is the angle between solar azimuth and themean azimuth [0°− 180°] of
each T-NET reach (computed by considering the first and last vertices of
each reach).

To compute VF, we used the secondmodel described in Moore et al.
(2014). It provides SVF for channels of infinite length, without takingFig. 1. Principles of the T-NET model.
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is 1.7 km. Because of the small transfer time of flows
through each reach (less than a day) causing routing
problems, all temperature simulations were conducted at
an hourly time step (Figure 1b) and were then averaged
per day for the validation and the exploitation of the
T-NET model.

• Computation of the equilibrium temperature

Assuming steady-state conditions, Equation 1 describes
the rate of change of mean temperature with distance due
to mean surface heat transfer and groundwater inputs:

∂Tw

∂χ
¼ KeB

ρwCpwQ
Te � Twð Þ (1)

∑
i
Hi ¼ Hns þ Hla � Hlw þ Hc � He þ Hg (2)

where Tw is the water temperature [°C], Te is the
equilibrium temperature [°C], Ke is the heat exchange
coefficient (J s�1m�2K�1), x is the distance (m), ρw is the
density of water (kgm�3), Cpw is the specific heat of
water (J kg�1K�1), Q is the river discharge (m3 s�1) and
B is the river width (m) and ∑Hi is the net heat flux
(J s�1m�2). The equilibrium temperature (Te) is defined
as the water temperature (Tw) at which the total heat flux
(∑Hi) at the limit of the water body is 0 (Equation 2). Six
heat fluxes (Wm�2) were included (Table I): Hns is the
net solar radiation, Hla is the atmospheric long-wave
radiation, Hlw is the long-wave radiation emitted from the
water surface, He is the evaporative heat flux, Hc is the

convective heat flux exchanged with the atmosphere and
Hg is the groundwater heat inflow. In line with Edinger
et al. (1968), the heat exchange coefficient Ke was
computed with a theoretical formulation corresponding to
the sum of derivatives of heat fluxes with respect to water
temperature (Bustillo et al., 2014; Beaufort et al., 2015),
which is thus easily applicable at a regional scale.

Ke tð Þ ¼ 4εσ Tw tð Þ þ 273:15ð Þ3 þ f wð Þ�
0:62þ 6:11:

17:27�237:3

237:3þ Tw tð Þð Þ2

�exp 17:27�Tw tð Þ
237:3þTw tð Þ
h i�

þ ρwCpw
Qg tð Þ
A

(3)

where f(w) is the wind function, taken from Brutsaert
and Stricker (1979) (Table I) and Qg/A defines the
seepage flux (m s�1). Te and Ke were computed every
hour for each reach, taking into account meteorological
variables and groundwater inputs (Figure 2; step 1).

• Upstream–downstream propagation of the thermal
signal

The headwater temperature (Tw_head) of the upstream
boundary of the network (reach with a Strahler order 1)
was fixed as the groundwater temperature approximated
by adding 1 °C to the moving average of the air
temperature over 365 days preceding the observation
(see Section on Datasets). The travel time (TT) of the
water between the UN and the DN of a reach was

Figure 2. Pattern of upstream–downstream propagation of thermal signal at a given time t

A. BEAUFORT ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Hydrol. Process. (2016)

Figure 4.7: The upstream–downstream propagation of thermal signal. Source of figure: Beaufort et al. (2016a).

The segments (∆x) of each reach have the same length, and are determined after calculating
the travel time (TTj , j=1 to 52 278 reaches) for the reach. TTj is calculated by dividing the
reach length (Lj) by the water velocity of the reach (Vj). Therefore, the number of segments
(∆x) with the same length in the reach (j) will be n=TTj/∆t (∆t=1 hr here). This leads to the
calculation of Tw at the initial (∆xi) and final node (∆xi+1) of each segment (∆x) (see Figure 4.7,
left panel) by rearranging Equ. 4.4, and using the final equation as below:

Tw(xi+1,r j) = Te(xi+1,r j)+ [Tw(xi,r j)−Te(xi+1,r j)].exp[
−B(r j).Ke(xi+1,r j)

ρw.Cpw.Q(r j)
] (4.6)

Indeed, this equation calculates Tw at the final node of each segment, which is indeed Tw at the
initial node of the next segment (except for a reach with a Strahler order 1). Thus, executing
such an equation for all segments of a reach gives Tw at the final node of the last segment of the
reach (see Figure 4.7, left panel).

Finally, the thermal signal of two reaches at a confluence are mixed with respect to their
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discharges (Equ. 4.7, and see Figure 4.7, right panel):

Tw(xinitial , j) = Tw(x f inal , j)×
Q(x f inal , j)

Q(x f inal , j)+Q(x f inal , j+1)
+Tw(x f inal , j+1)×

Q(x f inal, j+1)

Q(x f inal , j)+Q(x f inal , j+1)
(4.7)

It should be noted that outputs of the T-NET model are only available at the initial and final
nodes of each reach. In the current study, outputs at the final node of each reach are used.

4.2.2 Input data of the T-NET thermal model

To compute the six heat fluxes (see Table 4.1) and the water travel time (TTj) for each reach,
various input data are needed, and they are summarised in Figure 4.8. They are furthermore
explained in detail below.

River depth 𝑯𝑯 𝒕𝒕 = 𝑯𝑯𝟓𝟓𝟓𝟓
𝑸𝑸(𝒕𝒕)
𝑸𝑸𝟓𝟓𝟓𝟓

𝒇𝒇

River width 𝑾𝑾 𝒕𝒕 = 𝑾𝑾𝟓𝟓𝟓𝟓
𝑸𝑸(𝒕𝒕)
𝑸𝑸𝟓𝟓𝟓𝟓

𝒃𝒃

Water velocity 𝑽𝑽 𝒕𝒕 = 𝑸𝑸 𝒕𝒕
𝑯𝑯 𝒕𝒕 ×𝑾𝑾 𝒕𝒕

Heat budget
Equilibrium temperature (Te)

Heat exchange coefficient (Ke)

Mesh SAFRAN 8 km x 8 km

Air temperature [°C]
Specific humidity [kg.kg-1]
Wind velocity [m.s-1]
Global radiation [W.m-2]
Atmospheric radiation [W.m-2]

Meteorological forcing

Hydraulic geometries
RHT network

𝑸𝑸𝟓𝟓𝟓𝟓, 𝑯𝑯𝟓𝟓𝟓𝟓, 𝑾𝑾𝟓𝟓𝟓𝟓, f and b: at-a-
reach variables 

Hydrological forcing
Calibrated and Simulated at 
352 and 368 subwatershed
outlet
Discharge [m3.s-1]
Groundwater flow [m3.s-1]

Riparian shading

The patches of wooded area
provided by TOPO® IGN 2018
both right and left bank sides
(Looy & Tormos, 2013)

Considering dynamic riparian
shading instead of constant
condition (Li et al., 2012) as a
function of:
 Tree height
 River width
 Solar elevation angle
 Vegetation density
 Phenology (the stage of leaf

growth and transmissivity)

EROS Model 
(BRGM)

EROS Model 
(BRGM)

Hydraulic geometry model of
Morel et al., 2020

52278 reaches
Median reach length=1.3 km

Figure 4.8: The summary of inputs data of the T-NET model (Beaufort et al., 2016b; Loicq et al., 2018).

4.2.2.1 Meteorological and hydrological variables

Hourly Ta (°C), specific humidity (g.kg−1), wind velocity (m.s−1), shortwave radiation (W.m−2),
and longwave radiation (W.m−2) are provided by the SAFRAN reanalysis data (see section 2.3.1,
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p. 46). All the reaches located within a grid cell of SAFRAN (8×8 km) are assigned the values
of the meteorological variables of the grid cell. For the reaches flowing through more than one
grid cell, the values of the meteorological variables are weighted by the relative length of the
reach in each grid cell.

The daily streamflow simulated at the outlet of 368 homogeneous sub-basins (see sec-
tion 4.1) are redistributed along the river network inside each sub-basin according to the reach
drainage area for informing the T-NET model at the reach scale. The ratio of sum of the lengths
of all reaches upstream of a reach to the sum of the lengths of all reaches located in a sub-basin
is used as the proxy of the drainage area of a reach. Q is considered to be constant over the 24
hours to have hourly Q.

4.2.2.2 Hydraulic geometry

Standard version

In the previous version of the T-NET model used by Beaufort (2015) and Loicq (2018), a hy-
draulic geometry model, ESTIMKART, depending on river slope, watershed area and reach
Strahler order, was used (Lamouroux et al., 2010). Morel et al. (2020) recently developed a
new hydraulic geometry model using Random Forest (hereafter referred to as RF) approach.
They used RF models to develop and test international empirical models of reach-scale hy-
draulic geometries that can be applied across entire stream networks. Since Morel et al. (2020)
showed better performance for this new hydraulic geometry model (referred to as RF model) at
observed stations (mainly for small and medium rivers) over France and New Zealand, this hy-
draulic geometry model (RF model) is used in the current study. Compared to the ESTIMKART
model, the RF model better predicts river depth (H) (median bias=-0.003 m, and RMSE=0.07
m) and width (W) (median bias=-0.121 m, and RMSE=1.29 m) at the stations over the Loire
River basin (see Figure 4.9). Indeed, the ESTIMKART model underestimates river width and
depth.

Modified version

Therefore, here, hydraulic geometry (river width and depth) are calculated by using RF model
and assuming a rectangular river section being constant over 24 hours (Morel et al., 2020):

D(t) = D50×
[

Q(t)
Q50

] f

(4.8)

W (t) =W50×
[

Q(t)
Q50

]b

(4.9)
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Figure 4.9: The performance of the RF (new) and the ESTIMKART (old) geometry models in predicting river
width and depth at 203 field measurements over the Loire River basin. H: river depth and L: river width. This
figure is provided by Maxime Morel.

with f and b being at-a-reach exponents previously derived from climate, hydrological, to-
pographic and land use descriptors (Morel et al., 2020). Q (t) is the daily mean streamflow
provided by the EROS hydrological model (see section 4.1). The Q50, W50, D50 (the me-
dian of Q, width and height, respectively) and the exponents are available on the Theoretical
Hydrographic Network for France (RHT, Pella et al., 2012). There is about 50% correspon-
dence between reaches of the T-NET and RHT networks. For the remaining reaches, required
hydraulic geometry variables for T-NET reaches are extrapolated from the nearest RHT reach.
The calculation related to this extrapolation is done by Herve Pella and Nicolas Lamouroux
(EcoFlowS team, UR RiverLy, INRAE). This river hydraulic geometry allows for computing
the water velocity by the ratio of Q (t) to rectangular wetted cross-section. Lastly, the travel time
is also calculated by the ratio of water velocity to the reach length (TTj=Vj/Lj, j=1 to 52 278
reaches).
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In section 4.3.2.1, the performance of the T-NET thermal model in simulating daily Tw by
using each of these hydraulic geometry models (ESTIMKART and RF) is assessed.

4.2.2.3 Riparian shading

Standard version

In the previous version of the T-NET model developed by Beaufort (2015), a constant method
was used in a first attempt for calculating the riparian shading factor (SF) over the whole Loire
River basin. In this approach, vegetation density (vc) was computed at the reach scale in a buffer
of 10 m around the reach from remote sensing (Valette et al., 2012). In order to take into account
the influence of reach width on shading area, vegetation density (vc) was then weighted linearly
by a coefficient linked to the Strahler order ranging from 1 (for a river reach with Strahler order
1) to 0 (for a reach with Strahler order 8).

Figure 4.10: Representation of the shading method proposed by Li et al. (2012). The black lines show channel
banks. The vertical line and the orthogonal area on the right bank show a tree and its effective shading. Ψ is the
solar altitude angle; φ is the stream azimuth angle from the north; Φ is the solar azimuth angle from the north; δ ′
is the difference between solar azimuth angle and stream azimuth angle (δ ′= Φ - φ ); δ is the angle between bank
line and solar beam at horizontal plane. Source of figure: Li et al. (2012).

In a second attempt, Beaufort (2015) tried to describe the dynamics of riparian shading in
the T-NET thermal model by calculating shading factor through the variable method proposed
by Li et al. (2012) (see Equ. 4.10 and Figure 4.10). This method calculates SF as a function of
tree height, river width, solar elevation angle and vegetation density in each side of a river bank
as following:

Wshaded =
Hleft/right × cotΨ× sinδ

W
(4.10)

SFright = (Wshaded)right × (vc)right (4.11)

SFleft = (Wshaded)left × (vc)left (4.12)

SF = Max(SFright,SFleft) (4.13)
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where H is average tree height, W is the river width (see Equ. 4.8), Ψ is the solar altitude angle,
δ is the angle between solar azimuth and the mean azimuth of T-NET reach (see Equ. 4.20),
and vc is the vegetation density (%). The solar altitude angle, Ψ (rad), is calculated using the
following equation (Li, 2006):

sinΨ = sinα.sinβ − cosα.cosβ .cosωt (4.14)

where β is the site latitude (rad), negative for south hemisphere, and γ is the earth angular
velocity ( π

day ) and t is the true solar time (day). α is the solar declination angle (rad), which
is negative for south hemisphere, and is calculated as below (Bourges, 1985; Garg and Datta,
1993):

α = 2.45
π

180
.sin(

2π(N +2384)
365.25

) (4.15)

where N is the Julian day. The true solar time, t, which is the time in a time reckoning system
that the sun returns to the local meridian at exactly 12:00 noon, was computed by adding the
Equation of Time (EOT) to the Mean Solar Time (MST):

t = MST +EOT (4.16)

The MST is the average time as indicated by well-regulated clocks. For a specific given location,
the MST was computed from the local clock time and the location longitude using the following
formula:

MST = TLocal +
λ °−TimeZone×15°

361°
(4.17)

where MST and TLocal are in numerical format (e.g., 0 = 12:00 midnight, 0.5 = 12:00 noon,
etc.), λ is the observed longitude of the location (in degree) (negative for west hemisphere),
Time Zone is the zone on which the local clock time is based (negative for west hemisphere),
and 361° is the approximate rotation angle of the Earth in a day. If daylight saving time is in
practice in the local clock time, we simply add 1 to the time zone or subtract 1 hour from the
local clock time. The EOT is the difference between the true solar time and the Mean Solar
Time calculated as below:

EOT = 9.87sin2β −7.53cosβ −1.5
sinB

60×24
(4.18)

where EOT is in numerical day, B = (2π/364)× (N −81), and N is the Julian day.
The solar azimuth, Φ, defined as clockwise from north in radius (Figure 4.10), is calculated
using the following equation (Li, 2006):

Φ =
π

2
± arccos(

cosα × sinωt
cosΨ

) (4.19)
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The plus sign is used when the sun moves from azimuth 90° to azimuth 270°, and the minus
sign is used in the very early morning (< 90° to 90°) and late evening (270° to > 270°). In a
rare case, the solar altitude, Ψ, should be exactly 90° or 270°, a very small angle is added so that
the above equation would still work. Then, for calculating the angle (δ ) between solar azimuth
and the mean azimuth of T-NET reach, the difference between the solar azimuth angle and the
stream orientation angle (δ ′) is calculated as follows:

δ ′= Φ−φ



–for the "east" bank:

δ = π +mod(|δ ′|,2π) if δ ′< 0

δ = π +mod(δ ,2π) otherwise

–for the "west" bank it is the reverse of the "east" bank:

δ = δ +π if δ > π

δ = δ −π otherwise

(4.20)

To implement this variable method, as seen in Equ. 4.10, it is first needed to calculate the
average tree height and vegetation density for both right and left sides of a river bank. For this
aim, Beaufort (2015) considered the mean vegetation cover in a buffer of 10 m around the reach
as the vegetation density of both sides of a river bank. In other words, the vegetation density
was the same for both sides of a river bank. Moreover, he considered the constant height of
15 m for all vegetation species. He also considered the phenology by applying an assumed
coefficient varying with season.

Beaufort (2015) compared biases produced by these two different vegetation methods, namely
variable and constant methods over the Loire River basin (see Figure 6.14, p. 208 of Beaufort,
2015). He mostly found a weaker performance for the variable method compared to the con-
stant method in producing daily Tw. Indeed, for rivers with less than 100 km distance from the
source, the T-NET model with the variable method overestimated daily Tw by more than 1 °C
in winter. This model also underestimated daily Tw by 2 °C in summer for medium and large
rivers. The root mean square error (RMSE) of Tw at the annual scale for the variable method
(2.1 °C) was also greater than that for the constant method (1.7 °C). Moreover, no significant
difference between RMSE of these methods was observed over the summer.

The sensitivity analyses (testing different heights) conducted by Beaufort (2015) for the
variable method also showed that tree height had little effect on monthly Tw, and maximum
and minimum daily Tw of streams with less than 100 km distance from the source especially
on small ones (see Figure 6.17, p. 212 of Beaufort, 2015). Beaufort (2015) explained that this
could be due to the small average width of this type of streams, and the fact that above a certain
tree height, the shaded area covers the entire surface of the watercourse regardless of the tree
height. Finally, he also found a ± 50% change in the river width of the streams in the T-NET
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thermal model had very little influence on the monthly Tw of the stations located on small and
medium rivers (see Figure 6.18, p. 213 of Beaufort, 2015).

In the second version of the T-NET model, Loicq (2018) used vegetation cover extracted
from the LiDAR data within a single buffer of 10 m around 270 km of river over the Maine
basin. He used a new vegetation method for the T-NET model (referred as LiDAR method
here). This model is a spatially-explicit method that computes riparian shading factor from a
LiDAR-derived digital surface model (Loicq et al., 2018). The performance of the T-NET model
in simulating maximum daily Tw in the middle Loire from April to September was improved
by using the LiDAR method (Bias=-0.82 °C, RMSE=1.95 °C) compared to the variable method
(Bias=-1.86 °C, RMSE=2.55 °C) and constant method (Bias=-1.44 °C, RMSE=2.17 °C) (see
Table 5.3, p. 122 of Loicq, 2018).

Loicq (2018) also used vegetation density and tree height extracted from LiDAR data in the
variable method (Equ. 4.10), and investigated the performance of the T-NET model in simu-
lating the longitudinal profile of maximum daily Tw (13 to 31 August 2009 average). At first,
he only used vegetation density of LiDAR data in the variable method (Equ. 4.10), and kept
the tree height as 15 m. He found that the mean bias of this version of the variable method
(-1.19 °C) was less than mean bias of original variable method (-1.86 °C), and it was close to
the mean bias of the LiDAR method (-0.94 °C) (Loicq et al., 2018). Afterwards, he used both
tree height and vegetation density extracted from LiDAR data. He found much an improvement
in mean bias of the variable method (-0.78 °C). Therefore, the poor performance of the T-NET
model with the variable method (height=15) found by Beaufort (2015) could be due to the poor
representation of vegetation density and tree height in each side of a river bank.

Consequently, Beaufort (2015) found that the variable method with considering constant
height and the same vegetation density for both sides of a river bank could not improve the T-
NET model performance. However, Loicq (2018) showed in the Maine basin that differentiating
between vegetation density of each sides of a river bank, and considering different tree heights
can lead to better results. In this regard, in the current study, the variable method with vegetation
density for each side of a river bank is considered. Moreover, tree height corresponding to
vegetation species are taken into account.

Modified version

As mentioned before, the variable method was already integrated into the T-NET thermal model,
but some of its inputs are updated in the current study to have vegetation density and tree height
for each side of a river bank. To do so, first, patches of wooded area provided by the BD
TOPO® (IGN, 2008) database are used as a proxy of vegetation. The vegetation species and
length of each wooded patch in a buffer of 10 m are extracted for both right and left sides of
a river bank by using the approach proposed by van Looy and Tormos (2013). The vegetation
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density (vc) is then calculated as the ratio of patch length to reach length for both right and left
sides of a river bank. In case of multiple wooded patches in any side of a river bank, the average
vegetation density of the patches is considered. This vc is then used in Equ 4.10. Since the
information about tree height is not available at this scale, it is approximated by knowing the
vegetation species (see Table 4.2).

Table 4.2: Vegetation species and their approximated height (extracted from: Otto (1998); Aulinger et al. (2005);
Allaby (2019); https://cms.geobretagne.fr; www.polebocage.fr).

specie height (m)

Wood forest 25
Coniferous forest 25
Deciduous forest 25
Open forest 20
Mixed forest 25
Poplar grove 25
Hedge 15
Mixed vegetation 20
Shrub 10
Grass 0

In the presence of different vegetation species, the average tree height (m) for each side of a
river bank is used (Equ. 4.21).

H =
1
n

Σ
n
i=1Hi

Li

L
(4.21)

Where Li (in m) is the length of each wooded patch in a buffer of 10 m, and L is the length of
reach (in m). Finally, this average height, H, is also used in Equ 4.10.

To take into account the phenology and stages of leaf growth, a coefficient correspond-
ing to each season and transmissivity is applied to SF to calculate the final shading factor:
SFf inal = SF × (1− transmissivity). The transmissivity in leafless months (Jan, Feb, Nov and
Dec), months of leaf growth (Mar and Apr), and full-leaf months (May-Sep) is fixed to 0.3,
0.2 and 0, respectively, following Hutchison and Matt (1977). The shortwave radiation is lastly
regulated by a factor of 1− SFf inal (see Table 4.1). Considering this kind of phenology seems
logic, even though there is ever-green vegetation species (Coniferous forest) in the basin since a
small proportion of vegetation in the basin (≈ 10%) belongs to this kind of vegetation species.
Moreover, the regulation of riparian shading is more important in summer period for which 0
transmissivity for all kinds of species is considered (including evergreen species).

In section 4.3.2.1, the performance of the T-NET thermal model in simulating daily Tw for
both the constant method developed by Beaufort (2015) and the new version of the variable
method (developed in the current study) is assessed over the Loire River basin. Since Beaufort
(2015) already showed that his version of variable method had a poor performance compared
to the constant method, only his constant method is considered here.

101



4.3. MODEL PERFORMANCE 4

4.3 Model performance

4.3.1 Daily and seasonal streamflow

To assess the performance of the EROS model, first, at both calibration (N=352) and RHN
(N=44) stations, the Nash-Sutcliffe efficiency (NSE) for Q,

√
Q and Ln(Q) are calculated as

following:

NSE =


1− ΣT

t=1(Q
t
m−Qt

o)
2

Σ(Qt
o−Qo)2

1− ΣT
t=1(

√
Qt

m−
√

Qt
o)

2

Σ(
√

Qt
o−

√
Qo)2

1− ΣT
t=1(lnQt

m−lnQt
o)

2

Σ(lnQt
o−lnQo)2

(4.22)

where Q̄ is the mean of observed daily streamflow, and Qt
m is the modeled daily streamflow at

time t, and Qt
o is observed daily streamflow at time t. The NSE criterion for

√
Q was also used

for calibrating the EROS model (see section 4.1).
In addition to NSE, seasonal and annual relative biases are computed for both calibration

(over the 1971–2018 period) and RHN (over the 1968–2019 period) stations. Seasonal and
annual Q are important since they will be used later in the next chapters.

The map of NSE of simulated daily Q shows that at least 75 % of the calibration stations
have a NSE> 0.7 for all formulations considered (Figure 4.11, top panel). The majority of
stations with a low NSE values are found in the upstream part of the basin, in HER A. The NSE
criteria for Q,

√
Q and lnQ at the majority of RHN stations (83 %) are also > 0.7 (Figure 4.11,

bottom panel).
The EROS model performs well at the 352 calibration stations at the annual scale with a

median relative bias close to 0 (see Figure 4.12, left panel). It slightly underestimates winter
Q (median relative bias (across stations)=-6.27%) and spring Q (-3.47%), and overestimates
summer Q (+34.7%) and fall Q (+20.9%). The overestimation in summer and fall could be due
to the fact that the EROS model does not take into account water abstractions.

The EROS model also performs well at 44 RHN stations with long-term continuous daily
data at the annual scale with a median relative bias of 0.37% (see Figure 4.12, right panel). It
slightly underestimates winter Q (median relative bias (across stations)=-7.26%) and spring Q
(-6.79%), and overestimates summer Q (+37.7%) and fall Q (+24.7%).
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Figure 4.11: NSE values of simulated daily Q for Q,
√

Q (sqrt(Q)) and lnQ at (top) 352 calibration stations between
1971 and 2018, and at (bottom) 44 RHN stations over the 1968–2019 period.
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Figure 4.12: Relative bias of the EROS hydrological model in simulating the seasonal and annual Q at (left) 352
stations between 1971 and 2018, and at (right) 44 RHN stations with long-term continuous daily data over the
1968–2019 period.
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Figure 4.14 shows the good performance of the EROS model in reconstructing daily Q at
three different hydrometric stations in three different years. These stations are located in the
upstream, the middle, and the downstream part of the Loire River basin. Position of these
stations are presented in Figure 4.13. The annual regime of simulated Q at 44 RHN stations
(Figure 4.15) also shows the good performance of the EROS hydrological model in simulating
Q regimes.

L'Allier à Monistrol−d'Allier

L'Arnon à Méreau [Pont de Méreau]

La Loire à Montjean−sur−Loire

Figure 4.13: Position of sub-watersheds shown in Figure 4.14.
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Figure 4.14: Simulated and observed daily Q at three different hydrometric stations: (top) in the upstream part
(L’Allier à Monistrol-d’Allier), (middle) in the middle part (L’Arnon à Méreau [Pont de Méreau]), and (bottom) in
the downstream part (La Loire à Montjean-sur-Loire) of the Loire River basin.
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Figure 4.15: Annual regime of simulated and observed Q at 44 RHN stations. For each day, the average of Q over
the 1968–2019 period is calculated.
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4.3.2 Daily and seasonal Tw

Both Beaufort (2015) and Loicq (2018) assessed the performance of the T-NET thermal model.
Beaufort (2015) used 128 stations with missing years over the 2008–2012 period over the Loire
River basin to assess the model performance in simulating daily Tw. He showed that the RMSE
of the T-NET model (with the constant vegetation method and the ESTIMKART hydraulic
geometry model) in simulating daily Tw was on average 1.6 °C at these 128 stations. Loicq
(2018) assessed the model performance in simulating mean, maximum, and minimum daily Tw
as well as daily amplitude at 44 stations with missing years over the 2008-2015 period over the
middle Loire River, the Maine catchment. He showed that the RMSE of the T-NET model (with
the constant vegetation method and the ESTIMKART hydraulic geometry model) in simulating
mean daily (resp. maximum, and minimum daily Tw, and daily amplitude) was 1.84 °C (resp.
2.05 °C, 2.03 °C, and 1.65 °C) at 44 stations over the Maine catchment.

In contrast to the these previous studies, the current study is considering a new hydraulic
geometry model and a new variable vegetation method. It also uses more Tw stations and
stations with Tw data in a more recent period to assess the performance of the T-NET thermal
model in simulating daily, seasonal and annual Tw over the Loire River basin. The model
performance is also assessed at stations with continuous daily data. Moreover, none of these
previous studies has assessed the ability of the T-NET thermal model to capture the long-term
temporal trends in Tw, which will be further studied in the current study in the Chapter 5.

4.3.2.1 Daily Tw at natural stations over the 2008–2018 period

The T-NET model does not consider the influences of impoundments on the thermal energy bal-
ance, and thus produces “natural” thermal regimes. Therefore, the model performance should be
assessed at natural Tw stations. 275 near-natural Tw stations (including stations on large rivers)
with gap years between 2008 and 2018 are used, which were identified as natural regimes using
the thermal signatures approach in the previous chapter (Figure 3.8, p. 62). Please note that in
the previous chapter, stations on large rivers were removed from the analysis due to their weak
sensitivity to thermal regime alterations induced by impoundmenst (see section 3.1, p. 53), but
they are used here. 213 near-natural Tw stations are located on small/medium streams (with
distance from the source< 100 km) whereas the remaining are located on large rivers (distance
from source> 100 km). The average catchment area is 150 km2 for small/medium streams, and
10 582 km2 for large rivers.

In the following, first, the performance of the T-NET model with the new hydraulic ge-
ometry model (the RF model) is compared with the previous hydraulic geometry model (the
ESTIMKART model) in terms of both bias and RMSE at 275 near natural stations with missing
years between 2008–2018. Note that, for this assessment, the constant vegetation method is
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considered. Then, the performance of the T-NET model with the new version of the variable
vegetation method developed in the current study (see section 4.2.2.3), is compared with the
constant vegetation method used by Beaufort et al. (2016b). At this step, the performance of
the T-NET model in simulating daily Tw is assessed.

Hydraulic geometry model

Figure 4.16 shows no significant difference between the two hydraulic geometry models in sim-
ulating daily Tw. Nevertheless, the median bias (across stations) of the RF model is lower (up
to 0.53 °C) than that of the ESTIMKART model over the winter months in small and medium
streams (Figure 4.16, left panel). Compared to the ESTIMKART model, the median RMSE for
the RF model is also slightly lower (up to 0.27 °C) over the winter months in small and medium
streams (Figure 4.16, right panel). In these streams, the median bias of the RF model is slightly
greater (up to 0.25 °C) than that of the ESTIMKART model in summer months. Moreover, in
these streams, the median RMSE for the RF model is slightly higher (up to 0.17 °C) over the
summer months compared to the ESTIMKART model. 85% (resp. 83%) of the stations have
the annual mean of daily bias in range of -1 °C and 1 °C when the RF (resp. ESTIMKART)
model is used. 77% (resp. 80%) of the stations, have an annual RMSE< 2°C when the RF
(resp. ESTIMKART) model is used.

Although the performance of the T-NET model in simulating daily Tw does not change
significantly when the RF hydraulic geometry model is used, the RF model is used from now
on in the T-NET model since, firstly, this hydraulic geometry model has a better performance
in prediction of river width and depth (see Figure 4.9). Secondly, it improves the T-NET model
performance in winter months in small and medium rivers.
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Figure 4.16: Monthly mean of daily Tw bias, and monthly RMSE of daily Tw for the RF and ESTIMKART hy-
draulic geometry models at 275 natural stations with regard to reach size between 2008 and 2018. Small=distance
from the source< 30 km; Medium=30<distance from the source<100 km; Large=distance from the source> 100
km.

109



4.3. MODEL PERFORMANCE 4

Riparian shading factor

An improvement in simulating daily Tw by the variable method is observed in summer months
in small and medium streams (Figure 4.17). The median bias (across stations) of the variable
method is lower (up to 1.25 °C) than that of the constant method over the summer months
in small and medium streams (Figure 4.17, left panel). Moreover, in these streams, the median
RMSE for the variable method is lower (up to 0.5 °C) over the summer months compared to that
for the constant method (Figure 4.17, right panel). In medium streams, the interquartile range
(IQR) of RMSE for the variable method is smaller (up to 0.5 °C) over the summer months com-
pared to that for the constant method (Figure 4.17, right panel). Unsurprisingly, no difference
between the biases and the RMSE of the two vegetation methods is observed at stations on
large rivers since their large width makes the influence of shading less pronounced. 63% (resp.
52%) of the stations have the summer mean of daily bias in the range of -1 °C and 1 °C when
the variable (resp. constant) method is used. 80% (resp. 77%) of the stations have an annual
RMSE< 2°C when the variable (resp. constant) method is used.

The variable vegetation method is used from now on in the T-NET model as it improves the
performance of the T-NET model in simulating daily Tw over the summer months in small and
medium streams.

Note that in Figure 4.17, left panel, shows an underestimation (median bias up to -1 °C) in
daily Tw at large rivers. We hypothesize that such an underestimation is due to poor simula-
tion of river width by hydraulic geometry model used in the T-NET thermal model since the
hydraulic geometry model was developed using measurements mainly on small and medium
rivers (see Morel et al., 2020). To confirm that, we do few validations on measured river width
and depth over the middle Loire River (measurements provided by Valverde et al., 2013). The
results show that there is 50% underestimation in simulating river width. Such underestimation
was also found by Beaufort et al. (2016a). To compensate for this underestimation in width
(which leads to underestimation in Tw) in the middle Loire River, 50 % is added to simulated
river width.

Finally, as mentioned before, Beaufort (2015) showed that the RMSE of the T-NET model
(with the constant vegetation method and the ESTIMKART hydraulic geometry model) in sim-
ulating daily Tw was on average 1.6 °C at 128 stations with missing years over the 2008–2012
period over the Loire River basin. Moreover, Loicq (2018) showed that the RMSE of the T-NET
model (with the constant vegetation method and the ESTIMKART hydraulic geometry model)
in simulating mean daily Tw was 1.84 °C at 44 stations with missing years over the 2008-2015
period over the Maine catchment. The current study shows that the RMSE of the T-NET model
(with the RF hydraulic geometry model and the variable vegetation vegetation method) in sim-
ulating mean daily is 1.80 °C at 275 stations with missing years over the 2008-2018 period over
Loire River basin.
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Figure 4.17: Monthly mean of daily Tw bias, and monthly RMSE of daily Tw for the variable and the constant
vegetation methods at 275 natural stations with regard to reach size between 2008 and 2018. Small=distance from
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Figure 4.18 shows the good performance of the T-NET model with the RF hydraulic geom-
etry model and the variable vegetation method in reconstructing daily Tw at three stations on
natural rivers with different sizes.

0

5

10

15

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2012

W
at

er
 T

em
pe

ra
tu

re
 (

°C
)

obs

sim

ERNEE à Larchamp (15 km from the source)

Bias=0.03 °C
Cor=0.97

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2011

W
at

er
 T

em
pe

ra
tu

re
 (

°C
)

obs

sim

BEDAT à Saint−Laure (39 km from the source)

Bias=-0.15 °C
Cor=0.98 

10

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015

W
at

er
 T

em
pe

ra
tu

re
 (

°C
)

obs

sim

LOIRE à Cinq−Mars−la−Pile (799 km from the source)

Bias=-0.39 °C
Cor=0.99

Figure 4.18: Simulated and observed Tw at three Tw stations on natural rivers with different sizes. Small=distance
from the source< 30 km; Medium=30<distance from the source<100 km; Large=distance from the source> 100
km.
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4.3.2.2 Seasonal and annual Tw at natural stations with continuous daily data over the
2010–2014 period

At this point, the performance of the T-NET model in simulating seasonal and annual Tw is
assessed at 67 near-natural stations with continuous daily data over the 2010–2014 period (Fig-
ure 4.19). These stations are among the natural stations used in the previous section (sec-
tion 4.3.2.1). They are selected by finding a trade-off between the maximum number of stations
with at least 5 years (our choice) of continuous daily data over a period of time, and an ho-
mogeneous spatial distribution of such stations over the basin. 55 out of these 67 stations with
continuous daily data are located on small/medium streams whereas the remaining are located
on large rivers. The average catchment area is 151 km2 (range=7-1 342 km2) for small/medium
streams, and 18 926 km2 (range=1 931-57 043 km2) for large rivers.

Figure 4.19: The 67 stations with continuous daily observed Tw data over the 2010–2014 period.

For these stations, no systematic bias is observed for the seasonal and annual Tw at the
stations on small and medium rivers (Figure 4.20, top left panel). The median Tw bias ranges
from -0.26 °C (in fall) to 0.8 °C (in winter). Large rivers exhibit a small Tw underestimation
(Figure 4.20, top right panel), with a median bias ranging from -0.29 °C (in fall) to +0.15 °C
(in winter), and the overall biases are still quite small across seasons (IQR=0.4–0.7 °C across
seasons).

The median RMSE of the T-NET thermal model, for small and medium rivers, ranges be-
tween 0.52 °C (Annual) and 0.91 °C (DJF and JJA) across seasons with IQR in range of 0.5 °C
(annual) and 0.86 °C (JJA and SON) across seasons (Figure 4.20, bottom left panel). For large
rivers, the median RMSE of the T-NET thermal model ranges between 0.38 °C (annual) and
1.11 °C (JJA and SON) across seasons with IQR in range of 0.2 °C (DJF) and 0.85 °C (MAM)
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Figure 4.20: Bias and RMSE of the T-NET thermal model in simulating the seasonal and annual Tw at 67 observed
Tw stations (55 on small and medium rivers, left; 12 on large rivers, right) with continious daily data over the
2010–2014 period.

across seasons (Figure 4.20, bottom right panel). Overall, the T-NET thermal model shows a
good performance in terms of RMSE at these 67 stations (median range= 0.2-1.11 °C across
rivers and seasons). Indeed, 53-83% stations (resp. 50-100%) on small and medium (resp.
large) rivers have a RMSE<1 °C across seasons.

A visual comparison of observed and simulated Tw time series at seasonal and annual scale
at stations with long-term data (> 20 years) between 1977 and 2019 (see Table 2.1, p. 48)
suggests a strong coherence and agreement between observations and simulations for all seasons
(Figure 4.21). The bias at these stations (black numbers in bottom right corner of Figure 4.21)
ranges between -0.54 °C to 0.59 °C depending on the season and station. The annual regime of
simulated Tw at 67 stations with continuous daily data over the 2010–2014 period also shows
the good performance of the T-NET thermal model (see Figure C.1).
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Figure 4.21: Seasonal and annual time series of observed and simulated Tw at stations with long-term continuous
data (> 20 years) between 1977 and 2019 (see Table 2.1, p. 48) . Numbers in black in the bottom right corner of
each graph show the mean bias of the reconstruction.

4.3.2.3 Longitudinal profile of the Loire River

The Loire River basin is the longest river in France (1012 km), and it has a large longitudinal
thermal gradient (Beaufort, 2015). Lalot et al. (2015) used thermal infrared remote sensing
(TIR) to provide data on longitudinal variation of Tw along the Loire River. Moreover, Lalot
et al. (2015) provided maps of the longitudinal variation of Tw starting from 500 km distance
from the source. Nevertheless, this technique provides a snapshot of Tw at a given point in time.
Thus, there is still a weak understanding of longitudinal variations of Tw at a large scale.

Here, the T-NET thermal model can address this issue, and provides us with longitudinal
variations of Tw for the whole Loire River. In contrast to TIR, the Tw simulated by the T-NET
thermal model is not limited in time and space. The simulated Tw can also be compared with
observed Tw at four stations with long-term daily data along the Loire River (see Table 2.1,
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p 48). A good agreement between observed and simulated Tw at seasonal and annual scale was
already found at these stations between 1977 and 2019 (see Figure 4.21).

Figure 4.22 shows the longitudinal profile of seasonal simulated Tw in 2003 for the Loire
River. This year is exceptional in the recent period since it was very hot and dry (Moatar and
Gailhard, 2006; Bustillo et al., 2014). There is a good agreement between observed (in points)
and simulated seasonal Tw at the stations along the Loire River.

Figure 4.22: Longitudinal profile of seasonal Tw in 2003 for the Loire River, the longest river in France. Lines and
points are showing the simulated and observed Tw, respectively.

Along with the schematic longitudinal profile observed in introduction (Figure 1.4, p 34),
Tw starts with a cool spring (7.6 °C), fall (8.4 °C) and summer (17.4 °C) or a warm winter (6 °C)
upstream temperature. Then, Tw tends to increase since the influence of upstream conditions
decreases as water moves away from the upstream. Moreover, the longer distance from the
source, the more Tw is influenced by atmospheric conditions (cf. Caissie, 2006). Finally, after
travelling some distance (here 290 km), Tw reaches an equilibrium temperature (DJF=5.3 °C,
MAM=15.8 °C, JJA=28 °C and SON=14.5 °C). In winter, due to larger conveyed volume and
a greater thermal capacity, water travels faster and there is less time for water-air temperature
equilibrium.

Along this longitudinal Tw variation, a cooling at Saint-Laurent is observed for both simu-
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lated and observed Tw in spring, fall and summer compared to the Tw at Dampierre. Moatar
and Gailhard (2006) already found that observed Tw at this station (Saint-Laurent) was cooler
in summer (1.4 °C on average in Aug over the 1976–2003 period) and warmer in winter (0.3 °C
on average in January over the 1976–2003 period) compared to the other stations located on
Loire River. They explained this cooling effect by the inflow of groundwater from the Beauce
limestones aquifer, which was computed by the energy balance on the basis of a constant water
discharge of 10 m3/s from the underground Beauce aquifer at a temperature of 13.5 °C. Loicq
(2018) also found that the thermal impact of this groundwater input is significant (up to ±2.5 °C
for a station in the Beauce area, monthly average on 2008–2013). Along with these studies,
here, average Tw over the 1977–2019 period shows that Tw is cooler in summer (by 0.6-0.9 °C)
at Saint-Laurent compared to three other stations on the Loire River basin.

The T-NET model is able to capture the cooling effect of groundwater inputs, since along
with observed Tw in 2003, a decrease in simulated Tw is also observed at the Saint-Laurent in
spring, summer and fall compared to Tw at Dampierre. This cooling effect is more pronounced
in summer (1.8 °C decrease in Tw compared to Tw at Dampierre) than that in spring and fall
(0.18-0.4 °C decrease in Tw compared to Tw at Dampierre). There is also a slight warming
effect of groundwater input in winter (0.15 °C) at Saint-Laurent for both simulated and observed
Tw.

4.4 Difference between simulated and observed Tw quanti-
fies the influence of dams and ponds

Since the T-NET thermal model does not consider the influence of impoundments, it was ex-
pected that it performs well at natural stations. Along with that, in section 4.3, it was observed
that the T-NET model could perform well at the natural stations identified in section 3.3 (p. 61)
through thermal signatures, showing its capability in producing natural regimes. According to
the good performance of the T-NET model at natural stations, it is also expected that this model
provides the natural condition of the altered regimes identified in section 3.3 (p. 61).

Therefore, here, the difference between simulated (natural) and observed (influenced) Tw
(i.e., T-NET bias) at some altered stations is used to quantify and illustrate the influence of
dams and ponds. To do so, first, a region with a lot of ponds, and another region with several
large dams in the Loire River basin are selected. The first choice is the Vienne catchment and
its surrounding area, one of the most ponded catchments in the Loire River basin. The second
choice is the upstream part of the Loire River basin in which there is a considerable number of
large dams (see Figure 2.1, right panel, p. 44). Then, the difference between simulated (natural)
and observed (influenced) Tw (i.e., T-NET bias) at some selected stations in these regions is
used to quantify the influence of impoundments.
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Ponds

In Figure 3.6 (p. 60), it was seen that some of Tw regimes altered by ponds were located in
the Vienne catchment and its surrounding area. Figure 4.23 shows the Vienne catchment and
its surrounding area, ponds and the corresponding cluster of each Tw station in this region
(obtained in section 3.3, p. 61). The pond thermal signatures, the heating effect (mean positive
difference of daily Tw-Ta from March–October) and thermal effect (mean overall difference
of daily Tw-Ta from March–October) used to identify the influence of ponds in the previous
chapter (see Table 3.1, p. 58) are also presented here.

In the Vienne catchment and its surrounding area, there are only two clusters, natural-like
and pond-like, because there is not probably a large-enough dam in this region to alter the Tw
regime. The influence of ponds on Tw regime is also clear. For instance, the heating effect at
stations influenced by pond-like stations can reach up to 3 °C, while it is lower at natural-like
stations (up to 1 °C). Besides the heating effect, the thermal effect at pond-like stations can
reach up to 2.7 °C, and it is again lower at natural-like stations (up to 0.07 °C). Moreover, the
annual Tw regime at altered stations is shifted up by +2.5 °C (over August month) compared to
that at natural stations (Figure 4.24). Indeed, Figure 4.24 shows that the median of influenced
thermal regimes remains warmer than median of natural thermal regimes from April to October.
Such an annual thermal regime was also found in Figure 3.13, p. 72 at the scale of the Loire
River basin.

To illustrate that the T-NET model can produce the natural version of an altered regime, two
close stations in this region (see Figure 4.23), which were partitioned into pond-like and natural-
like clusters in the previous chapter, are selected and compared. Here, Vonne river (pond-like),
and Benaize river (natural-like) are selected (see Figure 4.23). These two stations have a similar
distance from the source and a similar surface area (260 km2), and they have observed Tw data
over 2012. As they are located in the same region, the climate for both stations are similar. If
Tw regime at both selected Tw stations were natural, it was expected that Tw simulated by the
T-NET model would be close to the observed Tw at both of these stations. However, with the
current condition, it is expected that simulated Tw will be close to observed Tw at the natural
station (Benaize river) whereas simulated Tw will be shifted down compared to observed Tw at
the station altered by ponds (Vonne river).

First of all, to understand better difference between these selected stations, in Figure 4.25
values of their heating effect and thermal effect are shown with respect to such values for the
whole natural-like and pond-like stations over the Loire River basin identified in the previous
chapter. In this representation, the heating effect of more than 1 °C and positive thermal effect
can partition clearly pond-like stations from natural-like ones.
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Figure 4.23: Vienne catchment and its surrounding area and the stations identified as natural or influenced by
ponds (see Figure 3.8, p. 62). The arrows are showing Benaize river with natural regime, Vonne river with the
influence of upstream ponds, and Vincou stream with a lot of upstream ponds. The heating effect (mean positive
difference of daily Tw-Ta from March–October) and thermal effect (mean overall difference of daily Tw-Ta from
March–October) were used to identify the influence of ponds in the previous chapter (see Table 3.1, p. 58). The
shape of each point corresponds to the cluster of Tw station identified in the previous chapter. Please note that the
surface waters (dark blue polygons in top panel) are not repeated in each panel for the sake of readability.
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Figure 4.24: The annual Tw regime of the altered stations by ponds and the natural ones over the Vienne catchment
and its surrounding area (see Figure 4.23, top panel) over the 2008–2018 period. Shaded areas represent the 10th-
90th percentile band, and solid lines represent the median value.
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Figure 4.25: The heating effect and thermal effect at the whole natural-like and pond-like stations over the Loire
River basin identified in the previous chapter (see Figure 3.8, p. 62).
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Figure 4.26 (left panel) shows that, as it is expected, at the natural station (Benaize river),
the simulated Tw regime follows the closely observed Tw. However, at the altered station
(Vonne river) (Figure 4.26, right panel), the observed Tw regime is shifted up by +2 °C from
March–October (the period considered for capturing the influence of ponds; see Table 3.1,
p. 58). Moreover, the daily bias of the T-NET model, i.e. the difference between simulated
(natural) and observed (influenced) Tw at this altered station (-1.5 °C) is twice greater than that
at the natural station (-0.7 °C).
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Figure 4.26: Simulated (natural) and observed (influenced) daily Tw at a natural station (Benaize river) and at an
altered station (Vonne river) located in the same region and with the same catchment area (260 km2), over 2012.

To understand and quantify the relationship between the impacts of ponds in a hot year, the
difference between simulated (natural) and observed (influenced) Tw (i.e., T-NET bias) in two
hot and cool years are compared at a station on the Vincou stream, which is the most ponded
station in the Vienne basin (with 1.3 % ponded of a catchment area of 62 km2). It has the highest
heating effect and thermal effect among the pond-like stations over the Loire River basin (see
Figure 4.25). The years 2011 and 2009 with spring Ta anomalies of 2.8°C and 0.83°C (with
respect to the 1963–2019 period), are selected as the hot and cool (relatively) years, respectively.
The other reason for choosing these years is the availability of observed Tw data in these years
at the selected station on the Vincou stream.

The results reveal that in the Vincou stream, the difference between simulated (natural) and
observed (influenced) Tw over the spring in 2011 is -4.5°C, which is two times greater than the
bias in 2009 (-2.24°C) showing greater impacts of ponds in a hot year (Figure 4.27).
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Figure 4.27: Difference between simulated (natural) and observed (influenced) Tw in spring in a hot year (2011)
and in a cool (relatively) year (2009) at the station on Vincou stream, which is the most ponded station in the
Vienne catchment. The numbers in the top left corner are showing spring Ta anomalies (with respect to the 1963–
2019 period), and the mean difference between simulated (natural) and observed (influenced) Tw over spring.

Secondly, the heating effect signature at the stations with the longest available Tw data in
the pond-like cluster (over the Loire River basin) is studied to see the evolution of Tw regimes
under the impacts of ponds and the recent warming. We consider the whole basin at this step
to have as many stations as possible. Note that the simulated Tw is used instead of Ta for
calculating the heating effect (i.e., mean positive difference of daily observed (influenced) and
simulated (natural) Tw from March–October). In section 3.2 (p. 54), Ta was used since data on
the natural condition was not available then.

It is observed that across stations with the longest available Tw data and altered by ponds, as
summer Ta anomalies is increasing with time (trend:1.11-2.04 °C/decade, but all non-significant),
the heating effect is increasing as well (trend:0.46-1.23 °C/decade). The observed trend in heat-
ing effect at these stations is significant at the 88% confidence level. The most pronounced
increase (1.23 °C/decade) occurs at the most ponded station (Ance du Nord at Saint-Julien-
d’Ance; fpond,catchment= 0.38 %) for which the rate of increase is also significant at the 95%
confidence level (see Figure 4.28). Note that the magnitude of trend is estimated by the non-
parametric Theil–Sen estimator (Sen, 1968), and the significance level of detected trends is
evaluated by the Mann-Kendall test (Mann, 1945). The Theil–Sen estimator and the Mann-
Kendall test will be largely used in the next chapter for assessing past trends.
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Figure 4.28: The evolution of the heating effect signature at the stations with the longest available Tw data in the
pond-like cluster (over the Loire River basin). Ta anomalies (with respect to the 1963–2019 period) show summer
anomalies. The numbers in the top left corner show trend values (Sen’s slope) and corresponding significance level
(evaluated by the Mann-Kendall test).

Dams

In Figure 3.6 (p. 60), Tw regimes altered by dams occurred in the upstream part of the Loire
River basin where there is a considerable number of large dams (see right panel of Figure 2.1,right
panel, p. 44). Figure 4.29 shows this part of the basin and the corresponding cluster of each Tw
station in this region (obtained in section 3.3, p. 61). The dam thermal signatures, TS (daily JJA
Tw-Ta linear regression slope), R2 (JJA Tw-Ta coefficient of determination), and lag time (lag
time between the annual peak in 30-days moving average Tw and Ta regimes) used to identify
the influence of dams in the previous chapter (see Table 3.1, p. 58), are also presented here.

In this region, 20% of the stations belong to the pond-like cluster. Since this section aims
at quantifying the influence of dams, pond-like stations are discarded here. The influence of
dams on Tw regimes is clear in this region (Figure 4.29). For instance, the lowest R2 (< 0.4),
the lowest TS (< 0.2) and the greatest lag time (> 30 days) can be found at dam-like stations.
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Figure 4.29: The upstream part of the Loire River basin with the stations identified as natural or influenced by dams
(Figure 3.8, p. 62). The arrows are showing two stations influence by dams: 1) a station on Morge River down-
stream of la Sep dam (IRI=28.38%), 2) a station on the Allier River downstream of Naussac dam (IRI=61.41%).
The dam thermal signatures, TS (daily JJA Tw-Ta linear regression slope), R2 (JJA Tw-Ta coefficient of determina-
tion), and lag time (lag time between the annual peak in 30-days moving average Tw and Ta regimes) were used to
identify the influence of dams in the previous chapter (see Table 3.1, p. 58). The shape of each point corresponds
to the cluster of Tw station identified in the previous chapter.

To understand and quantify the relationship between the impacts of a dam in a hot year, the
same method used above for ponds is adopted. Firstly, the difference between simulated (nat-
ural) and observed (influenced) Tw (i.e., T-NET bias) in two hot and cool years are compared
at two different stations, which belong to dam-like cluster (section 3.3, p. 3.3). One of these
stations shows the weakest R2 (Tw-Ta correlation) among stations belonging to dam-like clus-
ter (R2=0.002). This station is on Morge River downstream of la Sep dam (IRI=28.38%) (see
Figure 4.29). The other station has an upstream dam with the highest IRI among the stations
partitioned into dam-like cluster. This station is on the Allier River downstream of Naussac
dam (IRI=61.41%) (see Figure 4.29). Summarized information about these stations and the
selected years are presented in Table 4.3. For the station on Morge River, the years 2015 and
2010 with summer Ta anomalies of 2.36°C and 0.28°C (with respect to the 1963–2019 period)
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are selected as the hot and cool (relatively) years, respectively. For the station on Allier River,
the years 2015 and 2012 with summer Ta anomalies 2.45°C and 0.96°C (with respect to the
1963–2019 period) are selected as the hot and cool (relatively) years, respectively. The other
reason for choosing these years is the availability of observed Tw data in these years at these
stations.

Table 4.3: Ta anomalies (with respect to the 1963–2019 period) and difference between simulated (natural) and
observed (influenced) Tw (i.e., T-NET bias) over summer at the two selected stations downstream of dams. One is
on the Morge River downstream of la Sep dam (IRI=28.38%). The other one is on the Allier River downstream of
Naussac dam (IRI=61.41%).

Stations Morge River Allier River
Hot year Cool year Hot year Cool year

Selected years 2015 2010 2015 2012
Summer Ta anomalies (°C) 2.36 0.28 2.45 0.96
Bias (Tsim-Tobs) over summer (°C) 4.15 0.75 2.92 -0.22

The results reveal that for the Morge River, the bias between simulated and observed Tw
over the summer in the hot year 2015 is 4.15 °C, which is approximately four times greater
than the bias in the cool (relatively) year 2010 (0.75 °C) (Figure 4.30). At the station on the
Allier River, the bias in the hot year 2015 is 2.92 °C over the summer, which is approximately
three times the bias in the cool year 2012 (-0.92 °C). Consequently, both stations show that the
impacts of dams are more critical in a hot year (with a 3-4 times greater decrease in summer Tw
compared to a cool year).
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Figure 4.30: Difference between simulated (natural) and observed (influenced) Tw (i.e., T-NET bias) over summer
at the station on the Morge River downstream of la Sep dam (IRI=28.38%). This station belongs to the dam-like
cluster, and shows the weakest R2 (Tw-Ta correlation) among the stations in the dam-like cluster (R2=0.002) (see
Figure 3.8, p. 62).
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Figure 4.31: Difference between simulated (natural) and observed (influenced) Tw (i.e., T-NET bias) at the station
on the Allier River downstream of Naussac dam (IRI=61.41%). This station belongs to dam-like cluster, and has
an upstream dam with highest IRI among stations in the dam-like cluster (Figure 3.8, p. 62).

Secondly, the evolution of the difference between simulated (natural) and observed (influ-
enced) Tw (i.e., T-NET bias), and Ta anomalies (with respect to the 1963–2019 period) over
summer are compared at the dam-like stations with the available observed Tw data over a pe-
riod of time. Unfortunately, unlike ponds (above) the Tw stations across the Loire River basin
partitioned into the dam-like cluster, do not have long-term Tw data. Only four dam-like sta-
tions with continuous Tw data over the four years are available. Since for estimating trend
magnitudes longer Tw data are needed, here, only the patterns of the evolution of biases and Ta
anomalies over summer are compared. Indeed, it is expected that fluctuations in summer biases
follow the fluctuations in summer Ta anomalies. For examples, it is expected that when sum-
mer Ta anomalies decrease, summer bias decreases as well. The indicator of bias over summer
period is selected since this step can be complementary to the previous one expecting to see the
highest summer biases for the years with the highest summer Ta anomalies.

The evolution of summer bias and summer Ta anomaly at four stations (across the Loire
River basin) over the 2013–2016 period confirms the greater impact of dams on the summer
thermal regimes in hot years (Figure 4.32). Indeed, with an increase of 3 °C in Ta anomaly from
a cool year (2014) to a hot year (2015), the influence of dams gets 3-4 times greater across Tw
stations influenced by an upstream dam.
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Figure 4.32: Evolution of (top) bias between simulated (natural) and observed (influenced) Tw, and (bottom) Ta
anomalies (with respect to the 1963–2019 period) over summer. As summer Ta anomalies in each year has a very
small variability from one station to another, the median Ta anomalies across stations is considered. The values in
the parentheses next to the name of stations correspond to the distance of the station from the source (km).

127



4.5. CONCLUSION ON REGIONAL MODELING 4

4.5 Conclusion on regional modeling

In this chapter, the principles and input data of both the EROS hydrological model and the
T-NET thermal model are detailed. Then the performance of both models are assessed at the
near-natural stations. For assessing the performance of the T-NET model, the natural stations
identified in the previous chapter are used.

At a majority of calibration (75 %) stations, and stations on the French Reference Hydromet-
ric Network (83 %), the Nash-Sutcliffe efficiency of simulated daily Q is > 0.7 for Q,

√
Q and

lnQ. Considering both calibration and RHN stations, the median relative bias (across stations)
of the EROS model in simulating seasonal and annual Q ranges between -7.26 % and 37.7 %
across seasons. The observed overestimation in summer and fall by the EROS model can be
due to the fact that the EROS model does not consider the withdrawals and water abstractions.

For the T-NET model, the two hydraulic geometry models (ESTIMKART and Random For-
est) and the two vegetation methods (constant and variable) are used and compared. The results
show no significant difference between the two hydraulic geometry models in simulating daily
Tw. However, new hydraulic geometry model (RF) predicts better daily Tw over winter months
in small and medium rivers. On the other hand, dynamic riparian shading (variable method) as a
function of tree height, river width, solar elevation angle, vegetation density, and phenology can
improve the T-NET thermal model performance in simulating daily Tw compared to the con-
stant method. The median bias (across stations) of the variable method is lower (up to 1.25 °C)
than that of the constant method over the summer months in small and medium streams. More-
over, in these streams, the median RMSE for the variable method is lower (up to 0.5 °C) over
the summer months compared to that for the constant method.

The T-NET model also performs well in simulating seasonal and annual Tw at 67 stations
with continuous daily data (median range of RMSE= 0.2-1.11 °C across rivers and seasons).
Indeed, 53-83% stations (resp. 50-100%) on small and medium (resp. large) rivers have
RMSE<1 °C across seasons. Moreover, the T-NET model can capture the alterations result-
ing from groundwater inputs in Loire River basin. Indeed, along the longitudinal profile of
Tw for the Loire River in 2003, a cooling at Saint-Laurent is observed for both simulated and
observed Tw in spring, fall and summer compared to the Tw at Dampierre. This cooling effect
from groundwater inputs is more pronounced in summer (1.8 °C decrease in Tw compared to
Tw at Dampierre).

The bias between simulated (natural) and observed (influenced) Tw at the altered stations
identified in the previous chapter is used here as a tool to quantify the influence of ponds
and dams. It is highlighted that dam and pond impacts are more critical in a hot year. In-
deed, the impacts of impoundments in a hot year can be 2-4 times greater than in a cool
year. Moreover, there is an increasing trend in the heating effect of ponds in recent years
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(2009–2017) at the four stations with the longest available Tw data in the pond-like cluster
(trend:0.46-1.23 °C/decade, p-value< 0.12). Among these stations, the most pronounced in-
crease (1.23 °C/decade, p-value=0.05) occurs at the most ponded station.

Therefore, models like the T-NET can be used to assess the rate of change in Tw and to un-
derstand the heterogeneity in such changes in relation with hydroclimate changes and landscape
at a large scale and a high spatial resolution over the past and future. Such models also provides
a tool to understand Q and Tw changes under future projections. Hence, the next two chapters
aim at assessing changes in Tw from past to future using the T-NET model over the Loire River
basin.
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CHAPTER5
Regional, multi-decadal past trends in stream

temperature

Stream temperature appears to be increasing globally (Hannah and Garner, 2015; Orr et al.,
2015; Arora et al., 2016; Michel et al., 2020; Wilby and Johnson, 2020). This Tw warming
may alter the spatial extent of habitat for cold-water species (Morales-Marín et al., 2019; Lee
et al., 2020). However, the rate of Tw warming remains poorly understood at a large scale due
to a paucity of long-term data (Webb, 1996; Arora et al., 2016), and difficulty in parsing the
effects of hydroclimate and landscape variability. However, such a knowledge is helpful for
integrated water resources management and for taking actions for attenuating the impacts of
climate change.

Here, this issue is addressed by using the physical process-based T-NET thermal model
coupled with the semi-distributed EROS hydrological model to reconstruct past daily Tw and
Q at the scale of the entire Loire River basin (with 52 278 reaches). To understand how Tw
has responded to recent climate change at a large scale, daily Q and Tw over the whole T-NET
hydrographic network are first reconstructed over the past 57 years (1963–2019). Daily Ta over
the past 57 years is also provided by the SAFRAN reanalysis data (see section 2.3.1). Then, the
ability of both the T-NET and the EROS models to capture temporal trends are assessed against
long-term continuous observed data over the Loire River basin (see Table 2.1, p. 48). The model
outputs are then used to compute the magnitude of decadal trends in seasonal and annual Tw
and Q over the past 57 years. Similar trends in seasonal and annual Ta are also computed. To
understand the relative influence of Ta and Q (as the main hydroclimate drivers of Tw) on Tw,
their trends, anomaly behaviors, and temporal patterns are compared. Finally, the diversity in
Tw trends as a function of stream size, landscape diversity, and riparian shading is studied.
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5.1 Spatial reconstruction of long-term trends

Many factors affect the spatio-temporal variability of Tw. In the current study, we consider Ta
as a proxy for heat fluxes and meteorological variables, and Q as a proxy for thermal inertia and
hydraulic geometries (which depends on Q, see Equ. 4.8).

Daily Q and Tw are reconstructed over the 57-yr period 1963–2019 using the EROS hydro-
logical model and the T-NET thermal model. As mentioned in the previous chapter, although,
meteorological variables are available over the 1958-2019 period, the first years are discarded
from the analysis for the sake of EROS convergence (see Figure 4.3, p. 88). Thus, for each of the
52 278 reaches, daily time series of Ta (from the SAFRAN reanalysis data), Q (from the EROS
model), and Tw (from the T-NET model) are reconstructed over the 1963–2019 period. Sea-
sonal and annual averages of these 3 variables are considered in the trend assessment. The spa-
tial maps of summer Tw in each year over the 1963–2019 period can be found in Appendix D.
These maps that the high Tw (> 20 °C) are more frequent in the last decades compared to the
first decades, highlighting stream warming as the result of recent climate change. Indeed, in the
first decade, only 13.5 % of the reaches have Tw more than 17 °C whereas in the last decade, a
considerable number of reaches (39.5 %) have Tw more than 17 °C (see Figure D.1).

The magnitude of trends in time series of these three variables (i.e., Tw, Ta and Q) is es-
timated by the non-parametric Theil–Sen estimator (Sen, 1968). The significance level of de-
tected trends is evaluated by the Mann-Kendall test (Mann, 1945), commonly used in hydrolog-
ical analyses (e.g., Giuntoli et al., 2013) but also thermal analyses (e.g., Kaushal et al., 2010;
Arismendi et al., 2013a; Arevalo et al., 2020). This test is indeed robust to non-normal data,
non-linear trends, and series with outliers and missing values. Trend magnitudes are reported
in °C/decade for Ta and Tw, and in %/decade for Q, to help for comparisons across the basin.

In the following, the performance of both the EROS and T-NET models is first assessed at
stations with long-term continuous daily data.

5.2 Model performance: trend assessment

5.2.1 The EROS model

To assess the EROS model ability to capture temporal trends, 44 RHN stations with long-term
continuous daily data (see section 2.3.3, p. 48) are used. The performance of the EROS model
in terms of bias and RMSE at these stations was also assessed in the previous chapter (see
section 4.3.1, p. 102). As mentioned in the previous chapter (see section 4.1, p. 85), these RHN
stations have long-term continuous daily data over the 1968-2019 period. The position of these
stations (in red) can be found in Figure 2.1, right panel (p. 44).
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Trends in observed and modeled Q at these 44 RHN stations over the 1968-2019 period are
significantly correlated for all seasons with the exception of summer (Figure 5.1). The highest
correlation across stations is observed in spring and fall (r= 0.69 and 0.71, p< 0.05), and the
lowest correlation is observed in summer, which is also non-significant (r= 0.17, p= 0.26). Both
modeled and observed Q are slightly decreasing (up to -11 %/decade) for the majority of stations
across all seasons, but the trend is significant for a very few of them (and mostly at the annual
scale), all located in HER A (and more precisely in the southern headwaters). Moreover, there
are only a few discrepancies between estimates of trend significance in modeled and observed
Q across seasons (11-18 % of stations).
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Figure 5.1: Relationships between long-term trends (1968–2019) in observed and simulated Q for 44 RHN sta-
tions, at the seasonal and annual scales. The magnitude of trends is estimated by Theil–Sen estimator. Point
shapes indicate whether trends are significant or not at the 95% confidence level for observations and simulations
according to the Mann-Kendall test. Colors refer to the Hydro-Ecoregion (HER) where the station is located. The
position of these stations can be found in Figure 2.1, right panel (p. 44).

5.2.2 The T-NET model

Long-term continuous data are available at 14 Tw stations (see Table 2.1, p. 48). The position
of these stations (in red) can be found in Figure 2.1, middle panel (p. 44). These stations were
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also identified with a near-natural thermal regime in Chapter 3 (see section 3.3, p. 61), and were
used in the previous chapter (section 4.3, p. 102) for assessing the T-NET model performance
in simulating daily and seasonal Tw. Of these 14 stations, 9 stations have 8-13 years of data
and 5 stations have 20-40 years data (see Table 2.1, p. 48). These 14 near-natural stations with
long-term continuous data compose the validation dataset for the seasonal and annual trend
assessment. The long-term evolution of annual mean Tw at these 14 stations is presented in
Figure 5.2, which clearly exhibits an increase in annual Tw over time. For large rivers, there is
an increase of up to 2 °C between 1977 and 2019.
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Figure 5.2: The annual mean of observed Tw at the 14 Tw stations with long-term data between 1977 and 2019
(see Table 2.1, p. 48). The numbers within parentheses denote the river catchment area (km2).

Modeled and observed Tw trends are also correlated significantly (Figure 5.3) across seasons
with the exception of fall. The highest correlation is observed in summer (r= 0.94, p< 0.001),
and the lowest correlation is observed in fall, which is also non-significant (r= 0.29, p= 0.32).
Contrasting with trends in Q, trends for Tw are rather increasing for most stations across sea-
sons, but the very short period of record led mostly to non-significant trends. However, stations
with long-term data show significant increasing trends for all seasons, with the exception of
winter (Figure 5.3).

A visual comparison of observed and modeled Tw time series at stations with long-term
data (> 20 years) indeed suggests a strong coherence and agreement between trends in ob-
servations and simulations for all seasons (Figure 5.4). Indeed, there is a very small differ-
ence between trend magnitudes in modeled and observed Tw across stations and seasons (up to
0.16 °C/decade). For the Loire river, on average over the 4 stations (Figure 5.4), the greatest
increase occurs in spring – +0.61 (resp. +0.71) °C/decade in observations (resp. simulations) –
and summer – +0.62 (resp. +0.58) °C/decade in observations (resp. simulations). The smallest
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increase was found in winter – +0.22 (resp. +0.28) °C/decade in observations (resp. simula-
tions).
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Figure 5.4: Seasonal and annual time series of observed and simulated Tw at stations with long-term continuous
data (> 20 years) between 1977 and 2019 (see Table 2.1, p. 48). Numbers in red and blue in the top left corner of
each graph show trend values (Sen’s slope) in observed and simulated Tw. Numbers in black in the bottom right
corner of each graph show the mean bias of the reconstruction.

5.3 Long-term trends in stream temperature, air tempera-
ture and streamflow over the 1963–2019 period

Here, the spatial variability of past trends in seasonal and annual Tw (simulated by the T-NET
model), Ta (provided by SAFRAN) and Q (provided by the EROS model) over the 1963–2019
period for the whole Loire River basin (52 278 reaches) is presented to see visually whether
there are spatial links between Tw and Ta and/Q.
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Trends in Tw

Figure 5.5, left panel, shows an increase in simulated Tw in almost all reaches for all seasons,
with trends that are everywhere – except some limited areas mainly in winter – statistically
significant at the 95 % confidence level (Figure 5.6, left panel). Depending on the season con-
sidered, 62 % to 80 % of reaches show trends in the range of 0.2-0.4 °C/decade (i.e 1.14-2.28 °C
over the whole 1963–2019 period; see Figure 5.7), with the exception of summer. Summer Tw
trends are more spatially variable than in other seasons. The highest Tw trend values are found
in summer (resp. spring), when 58 % (resp. 36 %) of reaches shows trend values higher than
0.4 °C/decade (Figure 5.7). In summer, such reaches are mainly located in the southern part of
the basin, in HER A (see Figure 5.5, left). Spring Tw trends show a similar spatial pattern, but
with lower trend values.

Trends in Ta

Figure 5.5, middle panel, shows increasing Ta trends for 99 % of all reaches across spring, sum-
mer, and the whole year. Such trends are all significant at the 95 % confidence level (Figure 5.6,
middle panel). Depending on the season considered, for 64 % to 83 % of reaches, trends are
mainly in the range of 0.2-0.4 °C/decade (Figure 5.7), with the exception of summer. The high-
est Ta trend values are found in summer (resp. spring), when 67 % (resp. 22 %) of reaches
shows values higher than 0.4 °C/decade. Such reaches are mainly located in HER A, especially
in summer. Non-significant trends are found over the whole basin in winter, and in the southern
part of the basin in fall (Figure 5.6, middle panel).

Trends in Q

Figure 5.5, right panel, shows that trends in Q are contrasted across the basin and also across
seasons, with upward and downward trends. Most of these trends are not significant at the
95 % confidence level (Figure 5.6, right panel). However, significant decreasing trends are
found in the southern headwaters (HER A) in spring, summer, fall, and also when looking at
the annual scale (Figure 5.6, right panel). Decreasing trends are observed for the majority of
reaches across seasons (66-83% of reaches; see Figure 5.7), with the exception of winter (37%
of reaches). Decreasing trends could have values higher than -5 % per decade, i.e. -28 % over
the whole 1963–2019 period (19-36 % of reaches across seasons, with the exception of winter;
see Figure 5.7).
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Figure 5.5: Spatial variability of trends in seasonal and annual Tw, Ta and Q over the 1963–2019 period, based on
the Sen’s Slope estimator. Solid black lines show the Hydro-Ecoregion (HER) delineation (see Figure 2.1, p. 44).
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Figure 5.6: Spatial variability of the significance of trends in seasonal and annual Tw, Ta and Q over the 1963–2019
period, based on a Mann-Kendall test at the 95% confidence level. Solid black lines show the Hydro-Ecoregion
delineation (see Figure 2.1, p. 44).
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the 1963–2019 period. This representation includes both significant and non-significant trends.
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5.4 Hydroclimatic drivers of stream temperature trends

In the previous section, the spatial view of the variability in trends showed that more pronounced
trends in Tw happened in HER A where increasing trends in Ta and decreasing trends in Q were
observed as well. Therefore, there might be some spatial and temporal links between trends
in Tw and trends in Ta and/or Q chosen as the main hydroclimate drivers of Tw in the current
study. Moreover, it is hypothesized that other hydroclimate drivers (e.g., trend in Q) may be the
responsible for the discrepancy between Tw trend and Ta trend. Therefore, to understand the
relative influence of Ta and Q on Tw, in this section, we assess spatial coherence and temporal
synchronicity between trends in Tw and trends in Ta and Q.

5.4.1 Stream temperature increases faster than air temperature

We first assess the spatial coherence between Tw and Ta or Q. In this regard, distributions of
trends in Tw and Ta are first compared for the whole basin at the seasonal and annual scales
using the non-parametric Wilcoxon signed rank test (Bauer, 1972) to determine whether Tw
trends are greater than Ta trends. Then, the spatial coherence across reaches in terms of dif-
ference in trends between Tw and Ta on one hand, and sign of trend in Q on the other hand, is
assessed to explain the discrepancy between Tw and Ta found in the previous step with respect
to Q.

The median of Tw trends is higher than that of Ta trends for every season (p<0.001 accord-
ing to the Wilcoxon signed rank test), except for summer when the median trend values for Tw
and Ta are very similar, but more variable for Tw (+0.08 to +1.02 °C/decade) (Figure 5.8). The
greatest increase in Tw is found in summer (+0.44 °C/decade). Overall, Tw trends are more
spatially variable than Ta trends, suggesting the conditional influence of other factors like Q
trends (Figure 5.8). Indeed, where Tw trends exceed Ta trends, decreasing Q trends occur co-
incidentally at the majority of reaches for all seasons (with the exception of winter) regardless
of the significance level of these variables (Figure 5.9). If all significant and non-significant
trends are considered, for 43-72 % of reaches across seasons (with the exception of winter),
increase in Tw and Ta and decrease in Q occur coincidentally (Figure 5.9, top panel). The same
can be found for 47-94% of reaches across seasons (with the exception of winter) when only
significant events of all these variables are considered (Figure 5.9, bottom panel). Moreover,
the difference between Tw and Ta trends could go up to 0.5 °C/decade (i.e. up to 2.8 °C/decade
over the whole 1963–2019 period, see Figure 5.10) irrespective of whether all significant and
non-significant trends are considered.
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Difference between Tw and Ta trends (°C/decade) 
 with considering both significant and non−significant trends
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Figure 5.10: Difference between Tw and Ta trend at each reach in °C/decade for the whole 52 278 reaches
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Of these specific reaches where all factors converge (trend in Tw higher than trend in Ta,
and decreasing trend in Q), most are located in HER A regardless of considering all significant
and non-significant trends (52-90 % of such reaches across seasons; see Figures 5.11, left panel
and 5.12), or only significant events (100 % of such reaches across seasons; see Figure 5.11,
right panel). Note that, in HER A, this convergence (trend in Tw higher than trend in Ta, and
decreasing trend in Q) can be seen for all kind of rivers regardless of their size when both
significant and non-significant events are considered (see Figure 5.13).
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Figure 5.11: Map of reaches with consistent trends in Tw, Ta, and Q, categorised with respect to two criteria: (1)
Tw trend>Ta trend, and (2) sign of Q trend. Sen’s slope is used as trend value estimate. (left) All reaches with
significant and non-significant trends in Tw, Ta and Q. (right) Only reaches with significant trends in Tw, Ta, and
Q.
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Figure 5.13: Map of reaches with consistent trends in Tw, Ta, and Q, categorised with respect two criteria in HER
A: (1) Tw trend>Ta trend, and (2) sign of Q trend. Sen’s slope is used as trend value estimate. All reaches with
significant and non-significant trends in Tw, Ta and Q are considered. Note that size of the streams in the figure
shows the reach Strahler Order.
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5.4.2 Synchronicity of stream temperature anomalies with air tempera-
ture and streamflow anomalies

To assess the temporal link between Tw and Ta/Q, first, the Pearson correlation is computed
for each reach between seasonal and annual means of (1) Tw and Ta, and (2) Tw and Q, to
determine the strength and direction of the relationship between Tw and hydroclimatic drivers
across reaches. Seasonal and annual anomalies of Tw, Ta, and Q – with respect to the 1963–
2019 interannual mean – are then used to visually assess the synchronicity of extreme years.

Strong positive correlations between seasonal and annual averages of Tw and Ta are found
across seasons (+0.72- +0.83; see Table 5.1). A negative correlation between summer Tw and
Q time series is further observed (-0.40).

Table 5.1: Pearson correlation over the 1963–2019 period between seasonal and annual Tw and Ta and/or Q
time series, averaged over all reaches. Percentages in brackets show the proportion of reaches with a significant
correlation at the 95 % confidence level.

Season Tw and Ta Tw and Q

DJF +0.73 (100%) +0.52 (94%)
MAM +0.78 (100%) -0.02 (25%)
JJA +0.82 (100%) -0.40 (79%)
SON +0.72 (99,6%) -0.01 (19%)
Annual +0.83 (100%) -0.01 (22%)

The anomalies of Tw, Ta, and Q exhibit different patterns, with Tw and Ta generally increas-
ing and Q remaining relatively stationary (Figure 5.14). Tw anomalies (with median anomaly
form -3 to +3 °C across seasons) are generally more variable than Ta anomalies, especially in
summer, but both time series appear to exhibit synchronous behaviors. Tw and Ta anomalies
exhibit a clear negative-to-positive shift in the late 1980s at nearly all reaches, with median
values shifting by approximately +2 °C after the change-point (Figure 5.14).

Critically, the largest summer Tw and Ta positive anomalies over the study period are ob-
served in 1976, 1994, 1995, 2003, 2005, 2006, 2015, 2017, 2018 and 2019, which correspond
to years with the largest negative anomalies in summer Q, with the exception of 1994 and 2018
(Figure 5.15). However, this signal is much less clear for the other seasons (Figure 5.16).
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Figure 5.16: Relationship between Tw anomalies and Ta anomalies on one side and Tw anomalies and Q anomalies
on the other side across seasons, with the exception of summer. The labels indicate the median anomalies of 52 278
reaches for each year. See Figure 5.15 for the summer period.
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5.4.3 Change-point in stream temperature, air temperature and stream-
flow in the late 1980s

A clear negative-to-positive shift in the late 1980s at nearly all reaches for Tw and Ta anomalies
was observed in the previous section (Figure 5.14), which was less visible for Q anomalies due
to its high interannual variability. To see whether the change-points in Tw, Ta and Q occur
around the same time, change-points in time series of anomalies of these variables at each reach
are computed with the non-parametric Pettitt test. This test considers no change in the central
tendency as a null hypothesis (Pettitt, 1979). Change points are reported at the 95 % confidence
level.

The change-point analysis also support the previous visual observation, where change-
points in seasonal and annual averages are largely coincident across these time series (Fig-
ure 5.17). These change points are observed in all seasons, but are most pronounced and syn-
chronous around 1988 in spring and summer. The change-points detected in winter Tw and Ta
time series are less concomitant, occurring mostly in the early 1990s (1992 and 1993) for Tw
and in the late 1980s (1986-1989) for Ta. The fall change-points are distributed between 1980
and 1994 for both Tw and Ta. The significant change-points in seasonal Q time series are de-
tected for a substantially smaller proportion of reaches, i.e. less than 40 % of reaches for spring
and summer. The majority of these reaches are located in HER A across seasons (66-86 % of
such reaches), with the exception of winter (49 %) (see Figure 5.18). In spring and summer,
they occur in the late 1980s, similarly to Tw and Ta. Conversely, the significant change-points
detected in other seasons are much more scattered in time, probably due to the high interannual
variability of Q.
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5.5 Landscape drivers of stream temperature trends

Stream size, within individual large-scale homogeneous HERs, is selected as the first major
potential landscape driver. The Strahler order of each reach is used as a proxy for stream size.
Reaches with Strahler order 5–8 were combined into a single group termed "large rivers". The
Spearman correlation is computed between decadal trends in Tw (i.e. across all reaches) and
Strahler order. Such correlations are computed across HERs and at seasonal and annual scales
to evaluate the spatial heterogeneity and seasonality. Finally, in order to better illustrate the
relationship between trends in Tw and Strahler order, median Tw trends of each group of rivers
with respect to Strahler order is presented.

5.5.1 Stream temperature increases faster in large rivers

The Strahler order of each reach is used here as a proxy for stream size. Reaches with Strahler
order 5–8 are combined into a single group termed “large rivers”. The relationship between me-
dian decadal trends in Tw (i.e., median across all reaches) and Strahler order are assessed across
HERs and at seasonal and annual scales to evaluate the spatial heterogeneity and seasonality.

Strahler order was strongly (p< 0.001) and positively correlated with Tw trends for all
HERs in spring, and for HER A in summer and fall and at annual scale. HER A exhibited
the highest positive correlations in spring (r= +0.32) and summer (r= +0.15) (see Figure 5.19).
In other words, larger rivers tend to exhibit the largest increases in spring and summer Tw,
especially for reaches located in the HER A. There, median trends in spring (resp. summer)
ranges from +0.37 °C/decade (resp. +0.49 °C/decade) for small streams (Strahler order 1) to
+0.55 °C/decade (resp. +0.64 °C/decade) for large streams (Strahler order ≥ 5).
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Figure 5.19: Relationships between reach size and median trends in Tw across reaches over the 1963–2019 period,
by HER and by season. Correlations and associated p-values are shown on the top-right corner of each graph, and
significant relationships at the 95% confidence level are identified by full solid lines

5.5.2 Stream temperature warming mitigated by riparian shading

Lastly, the influence of riparian vegetation shading on trends in Tw is assessed using the daily
average of the riparian vegetation shading (SF for riparian shading factor) simulated by the
T-NET model (see section 4.2.2.3, p. 97). Seasonal shading is computed as the average of
the daily SF over each season. For this analysis, only low-order reaches – distance from the
source < 30 km – are considered, based on previous observations that riparian shading primarily
influences Tw at this scale (Moore et al., 2005; Loicq et al., 2018). Then, as the previous
analysis for the influence of stream size, the relationship between median decadal Tw trends
and five levels of riparian shading (<15 %; 15-25 %; 25-40 %; 40-60 %; >60 %) is assessed
across HERs and seasons. The greatest SF (> 40 %) is found in summer (resp. spring) for 45 %
(resp. 24 %) of reaches, which are mostly in HER A (61 % of such reaches). Finally, median
Tw trends are compared for each level of riparian shading

For small streams, i.e. reaches located closer than 30 km from the source, the shading factor
(SF) and trends in Tw are significantly (p< 0.001) and negatively correlated in HER A in all
seasons, as well as in HER B and C in spring and in HER B in fall (Figure 5.20). Indeed, across
seasons, the highest negative correlation is observed in HER A (r= -0.56 to -0.37 depending on
the season). Unsurprisingly, the mitigating effect of shading on trends in Tw for small streams
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is observed for all HERs in spring, and only for HER A in summer and, to a lesser extent,
in fall and winter. The median spring Tw trend in the HER A decreases by 0.12 °C/decade
from sparsely shaded reaches (SF<15%) to highly shaded reaches (SF>40%). For summer Tw
in HER A, the median trends decreases by 0.16 °C/decade from the lowest shaded reaches to
highest shaded reaches.
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Figure 5.20: Relationships between shading factor and median trends in Tw over the 1963–2019 period for small
streams, by HER and by season. Note that some shading factor classes are not observed in fall and winter.

5.6 Increase in stress on brown trout

An increase in Tw, especially in HER A, can increase the stress on cold-water fish species in this
part of the basin. The brown trout, one of the common cold-water species in the Loire basin,
especially in HER A, is selected here. Since lethal temperature for juvenile brown trout is 17 °C
(Souchon and Tissot, 2012), the evolution of the number of days with Tw>17 °C (NTw > 17) is
studied in rivers with a non-zero density (individual/100 m2) for brown trout (see Figure 5.21
for density distribution over the 1994–2017 period). 80 % of such rivers are found in HER A. To
do so, beforehand, the performance of the T-NET model in simulating this metric, NTw > 17, is
assessed at 72 observed Tw stations with continuous daily data over the 2010–2014 period (see
section 4.3.2.2, p. 113). Afterwards, the trend in NTw > 17 is computed over the 1963–2019
period for rivers with non-zero density of brown trout. Finally, the evolution of the brown trout

156



CHAPTER 5. REGIONAL, MULTI-DECADAL PAST TRENDS IN STREAM
TEMPERATURE 5

vulnerability is calculated using adopted approach proposed by Lee et al. (2020) as following:

V = E ×S (5.1)

V is vulnerability; E is the frequency of exposure time or the number of days with Tw> 17 °C ,
and S is the sensitivity score which is defined as following:

S =
MIN −17
MAX −17

, MIN =

17 if Tw< 17

Tw otherwise
(5.2)

with Tw, daily stream temperature at a specific day, and MAX is the maximum value of daily
Tw found across all reaches with brown trout over the 1963–2019 period. This equation let
scale Tw to 0 (17°C=lethal temperature for juvenile brown trout) and 1 (MAX).

Figure 5.21: Map of brown trout density (over the 1994–2017 period, Poulet et al., 2011; Maire et al., 2017) across
the basin. 80 % of rivers with non-zero density are located in HER A.

The T-NET model performs quite well in producing metric of NTw > 17 (median bias=1.5
days over the 2010-2014 period). In all HERs, there is an increasing trend (4 day/decade i.e.
+22 days over the 1963–2019 period) in median of NTw > 17 across the rivers with non-zero
density of brown trout (Figure 5.22). The years with greatest NTw > 17 correspond to years
with the highest Tw anomalies (2003=65 days; 2006=45 days; 2017=42 days and 2019=39
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days; and see Figure 5.15). Moreover, the vulnerability of brown trout increases 100 % over the
1963–2019 period (see Figure 5.23).

Figure 5.22: Evolution of the number of days with Tw>17 °C (NTw > 17) over the 1963–2019 period across HERs.
For each HER, the median of NTw > 17 across rivers with non-zero density of brown trout (depicted in Figure 5.21)
is used.

Figure 5.23: Evolution of vulnerability score of juvenile brown trout over the 1963–2019 period. The median value
of the vulnerability score across the rivers with a non-zero density of brown trout is considered.
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5.7 Discussion

5.7.1 Quality and suitability of simulated stream temperature and stream-
flow

Although some biases were observed for both Q and Tw in the previous chapter (see Figure 4.12,
p. 103 and Figure 4.20, p. 114), we found significant correlations between modeled and ob-
served trends in seasonal and annual Q, with the exception of summer (Figure 5.1), and Tw,
with the exception of fall (Figure 5.3). The low correlation value found in summer Q (Fig-
ure 5.1) originated from poor simulation at very few stations all located in HER B. Two of these
stations gauged catchments where numerous small ponds were found and the highly decreas-
ing observed trends might be due to the increasing evaporation from these ponds which were
obviously not included in the EROS hydrological model. This was also true in a lesser extent
for the other hydrometric station, in which a canal followed a large part of the course of the
river and might play a similar role with respect to summer evaporation trends. Apart from these
specific stations, in summer, a coherence as good as in other seasons was found between trends
in simulated and observed Q. Moreover, the spatial pattern in simulated Q trends, with signifi-
cant decreases in the southern headwaters, was consistent with observations at the high-quality
reference hydrometric stations (Giuntoli et al., 2013, their figure 5).

The low correlation between simulated and observed Tw trend found in fall (Figure 5.3)
originated from two stations with 8-13 years Tw data while such correlation was really good
at stations on the Loire and Vienne rivers with longer (20-40 years) Tw data. Therefore, poor
correlation in fall could be due to insufficient Tw data at these two stations. Moreover, consistent
with Moatar and Gailhard (2006) and Arevalo et al. (2020), we found no trend (p> 0.05) in both
observation and simulation at Loire (Dampierre) in winter.

5.7.2 Agreement between trends in observed and simulated stream tem-
perature

T-NET simulations over the 1963–2019 period show significantly increasing trends in Tw for
almost all reaches over the Loire basin across seasons, with an increase of +0.38°C/decade on
average at the annual scale. To the best of the authors’ knowledge, the present study is one of the
very few studies using modeled Tw to investigate past trends at a large scale (but see Van Vliet
et al., 2011; Isaak et al., 2012, 2017; Wanders et al., 2019). Table 5.7.2, summarizing recently
published findings based on observations over Europe, demonstrates that the present results are
consistent with past trends observed in other European basins with clear increases in Tw over the
recent decades. It also shows that the much larger scale and finer spatial resolution of the current
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study clearly stands out as unique. Although start year, end year and length of the study period
can have a significant influence on trend estimates and trend detection (Arora et al., 2016),
comparing trends with other studies conducted over different periods gives a comprehensive
view upon the overall magnitude of changes in Tw and possible related drivers.

Global-scale stream temperature modelling suggests trends in annual averages (over the
1960–2014 period) ranging from +0.2 to +0.5 °C/decade over France (Wanders et al., 2019),
which is consistent with our findings (mostly in the range of +0.2 to +0.4 °C/decade, Figure 5.7,
top panel). The pronounced trends are in spring and summer, which was also found in other
parts of Europe (e.g Kędra, 2020; Arora et al., 2016; Michel et al., 2020). Considerable discrep-
ancies are also found between Tw and Ta trends across seasons for the majority of the reaches
(see Figure 5.5, and 5.9), which is a common finding for other sites around the world (Arora
et al., 2016; Wanders et al., 2019). This highlights that changes in Ta may not be the only driver
of changes in natural Tw.
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5.7.3 Drivers and spatial patterns

Consistent with our findings (see Figure 5.10), (Moatar and Gailhard, 2006) found Tw increased
faster than Ta in spring and summer and at the annual scale for all 4 stations on the Loire River.
(?) also found Tw trends>Ta trends in summer. In Switzerland, (Michel et al., 2020) described
an increase of +0.33± 0.03 °C/decade in Tw, resulting from the joint effects of an increase in
Ta (+0.39±0.14 °C/decade) and decreasing in Q (−10.1±4.6%/decade) over the 1979–2018
period. In contrast with our results, they found Tw trends lower than Ta trends due to influence
of snow melt and glacier melt in Alpine catchments. Consistent with their findings, (Orr et al.,
2015) also found Tw trends<Ta trends in UK. They suggested the such difference between
Tw and Tw trends could be as a result of different processes driving Tw. In the current study,
we found spatial coherence between trends in Tw and trends in Ta and Q. Indeed, the greatest
increases in Tw (up to +1 °C/decade) were predominately located in the southern part of the
basin, in HER A (Massif Central) where a greater increase in Ta (up to +0.71 °C/decade) and a
greater decrease in Q (up to -16 %/decade) occurred jointly. We also found, at the majority of
reaches where Tw trend>Ta trend, decreasing Q trends occurred coincidentally for all seasons
(with the exception of winter) (see Figure 5.9).

The decrease in Q could itself be due to a significant increase in potential evapotranspiration
(PET) (up to +10 %) over the whole of basin and a decrease (mostly non-significant) in total
precipitation (P) (up to -5 %/decade) (Figures 5.24 and 5.25). Such trends, computed here
based on variables from the SAFRAN surface meteorological reanalysis (Vidal et al., 2010),
are consistent with larger-scale studies (see e.g. Spinoni et al., 2017; Tramblay et al., 2020;
Hobeichi et al., 2021). Moreover, Vicente-Serrano et al. (2019) attributed annual streamflow
trends in southern France mostly to trends in precipitation and potential evapotranspiration, as
opposed to irrigation and land-use changes that have additional strong effects e.g. in the Iberian
peninsula. We also observed, for the majority of reaches where Tw increased less than Ta,
an increase in Q occurred jointly suggesting that increase in Q or in other words increase in
thermal inertia could also explain the discrepancy between Tw and Ta trends at these reaches
(see Fig 5.9).

A strong synchronicity between Ta and Tw anomalies is observed in the present study in
the warmest years, and these years are also among those with the largest negative Q anomalies
(see Figures 5.15). Indeed, increase in summer Tw could be due to co-occurrence with the
increase in summer Ta (average correlation: +0.82), and with decrease in summer Q (average
correlation: -0.40). These findings are consistent with those of Michel et al. (2020): average
Tw-Ta correlation: +0.61, and average Tw-Q correlation: -0.66. For the middle Loire river,
Moatar and Gailhard (2006) found that the increase in Ta (resp. decrease in Q) explain 60 %
(resp. 40 %) of the increase in Tw. Moreover, the significant change-point in Tw, Ta and Q time
series in the late 1980s has also been found in other studies in Europe (Moatar and Gailhard,
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Figure 5.24: Spatial variability of trends in seasonal and annual potential evapotranspiration (PET) and total pre-
cipitation (P) over the 1963–2019 period. The solid black lines are showing the borders of HER (see Figure 2.1,
p. 44).
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Figure 5.25: Spatial variability of the significance level of trends in seasonal and annual P and PET over the 1963–
2019 period. The solid black lines are showing the borders of HERs (see Figure 2.1, p. 44).
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2006; Arora et al., 2016; Zobrist et al., 2018; Ptak et al., 2019b; Michel et al., 2020). Long-term
observational time series of the Loire at Dampierre also displays a similar change-point.

Trends in Tw might also be explained by trends in additional drivers, like shortwave radia-
tion (Wanders et al., 2019), which is the dominant flux at the air-water interface, and is notably
increasing over Europe (Sanchez-Lorenzo et al., 2015). This might explain discrepancies be-
tween Tw and Ta trends in spring and summer, when no decreasing trend in Q is found (see
Figure 5.5).

The current study suggests that Ta and Q could exert a joint influence on Tw, based on
an analysis of the spatial coherence and temporal synchronicity of these variables. Assessing
causal influence of these factors on Tw trends is left for future research. In this regard, one
could devise a formal attribution framework where one may e.g. remove trends in Q and trends
in Ta alternatively in T-NET inputs.

5.7.4 Natural trends and anthropogenic influence on stream temperature

Natural Tw time series are used in the current study for detecting trends, as both the EROS and
the T-NET models are used in a non-influenced set-up (see section 4.1, p. 85 and section 4.2,
p. 89). However, anthropogenic impoundments (e.g., large dams, small reservoirs, and ponds)
affect downstream Tw regimes in a diversity of ways that depend on their structure and position
along the river continuum (see section 3.5; and Figure 3.18, p. 80). In this regard, on the one
hand, large dams, by releasing cold hypolimnetic water in summer, can lower downstream Tw
(Olden and Naiman, 2010, and see Figure 3.18, p. 80), and mitigate increasing trend in Tw
(Cheng et al., 2020). Nevertheless, it is anticipated that a considerable proportion of streams
regulated by large reservoirs may still warm with climate change (Null et al., 2013), and expe-
rience high temperatures and low flows under future climate change (Cheng et al., 2020). The
mitigating influence of dams could be of importance for streams in the southern headwaters
of the Loire basin since this area both experience the greatest Tw trends and gathers most of
existing large dams (see Figure 2.1 (right panel), p. 44).

On the other hand, ponds and shallow reservoirs, by releasing warm water can increase
downstream Tw (Zaidel et al. (2020); Chandesris et al. (2019); and see section 3.5 and Fig-
ure 3.18, p. 80) and exacerbate increasing trends in Tw (Wanders et al., 2019; Michel et al.,
2020). The impacts of such reservoirs on Tw can be more pronounced than large dams (Sinokrot
et al., 1995). In fact, given the potential climatic changes, the aquatic ecosystem downstream
of such impoundments will experience higher Tw (Gooseff et al., 2005; Fang and Stefan, 2009;
Ali et al., 2016). The warming effect of such surface waters in the current study seem more sig-
nificant for streams located in lowlands in the middle and north of the Loire River basin where
most of the shallow reservoirs are located (see Figure 2.1 (right panel), p. 44). In these streams,
anthropogenically-induced trends in Tw may be greater than natural ones, and the warming
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process can get worse through the increasing demand for storing water in small reservoirs for
irrigation. Nevertheless, the warming effect can be local, and unregulated streams being located
close to such regulated streams may show limited to no warming (Wanders et al., 2019).

Note that although there are nuclear power plants in the Loire basin, their impacts on Tw
is considered negligible according to Moatar and Gailhard (2006) and Bustillo et al. (2014).
Moreover, it was observed in the current study that the Tw trend at Belleville located in upstream
of power plants and consequently, not influenced by them, had the same trend magnitude as the
other three stations located downstream (see Figure 5.4), showing a negligible influence of
nuclear power plants on Tw trends.

5.7.5 Implications for river management and aquatic biota

The removal of riparian vegetation can increase Tw (Caissie, 2006), and changes in Tw can
be even more sensitive to changes in riparian vegetation than to changes in Ta or Q (Wondzell
et al., 2019). Here, in small streams, an increase of > 25 % of riparian shading (from < 15 % to
> 40 %) can decrease the median trend in spring and summer Tw by up to 0.16 °C/decade (Fig-
ure 5.20). Spring and summer Tw trends are more pronounced in large rivers, especially in the
south of the basin, with a difference in median Tw trends of up to +0.18 °C/decade (Figure 5.19),
probably due to a decrease in Q (up to -2 %/decade, see Figure 5.26), a greater thermal sensitiv-
ity, and the absence of mitigating factors like riparian vegetation shading or groundwater inputs
(Kelleher et al., 2012; Beaufort et al., 2020a).

Restoring riparian vegetation and shading can therefore substantially mitigate future in-
creases in Tw. In addition, riparian restoration may lessen the impacts of climate change on
flood damage to human infrastructure, on riparian biodiversity, on ecosystem vulnerability and
on changes in Q (Palmer et al., 2009; Seavy et al., 2009; Perry et al., 2015). However, riparian
restoration is not an easy task since the survival, persistence, growth rate of planted species
as well as required time for thermal regime recovery under possibly severe future conditions
should be studied beforehand (Perry et al., 2015). For instance, it may take between 5 and 15
years for rivers to recover their thermal regime following vegetation growth (Edmonds et al.,
2000; Caissie, 2006). Moreover, the efficacy of riparian planting is also highly dependent upon
the type and structure of forest stands (Dugdale et al., 2018), and this should also be considered
in long-term projects.

Stream warming affects cold-water fish populations negatively at the warmer boundaries
of their habitat (Hari et al., 2006). In the Loire basin, this issue may have a high importance
in HER A with the most pronounced trends. In this regard, there is an increasing trend in
the number of days with Tw higher than juvenile brown trout’s lethal temperature (17 °C), in
all HERs (trend=4 day/decade i.e. +22 day over the 1963–2019 period; see Figure 5.22) in
rivers with a non-zero density of brow trout. Moreover, the vulnerability of this species double
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Figure 5.26: Relationships between median trends in Ta and Q over the period 1963—2019 and reach size (large
rivers:Strahler order ⩾ 5).

over the 1963–2019 period. Furthermore, changes in spawning and migration timing (McCann
et al., 2018; Arevalo et al., 2020), decreases in habitat availability and freshwater quality for
organisms (Lennox et al., 2019), and shifts in species distribution (Comte et al., 2013) are
already observed consequences of the long-term increase in Tw. Some major changes in fish
density and community structure has already been reported in large rivers in France (Maire et al.,
2019) for which we also found greater trends in Tw compared to small ones. Therefore, physical
process-based thermal models like T-NET can also be used to assess the various stresses on
freshwater habitat sustainability due to changes in Q and Tw (Morales-Marín et al., 2019).
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5.8 Conclusion on past trends

Regional trends Tw at the reach resolution are detected and assessed by using the physical
process-based T-NET model coupled with the semi-distributed EROS hydrological model over
the Loire basin. Using model outputs across 52 278 reaches over the Loire basin, for 3 vari-
ables (Ta, Q, and Tw), and 5 time scales (4 seasons plus annual), consistent increasing Tw
trends at the scale of the entire Loire River basin are found, regardless of the season (an-
nual mean = +0.38 °C/decade). Increases are greatest in spring and summer with a median
increase of +0.38 °C/decade (range=+0.11 to +0.76 °C/decade) and +0.44 °C/decade (+0.08 to
+1.02 °C/decade), respectively. Critically, the rate of warming for stream temperature is in
the majority of cases higher than the rate of atmospheric warming, suggesting a decoupling of
thermal trajectories linked to decreasing Q, especially in the southern headwaters (the Massif
central, HER A). Indeed, the results show that the greatest increase in Tw (up to 1 °C/decade) are
in regions where the greatest increase in Ta (up to +0.71 °C/decade) and the greatest decreases
in streamflow (up to -16 %/decade) occur coincidentally. Moreover, a significant change-point
is detected in Tw, Ta and Q time series in the late 1980s.

The synchronicity of extreme events of low flows and high stream temperature in the south-
ern headwaters will likely generate a double penalty for existing cold-water aquatic commu-
nities. However, riparian shading in small mountainous streams may mitigate such warming.
In fact, an increase of > 25 % of riparian shading (from < 15 % to > 40 %) can decrease the
median trend in spring and summer Tw by up to 0.16 °C/decade.

These findings underscore that Ta alone is likely not an adequate proxy to explain stresses
and shifts experienced by aquatic communities over time and space, especially in regions with
more pronounced stream warming, and thus there is a need to grow and maintain Tw sensor
networks (see Figure 2.5 p. 47 showing a decline in number of Tw stations over the Loire River
basin). This knowledge can help to develop appropriate management strategies to conserve
thermal refugia and mitigate extreme thermal events induced by climate change.
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CHAPTER6
Future projections of stream temperature

In the previous chapter, it was observed that Tw increased for almost all reaches in all seasons
over the past 57 years (1963–2019) with the greatest increase in spring and summer. Rates of
Tw increases are greater than for Ta across seasons for the majority of reaches as a result of
joint effects of the increase in Ta and decrease in Q, and possibly other factors. These findings
raised a question concerning Tw changes in the future. Some studies already anticipated Tw
warming will continue, and be more pronounced for the extreme scenarios and towards the
end of the century (e.g., Mantua et al., 2010; van Vliet et al., 2013; Bustillo et al., 2014; Du
et al., 2019; Michel et al., 2021). Nevertheless, so far, few studies assessed future Tw at a
large scale and a high spatial resolution. Hence, there is still a weak understanding of the
heterogeneity of magnitude of Tw changes under future climate change at a large scale and
a high spatial resolution. Moreover, it is of high interest to understand such changes in Tw
in relation to hydroclimate changes and landscape diversity in the future. Such knowledge
underpins the mitigation and management strategies for preserving aquatic communities already
under pressure.

To address this issue, scenarios of changes in the magnitude or Tw over the 21st century,
and the influence of hydroclimate changes and landscape diversity on such changes are studied
here at the scale of the Loire River basin and at the reach resolution. To do so, first, a subset
of the new future climate projections over France (the DRIAS-2020 dataset, Soubeyroux et al.,
2020) are selected. Note that this study is the first one using projections from the DRIAS-2020
dataset for hydrological and thermal projections. Then, the meteorological variables provided
by these selected future projections are used in both the EROS hydrological model and the T-
NET thermal model. The EROS model is first run to produce daily Q under varying selected
future climate projections over the whole 21st century. Projected daily Q is then used in the T-
NET thermal model to produce daily Tw under these climate and hydrological projections. The
present-day performance of projections is assessed by comparing projections to the retrospec-
tive simulation obtained from the past analyses in the previous chapter over a recent historical
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period (section 5.3, p. 137). Model outputs are then used to compute the magnitude of changes
in Ta, Q, and Tw under varying climate projections. To understand the relative influence of
changes in Ta and Q on changes in Tw as the main hydro-climate drivers, their temporal pat-
terns and spatial variability are compared. Afterward, future Tw as a function of stream size
and riparian shading is studied. Finally, possible future stress on the brown trout, a common
cold-water fish in the basin, is assessed as the result of changes in future Tw. In assessing fu-
ture changes, the retrospective simulation obtained from the previous chapter is also used as a
control for the past and present period, and as a reference for the future.

6.1 Selection of future climate projections

Changes in the concentration of greenhouse gases (GHG), are the main cause of observed cur-
rent changes and future climatic conditions. The evolution of these GHG depends on a set of
factors such as population growth, socio-economic and technological developments, and future
policies choices (Soubeyroux et al., 2020). Since accurately predicting the evolution of these
factors is not possible, climatologists use four Representative Concentration Pathways (“RCP”)
of GHG emissions corresponding to the fifth report of the Intergovernmental Panel on Climate
Change (IPCC, 2014). The IPCC is the United Nations body for assessing the science related
to climate change (https://www.ipcc.ch/). These four RCPs were selected from over 1000 avail-
able scenarios (Figure 6.1), and span between two extreme scenarios (RCP 2.6 and RCP 8.5)
and two intermediate scenarios (RCP 4.5 and RCP 6.0). Each of them corresponds to a plausible
representation of the future behavior of human societies. RCP 2.6 describes a world virtuous,
very low in greenhouse gas emissions in which warming overall remains below 2 °C compared
to pre-industrial temperatures. RCP 8.5 shows the situation when any politics of climate regula-
tion are disregarded, leading to approximately 5 °C of global warming by the end of the century.
RCP 4.5 and RCP 6.0 scenarios describe intermediate paths. RCP 6.0 continues to grow before
the end of the century, then decreases at a higher rate than RCP 2.6. The RCP 4.5 also continues
to grow for a few decades, then stabilizes before the end of the 21st century. An overview of
these RCPs can be found in Van Vuuren et al. (2011).

The above RCPs are used as inputs of Global Climate Models (GCMs) for simulating the
evolution of global climate. However, the resolution of GCMs is very coarse (between 150
and 200 km) leading to misrepresentation of the local meteorological phenomena and extreme
events. To have a finer resolution of GCMs, Regional Climate Models (RCMs) are used. RCMs
have a high spatial resolution (from 10 to 20 km), allowing to have a better representation
of local climate (reliefs, land-sea contrasts, complex coastlines). In the current study, the
DRIAS-2020 dataset is employed (Soubeyroux et al., 2020), which is based on simulations
of regional climatic conditions at a high spatial resolution (DRIAS: http://www.drias-climat.fr/,
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Figure 6.1: Evolution of emissions between 1980 and 2100 according to the different available scenarios. The
four selected RCPs corresponding to the 5th report of IPCC (IPCC, 2014) are highlighted. Source: Global Carbon
Project. This Figure is adopted from (Soubeyroux et al., 2020, see http://www.drias-climat.fr).

portail partenarial Météo-France, IPSL, Cerfacs.) from the Euro Cordex set corrected by a sta-
tistical bias correction method, ADAMONT (Verfaillie et al., 2017). The ADAMONT method
allows correcting the distribution of simulated variables and making it consistent with the distri-
bution of observed variables, using a climatology by season and other time periods. Therefore,
the implementation of this method requires a set of reference observations for the current cli-
mate. The DRIAS-2020 dataset provides regionalized climate projections produced in French
climate modeling laboratories (IPSL, CERFACS, CNRM) for the most recent RCPs presented
in the fifth report of IPCC (IPCC, 2014).

For the DRIAS-2020 dataset, there are two periods of data: 1) the period with GCMs forced
by historical observed concentrations in GHG between 1950 and 2005, and 2) the projection
part using RCPs as forcings, which extends from 2006 to 2100. The 1976-2005 period is
the reference period used to correct the biases of climate characteristics in projections with
ADAMONT method (Verfaillie et al., 2017) with reference to the observed climate provided
by the SAFRAN surface reanalysis (Quintana-Segui et al., 2008; Vidal et al., 2010, see sec-
tion 2.3.1,p. 46 for more information about SAFRAN). The detailed information about differ-
ent available GCM/RCMs and RCPs provided by the DRIAS-2020 dataset are presented in
Table 6.1.
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6.2. RUNNING THE EROS AND T-NET MODELS UNDER PROJECTIONS 6

For a given RCP, the simulated climate differs from one model to another, which reflects
our imperfect understanding of the climate system. To take into account model uncertainty, and
better represent the range of possible futures, it is, therefore, necessary to consider large sets of
climate projections. In this regard, here, three different GCM/RCMs are selected, covering the
dispersion of annual changes in P and Ta under RCP 8.5 over France at the end of the century.
These GCM/RCMs include warm and wet (IPSL-CM5A/MRWRF381P), intermediate (CNRM-
CM5-LR/ALADIN63), and hot and dry (HadGEM2/CCLM4-8-17) models to project future
daily Q and Tw (see Figure 6.2). The detailed information about these selected GCM/RCMs
can be found in Table 6.1 in green.

The selected GCM/RCMs are also among the “short list” of future climate models proposed
by Météo-France for reducing the number of models and calculations time as there are many
projections (total=30). This list contains GCM/RCMs that are representative of the dispersion
of the other 12 GCM/RCMs of the DRIAS-2020 dataset. Moreover, these GCM/RCMs keep the
dispersion of changes in P and Ta under RCP 8.5 at the end of the century as shown by Figure 6.2
on the annual basis. Such a representation of summer and winter periods are presented in
Figures E.1 and E.2.

Figure 6.2: Annual changes in P (x-axis) and Ta (y-axis) over France at the end of the century (2071-2100) with
respect to the 1976–2005 period (historical period) under RCP 8.5. The sharp points are the “short list” of future
climate models proposed by Météo-France. The red dashed circles show the selected GCM/RCMs in the current
study. This figure is adopted from DRIAS-2020 (Soubeyroux et al., 2020, http://www.drias-climat.fr).

Although there are several studies on the evolution of meteorological droughts and intense
rainfall events in France as the result of climate change based on the fourth report of IPCC (see
https://professionnels.ofb.fr/fr/node/43surf), this study is the first one that uses future climate
projections provided by DRIAS-2020 based on the fifth report of IPCC for hydrological and
thermal projections (but see Dayon et al., 2018, who used CMIP5 GCMs downscaled using
another approach and not the DRIAS-2020 dataset).
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CHAPTER 6. FUTURE PROJECTIONS OF STREAM TEMPERATURE 6

6.2 Running the EROS and T-NET models under projections

The meteorological variables provided by the selected future climate models (green rows in
Table 6.1) are integrated into both the EROS and T-NET models. Both the EROS and T-NET
models are run under constant land cover/land use. The EROS model is first executed to produce
daily Q under each projection (total= (2 GCM/RCMs × 2 RCP ) + (1 GCM/RCM × 3 RCP)= 7
projections; see section 6.1) over the historical period (1950–2005) and the future (2006–2099).
Indeed, for each projection, the EROS model is run from the 1950s to the 2100s while for RCPs
of a GCM/RCM, the historical part (1950-2005) is the same. Note that calibrated parameters
for the EROS model are kept as for the retrospective simulation. Then, future daily Q and mete-
orological variables provided by GCM/RCMs are used in the T-NET thermal model to produce
daily Tw under these future climate projections over the whole century (1950–2099). Please
note that, although selected GCM/RCMs have data from the 1950s, both hydrological and ther-
mal models are used from the 1970s, onwards, when Q and Tw observations are available.

6.3 Performance of future projections

To see the performance of selected projections (7 in total), three main steps are defined:

1. Comparing meteorological variables in projections and in the SAFRAN reanalysis data
over the 1976–2005 period;

2. Comparing absolute values of Tw in projections and in the retrospective simulation (driven
by SAFRAN) over the 1976–2005 period;

3. Comparing recent trend magnitudes and significance levels of Tw in projections and in
the retrospective simulation (driven by SAFRAN) over the whole 1976–2019 period.

Note that, in the following, for the sake of simplicity, figures including all GCM/RCMs, are
presented from the wettest GCM/RCM (IPSL-CM5A/WRF381P) to the hottest one (HadGEM2/CCLM4-
8-17) i.e. from left to right or top to bottom in a figure or a table. A similar approach is also
considered for RCPs i.e. the figures are presented from RCP 8.5 to RCP 2.6.

6.3.1 Comparing meteorological variables in projections and in the SAFRAN
reanalysis data over the 1976–2005 period

The meteorological variables (e.g., Ta, liquid and solid P, and PET) provided by three selected
GCM/RCMs are compared with the corresponding variables provided by SAFRAN over the
historical period 1976–2005. These variables are important since they are used as the inputs
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6.3. PERFORMANCE OF FUTURE PROJECTIONS 6

for both the hydrological model and the thermal model. The 1976–2005 period is selected
since it was the reference period used to correct the biases of climate projections with respect
to SAFRAN (Soubeyroux et al., 2020). In other words, with this correction, it is expected that
all climate characteristics of each GCM/RCM should be close to those of SAFRAN over the
1976–2005 period.

Figure 6.3 shows that there is an excellent correlation between the interannual mean of
meteorological variables averaged over each sub-catchment in projections and in retrospec-
tive simulation (cor>0.9) across variables and GCM/RCMs, with the exception of PET of all
GCM/RCMs (cor=0.51-0.55 across GCM/RCMs). The observed weak correlation between PET
in projections and in the retrospective simulations could be due to the difference in the PET for-
mula used for SAFRAN and for downscaled projections. Indeed, PET of SAFRAN is computed
with the full Penman-Monteith (PM) equation including radiation (Allen et al., 1998), which is
biased (differently according to elevation) and non-homogeneous in time (see Le Moigne et al.,
2020). However, PET in DRIAS-2020 is computed by a different PM equation using a proxy
for radiation (calculated by maximum Ta (Tx) and minimum Ta (Tn)), in order to use neither
GCM/RCMs radiation nor SAFRAN radiation for the bias correction (see http://www.drias-
climat.fr/accompagnement/sections/310 for PET calculation in projections).

The map of biases (Figure 6.4) shows that for a considerable number of sub-basins (≈50 %),
across GCM/RCMs, there is an overestimation in PET (5-10 %) across the basin. There is also
a slight underestimation in rainfall across sub-basins, mainly in HER (-5-0 %). For snow, the
range of the bias is different from one GCM/RCM to another, but the majority of sub-basins (50-
60 % depending on the GCM/RCM) show significant overestimation (> 20%). Finally, a very
small overestimation is observed for Ta across GCM/RCMs (mostly in the range of 0-0.5 °C).
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Figure 6.3: Comparing the interannual mean of meteorological variables (i.e., Ta (°C), liquid and solid P (mm), and
PET (mm)) in projections and in the retrospective simulation (the SFARAN reanalysis data) for the 368 sub-basins
over the 1976–2005 period. Each point is showing the average of the desired meteorological variable over the
sub-basin. Pearson correlation and associated p-value are shown in the top left corner of each graph. The dashed
line shows the 1:1 line in each graph.
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6.3. PERFORMANCE OF FUTURE PROJECTIONS 6

Figure 6.4: Map of relative bias or bias between the annual mean of meteorological variables in projections and in
the SFARAN reanalysis data (the retrospective simulation) for the 368 sub-basins over the 1976–2005 period. For
PET, liquid, and solid P, relative bias (%), and for Ta absolute bias (°C) are reported.
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6.3.2 Comparing absolute values of stream temperature in projections
and in the retrospective simulation over the 1976–2005 period

To assess whether projections are able to capture absolute values of Tw, the seasonal Tw in
projections and in the retrospective simulation are compared over the 1976–2005 period. As
the 1976–2005 period is a reference period for bias correction of future climate models, it is
expected that Tw characteristics in projections and in the retrospective simulation would be
close over this period. Note that retrospective Tw was simulated in the previous chapter by
using meteorological variables from the SAFRAN reanalysis data.

Figure 6.5 shows that there is a slight overestimation in projected Tw across seasons and
GCM/RCMs (median bias=0.13-0.43°C). The Interquartile Range (IQR) remains small across
GCM/RCMs and seasons (IQR=0.12-0.35 °C). The greatest biases across seasons and GCM/RCMs
are in spring and summer (median bias=0.2-43 °C). Overall, the projections manage to get the
right absolute values of Tw. The map of these biases reveals that, across GCM/RCMs, there are
some positive biases (0.5<bias<1 °C) in winter in the higher altitudes of HER A (in the Massif
Central), and in summer in the north part of HER A. The negative biases mostly occur in winter
in HER B, and in summer in the higher altitudes of HER A for HadGEM2/CCLM4-8-17 (hot
and dry) model (see Figure 6.6).

Figure 6.5: Bias between Tw absolute values in projections and in the retrospective simulation at the seasonal scale
over the 1976–2005 period. Numbers denote the median bias over the 52 278 reaches.
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Figure 6.6: Map of biases between Tw absolutes values in projections and in the retrospective simulation at the
seasonal scale over the 1976–2005 period.
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6.3.3 Comparing recent trend magnitudes and significance levels of stream
temperature in projections and in retrospective simulation over the
whole 1976–2019 period

To assess whether projections can capture recent trend magnitudes, trends in Tw in projec-
tions and in the retrospective simulation are compared at the seasonal scale over the 1976–2019
period. The reasoning for choosing the 1976–2019 period at this step, is to have the longest pos-
sible historical period for the trend analyses. This period ends in 2019 since the retrospective
simulation is available until 2019 as it was seen in the past trends analyses in the previous chap-
ter (Figure 5.5, p. 139). Nevertheless, since the 1976–2019 period is longer than the historical
period of projections (1976–2005) used in the above analyses for meteorological variables and
Tw absolutes values, for each GCM/RCM and reach, the average of trend magnitudes over the
RCPs is considered. To do so, first, the trend magnitude for each GCM/RCM and RCP (7 in to-
tal) is estimated with the non-parametric Theil–Sen estimator (Sen, 1968) used in detecting past
trends in the previous chapter (section 5.1, p. 133). Then, the average of trend magnitudes over
the RCPs for each GCM/RCM is used as the representative of the GCM/RCM. For instance, for
the CNRM-CM5-LR/ALADIN63 model with 3 RCPs, the mean of trend magnitudes obtained
from the 3 RCPs is used. Trends in Tw under different RCPs are not assessed here since the
historical period over which RCPS are indeed different from each other, is small (2006–2019),
and therefore, it is not appropriate for a trend assessment. Considering 1976–2019 period for
such Tw trend assessment is also useless since, over a large part of this period (1976–2005), Tw
under RCPs are not different from each other.

Figure 6.7 shows that there is an increasing trend in Tw at the majority of reaches over the
1976–2019 period for all GCM/RCMs and the retrospective simulation regardless of the season.
A good seasonality can be seen only for the CNRM-CM5-LR/ALADIN63 model.

The map of Tw trend magnitudes in projections and in the retrospective simulation clearly
exhibits that projections fail to get the right Tw trend magnitudes and their spatial variabil-
ity (Figure 6.8). Indeed, projections cannot represent the signal of important trends in HER
A. Nevertheless, like the retrospective simulation, the largest trends happen in summer for
all GCM/RCMs, with the exception of the HadGEM2/CCLM4-8-17 (hot and dry) model for
which the largest trends are mainly in fall. The spatial pattern of Tw trends of the IPSL-
CM5A/WRF381P (warm and wet) model is the closest one to that of the retrospective sim-
ulation, especially in the summer period, but still, the difference between Tw trend magnitudes
in this GCM/RCM and in the retrospective simulation remains considerable.
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Figure 6.7: Trends in Tw in projections and in the retrospective simulation over the 1976–2019 period for the
whole 52 278 reaches. Note that for each GCM/RCM, the average trend magnitudes over the RCPs are considered.
The magnitude of the trend is estimated by Theil–Sen estimator.

At this step, after comparing Tw trends in projections and in the retrospective simulation, the
significance level of such trends in projections and in the retrospective simulation are compared.
To do so, as there is numerous possible combinations of GCM/RCMs and RCPs (7 in total), the
following approach is taken to make the assessment simple:

1. For the GCM/RCM with three RCPs, the CNRM-CM5/ALADIN63 (intermediate) model,
if two out of three RCPs have the same significance level as the retrospective simulation
(i.e., both significant (p-value< 0.05) or non-significant), the significance level of both
projection and simulation is considered “matched"; otherwise (i.e., one significant and
the other one non-significant), it is considered “unmatched”.

2. For the two other GCM/RCMs with two RCPs (the IPSL-CM5A/WRF381P model and
the HadGEM2/CCLM4-8-17 model), if both RCPs have the same significance level as
the retrospective simulation, the significance level of both projection and the retrospective
simulation is considered “matched”; otherwise it is considered “unmatched”.

Please note that similar to what was used in the past trend analyses (see section 5.1, p. 133),
the significance levels of detected Tw trends are evaluated with the Mann-Kendall test (Mann,
1945).

In the majority of reaches across seasons (66-94% of reaches) for the IPSL-CM5A/WRF381P
(warm and wet) model and the CNRM-CM5/ALADIN63 (intermediate) model, the significance
level of Tw trends in projections and in the retrospective simulation are matched (Figure 6.9),
with the exception of winter of the IPSL-CM5A/WRF381P (warm and wet) model (only 29%
of reaches). The worst results belong to the HadGEM2/CCLM4-8-17 (hot and dry) model for
which the majority of reaches across seasons (50-64% of reaches) have unmatched significance
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Figure 6.8: Spatial variability of seasonal trend in Tw based on the Sen’s Slope estimator in projections and in the
retrospective simulation over the 1976–2019 period. Note that for each GCM/RCM model, the average magnitude
over RCPs is considered.

level between projections and the retrospective simulation, with the exception of fall (only 2%
of reaches are unmatched). The majority of reaches with matched significance level between
projections and the retrospective simulation show a significant trend (see light blues in Fig-
ures 6.9). The maps of the significance level of seasonal Tw trends over the 1976–2019 period
in each GCM/RCM and RCP as well as in the retrospective simulation are provided in Fig-
ures E.3 (for RCP 8.5), E.4 (for RCP 4.5), and E.5 (for RCP 2.6). These maps also show mostly
significant trends in projected Tw across GCM/RCMs, RCPs, seasons, and reaches.

Finally, the above results demonstrate that there is a significant increasing trend in Tw across
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Figure 6.9: Percentage of reaches for which the significance levels of detected trends in Tw in projection and in
the retrospective simulation are matched. Matched: Tw trend in both projection and the retrospective simulation is
significant or non-significant; and Unmatched: one is significant and the other one is non-significant.

seasons (with the exception of winter) in projections like in the retrospective simulation over
the 1976–2019 period.

6.4 Future changes in hydroclimate variables

In the previous section, it was found that the projections managed to get the right absolute values
of Tw, but they failed to get the right magnitude of long-term Tw trends and their spatial vari-
ability over the recent decades. The results demonstrated that there was a significant increasing
trend in Tw across seasons (with the exception of winter) in projections like in retrospective
simulation over the 1976–2019 period. This raises a question concerning projected Tw in the
future. Will Tw continue increasing in the future? If so, how much will it increase? Therefore,
there is a need to understand future Tw changes and the influence of hydroclimate variables
(e.g., Ta and Q) on such changes.

Here, future P and Ta, as part of hydroclimate variables, are first studied since Ta and P are
the inputs of the EROS hydrological model, and Ta is also one of the important inputs in the
T-NET thermal model. Moreover, in the first step in section 6.1, the GCM/RCMs were selected
based on changes in Ta and P over France (Figure 6.2). Therefore, here, changes in P and Ta
are studied at the scale of the Loire River basin.

To have an overview of future P, Ta, Q, and Tw, the magnitude of their changes with respect
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to a historical period is first calculated. To do so, first, time slices of 30-years are considered in
the historical period and the future. It is assumed that 30 years will be enough to get the right
variability in time series. For the future, two time slices are considered including the 2040–2069
period as the middle of the century, and the 2070–2099 period as the end of the century.

The 1990–2019 period is considered as the historical period instead of the 1976–2005 pe-
riod, which is the reference period for bias correction of climate projections. The 1990–2019 is
selected since it is assumed that a more recent period will be likely of high interest for stake-
holders. In fact, changes with respect to an old period like 1976–2005 may have little meaning
for stakeholders since Tw observations are hardly available for such an old period.

Consequently, in the following, first, the magnitude of changes in seasonal and annual P
(computed for 368 sub-basins) and Ta (computed for DRIAS cells) over the Loire River basin
are investigated in the middle (2040–2069) and at the end of the century (2070–2099) with
respect to the historical period (1990–2019). Note that changes in P are presented for the sub-
basins (instead of DRIAS cells) to be able to compare the spatial variability of P changes with
that of Q changes. Then, changes in future Q (computed for 368 sub-basins) are studied in
the same way. Changes in future Tw (computed for 52 278 reaches) are studied in detail in the
next section. In the following, for simplicity, most of the time, only figures related to the most
extreme scenario, RCP 8.5 are presented, and figures related to the other scenarios are presented
in appendix E.

6.4.1 Changes in precipitation

The median changes (across sub-basins) in seasonal and annual P (Table. 6.2) show that the
IPSL-CM5A/MRWRF381P (warm and wet) model for all RCPs projects mostly increases in
P across seasons and time slices (median change up to +22 %), while the HadGEM2/CCLM4-
8-17 (dry and hot) model projects mostly a decrease in P (median change up to -43 %). The
CNRM-CM5-LR/ALADIN63 (intermediate) model projects both an increase and a decrease
in P (median change up to +13 % increase and up to -9 % decrease). The greatest decrease in
P is projected by the HadGEM2/CCLM4-8-17 (dry and hot) model under RCP 8.5 and 4.5 in
summer at the end of the century (-43 % and -36 %, respectively) (Table. 6.2).

Considering RCP 8.5, there is a decrease in P across GCM/RCMs and time slices in spring
and summer with the exception of summer of the CNRM-CM5-LR/ALADIN63 (intermedi-
ate) model in the middle of the century (median change=+5 %), and summer of the IPSL-
CM5A/MRWRF381P (warm and wet) model at the end of the century (median change=+8 %)
(Table. 6.2). In such a case, considering both spring and summer, the range of median changes
in P across GCM/RCMs is [-29 % ; -1 %] over the 2040–2069 period, and [-43 % ; -1 %] over the
2070–2099 period (see Table. 6.2). Indeed, in such a case, a significant number of sub-basins
(59-100 % across time slices) exhibit a decrease in P under RCP 8.5 (see Figure E.6). Under
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Table 6.2: Median changes (across sub-basins) in seasonal and annual P under varied GCM/RCMs, and RCPs in
the middle (2040–2069), and at the end of the century (2070–2099) with respect to the 1990–2019 period.

RCP Model 2040–2069 2070–2099

DJF MAM JJA SON Annual DJF MAM JJA SON Annual

4.5 IPSL-CM5A/WRF381P +8 +1 +8 +4 +5 +15 0 +10 +6 +9
8.5 IPSL-CM5A/WRF381P +22 -3 -3 +6 +8 +21 -1 +8 +21 +14

2.6 CNRM-CM5/ALADIN63 5 -1 -2 -1 0 +1 -9 -6 +1 -3
4.5 CNRM-CM5/ALADIN63 +4 -4 +1 -4 -1 +12 +1 -7 0 +2
8.5 CNRM-CM5/ALADIN63 +5 -4 +5 +3 +2 +13 -2 -9 +7 +3

4.5 HadGEM2/CCLM4-8-17 +3 -9 -30 -13 -11 +18 -3 -36 -10 -5
8.5 HadGEM2/CCLM4-8-17 +5 -1 -29 -10 -7 +21 -11 -43 -16 -10

RCP 8.5, only the HadGEM2/CCLM4-8-17 (dry and hot) model shows a decrease in P in fall at
both the middle (median change=-10 %) and the end of the century (median change=-16 %). A
large number of sub-basins with a decrease in P under RCP 8.5 in spring and summer (44-94 %
of such sub-basins across time slices) are located in the upstream part of the basin in HER A,
with the exception of the summer of the CNRM-CM5-LR/ALADIN63 (intermediate) model at
the end of the century (Figures 6.10, 6.11, and E.6). Note that decreases in P under RCP 8.5 get
stronger towards the end of the century (Figures 6.10, 6.11).

Considering RCP 4.5, like RCP 8.5, there is also a decrease in P across time slices in spring
and summer in the CNRM-CM5-LR/ALADIN63 (intermediate) model and the HadGEM2/CCLM4-
8-17 (dry and hot) model with the exception of summer of the CNRM-CM5-LR/ALADIN63
(intermediate) model in the middle of the century (median change=+1%), and the spring of the
CNRM-CM5-LR/ALADIN63 (intermediate) model at the end of the century (median change=+1%)
(Table 6.2). In such a case, considering both seasons, the range of median changes in P is [-
30 % ; -4 %] over the 2040–2069 period, and [-36 % ; -3 %] over the 2070–2099 period (see
Table 6.2). Indeed, in such a case, most of the sub-basins (60-100 %) exhibit a decreasing P.
In such a case, a significant number of the sub-basins are located in the upstream part of the
basin, HER A (41-100 % of such sub-basins) with the exception of summer of the CNRM-
CM5-LR/ALADIN63 (intermediate) model (see Figures E.7, E.8, and E.6).

Under RCP 2.6, there is also a decrease in P across time slices in spring and summer (median
change=-2 % over the 2040–2069 period; -9 and -6 % over the 2070–2099 period). In contrast
to RCP 8.5 and RCP 4.5, a smaller proportion of the sub-basins with a decrease in P under
RCP 2.6 (17-56 % of such sub-basins) are located in the upstream part of the basin, HER A (see
Figures E.10, E.11, and E.12).

Across all GCM/RCMs and RCPs, P is increasing in winter in the middle of the century
(median change=[+3 % ; +22 %]) and at the end of the century (median change=[+1 % ; +21 %])
(Table 6.2).

Regardless of GCM/RCM, season, time slice, and RCP, the majority of sub-basins with the
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Figure 6.10: Map of changes in seasonal and annual P with respect to the 1990–2019 period under 3 varied
GCM/RCMs and RCP 8.5 in the middle of the century (2040–2069) for the 368 sub-basins. The maps of changes
in P under other RCPs over the sub-basins are provided in appendix E, section E.3.
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Figure 6.11: Map of changes in seasonal and annual P with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 8.5 at the end of the century (2070–2099) for the 368 sub-basins. The maps of changes in P under other
RCPs over the sub-basins are provided in appendix E, section E.3.
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greatest decreases in P ([-50 % ; -40 %]) are found in the upstream part of the basin, in HER A
(see Figures 6.10 and 6.11 for RCP 8.5).

Consequently, the median changes in P across sub-basins for the majority of combined
GCM/RCMs and RCPs demonstrate that P is decreasing considerably in spring and summer
in the middle of the century (median change up to -30 % depending on GCM/RCM, RCP, and
season) with the exception of P changes under the IPSL-CM5A/WRF381P model and RCP 4.5
in spring and summer, and under the CNRM-CM5/ALADIN63 model and RCP 4.5 or 8.5 in
summer. Such a decrease in P is also observed in spring and summer at the end of the century
(median change up to -43 %) with the exception of P changes under the IPSL-CM5A/WRF381P
model and RCP 4.5 or 8.5 in spring and summer, and under the CNRM-CM5/ALADIN63 model
and RCP 4.5 in spring. 1In such a case, the majority of sub-basins with decreasing P (up to -
50 %) are located in HER A for RCP 8.5 and 4.5. Note that a similar spatial variability in P
changes is observed across seasons and GCM/RCMs (see Figures 6.10, 6.11, E.7, E.8, E.10
and E.11)

6.4.2 Changes in air temperature

The median changes (across the basin) in seasonal and annual Ta (Table 6.3) show a consis-
tent increase in both time slices with respect to the 1990–2019 period regardless of the sea-
son, GCM/RCM, and RCP. Across seasons and GCM/RCMs, median changes in Ta ranges
between [+0.5 °C ; +3.5 °C] in the middle of the century (Table 6.3). No considerable spatial
variability in Ta changes under RCP 8.5 is observed across seasons in the middle of the cen-
tury (Figure 6.12). In this time slice, most of the changes under RCP 8.5 are in the range of
[+1 °C ; +2 °C] except for the winter of the IPSL-CM5A/MRWRF381P (warm and wet) model
in HER A and a part of HER B, fall and annual of the HadGEM2/CCLM4-8-17 (dry and hot)
model, and fall of the CNRM-CM5-LR/ALADIN63 (intermediate) model in HER A (range
of changes=[+2 °C ; +3 °C]) (Figure 6.12). Moreover, across projections, the summer of the
HadGEM2/CCLM4-8-17 model, and the spring and summer of the IPSL-CM5A/MRWRF381P
model show the greatest (range=[+3 °C ; +4 °C]) and lowest (range=[0 °C ; +1 °C]) increase in
Ta, respectively (see Figure 6.12). Relatively, RCP 4.5 has the same spatial pattern as RCP
8.5 in the middle of the century (see Figure E.13), but the lowest changes in Ta occur in the
summer, fall, and annual of the IPSL-CM5A/MRWRF381P model and winter of the CNRM-
CM5-LR/ALADIN63 (intermediate) model ([0 °C ; +1 °C]).

At the end of the century, median changes in Ta are mostly in the range of [+1.5 °C ; +6.3 °C]
across seasons, GCM/RCMs, and RCPs (Table 6.3). In this time slice, again no considerable
spatial variability in Ta changes under RCP 8.5 is observed across seasons (Figure 6.13). Most
of changes under RCP 8.5 are in the range of [+3 °C ; +4 °C] except for the winter in the IPSL-
CM5A/MRWRF381P (warm and wet) model in HER A, and summer, fall and annual of the
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Table 6.3: Median changes (across the Loire River basin) in seasonal and annual Ta under different GCM/RCMs,
and RCPs in the middle (2040–2069), and at the end of the century (2070–2099) with respect to the 1990–2019
period.

RCP Model 2040–2069 2070–2099

DJF MAM JJA SON Annual DJF MAM JJA SON Annual

4.5 IPSL-CM5A/WRF381P +1.1 +1.0 +0.7 +0.8 +0.9 +1.8 +1.5 +0.2 +1.6 +1.3

8.5 IPSL-CM5A/WRF381P +2.1 +0.9 +0.5 +1.5 +1.2 +4.0 +3.1 +1.0 +2.7 +2.7

2.6 CNRM-CM5/ALADIN63 +0.6 +0.9 +1.1 +1.5 +1.0 +0.3 +0.9 +0.9 +1.0 +0.8
4.5 CNRM-CM5/ALADIN63 +0.9 +1.2 +1.4 +1.4 +1.2 +1.6 +1.7 +1.5 +2.1 +1.7

8.5 CNRM-CM5/ALADIN63 +1.6 +1.6 +1.4 +2.0 +1.6 +3.1 +3.2 +3.7 +3.6 +3.4

4.5 HadGEM2/CCLM4-8-17 +2.0 +1.4 +3.0 +2.1 +2.1 +2.3 +1.7 +3.2 +2.9 +2.5

8.5 HadGEM2/CCLM4-8-17 +1.8 +1.7 +3.5 +2.8 +2.4 +3.6 +3.2 +6.3 +4.9 +4.5

HadGEM2/CCLM4-8-17 (dry and hot) model (>4 °C) (Figure 6.13). Across GCM/RCMs and
seasons, summer of the IPSL-CM5A/MRWRF381P (warm and wet) model shows the lowest
changes in Ta (range of changes=[0 °C ; +2 °C]). Relatively, RCP 4.5 has the same spatial pat-
tern as RCP 8.5 at the end of the century, but to a lesser intensity (see Figure E.14) i.e. the major-
ity of changes in Ta across GCM/RCMs are in range of [+1 °C ; +2 °C], with the exception of fall
of the CNRM-CM5/ALADIN63 model, and winter, fall and annual of the HadGEM2/CCLM4-
8-17 model ([+2 °C ; +3 °C]). Moreover the greatest changes in Ta under RCP 4.5 occurs on
summer of the HadGEM2/CCLM4-8-17 (hot and dry) model ([+3 °C ; +4 °C]).

Under RCP 2.6, again, there is no considerable spatial variability in Ta changes. In both
time slices, in the middle, and at the end of the century, changes in Ta remain < 2 °C (see
Figures E.15 and E.16).

Consequently, the above results demonstrate that Ta is always increasing, and no spatial
variability in Ta changes is observed regardless of the GCM/RCM, RCP, season, and time slice.
Ta changes are mostly in range of [+1 °C ; +2 °C] in the middle of the century and in range of
[+3 °C ; +4 °C] at the end of the century, with the exception of the HadGEM2/CCLM4-8-17
(dry and hot) model under which Ta changes are always greater than the other GCM/RCMs
([+2 °C ; +3 °C] in the middle of the century, and > 4 °C at the end of the century).
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Figure 6.12: Map of changes in seasonal and annual Ta with respect to the 1990–2019 period under 3 varied
GCM/RCMs and RCP 8.5 in the middle of the century (2040–2069). Solid black lines show the Hydro-Ecoregion
(HER) delineation (see Figure 2.1). Maps of changes in Ta under other RCPs over the sub-basins are provided in
appendix E, section E.4.
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Figure 6.13: Map of changes in seasonal and annual Ta with respect to the 1990–2019 period under 3 varied
GCM/RCMs and RCP 8.5 at the end of the century (2070–2099). Solid black lines show the Hydro-Ecoregion
(HER) delineation (see Figure 2.1). The maps of changes in Ta under other RCPs over the sub-basins are provided
in appendix E, section E.4.
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6.4.3 Changes in streamflow

The above results demonstrated that across GCM/RCMs and RCPs, and time slices, there is a
decrease in P in spring and summer (mostly in HER A). The HadGEM2/CCLM4-8-17 (dry and
hot) model exhibited a decrease in P in fall as well. On the other hand, under all GCM/RCMs
and RCPs in both time slices, an increase in Ta was observed regardless of the season. Nev-
ertheless, there was less spatial variability in Ta changes compared to P changes. Hence, it is
expected that such changes in P and Ta have an important influence on Q changes.

At this step, the magnitude of changes in seasonal and annual Q, and changes in the annual
cycle of Q under future projections are investigated. Changes in low flows are also studied as
well as seasonal values since the periods of low flows can have a critical influence on Tw. Here,
the 10-quantile of Q over the desired period is considered as low flows, which was also used by
van Vliet et al. (2013) for assessing future projections at a global scale.

The median changes (across sub-basins) in seasonal and annual Q (Table. 6.4) show that the
IPSL-CM5A/MRWRF381P (warm and wet) model for all RCPs projects mostly an increase in
Q across seasons and time slices (median change up to +52 %), while the HadGEM2/CCLM4-8-
17 (dry and hot) model projects mostly decrease in Q (median change up to -55 %). The CNRM-
CM5-LR/ALADIN63 (intermediate) model also projects mostly a decrease in median Q (me-
dian change up to -21 %). The greatest decrease in Q is projected by the HadGEM2/CCLM4-8-
17 (dry and hot) model under RCP 8.5 and 4.5 in summer and fall of both time slices ([-55 % ; -
28 %]) (Table 6.4). At the end of the century, regardless of GCM/RCM and RCP, a decrease in
median Q is observed in summer.

Table 6.4: Median changes (across sub-basins) in seasonal and annual Q under varied GCM/RCMs and RCPs in
the middle (2040–2069) and at the end of the century (2070–2099) with respect to the 1990–2019 period. Numbers
in green and brown are showing the changes>10 % and <-10 %, respectively. These thresholds correspond to the
ones used in Moatar et al. (2013) for assessing changes in Q under projections based on the 4th report of IPCC
over the Loire River basin.

RCP Model 2040–2069 2070–2099

DJF MAM JJA SON Annual DJF MAM JJA SON Annual

4.5 IPSL-CM5A/WRF381P +5 +10 +3 +14 +8 +16 +10 -1 +18 +13
8.5 IPSL-CM5A/WRF381P +28 +6 -15 +19 +17 +24 -1 -11 +52 +22

2.6 CNRM-CM5/ALADIN63 +3 -6 -6 -7 -3 -5 -14 -11 +4 -7
4.5 CNRM-CM5/ALADIN63 -2 -12 -10 -7 -6 +10 -1 -1 +2 +4
8.5 CNRM-CM5/ALADIN63 -1 -7 -7 +11 -2 +12 -5 -21 -9 0

4.5 HadGEM2/CCLM4-8-17 -14 -21 -37 -38 -22 8 -7 -37 -45 -9
8.5 HadGEM2/CCLM4-8-17 -11 +5 -28 -40 -11 -7 -9 -43 -55 -18

Considering the extreme scenario, RCP 8.5, there is a considerable decrease in median
changes in Q across GCM/RCMs and time slices in spring and summer. Considering both
seasons, the range of decrease in median changes across GCM/RCMs is [-28 % ; -7 %] over
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the 2040–2069 period, and [-43 % ; -1 %] over the 2070–2099 period. Indeed, most of the
sub-basins under RCP 8.5 (52-100 % across time slices) exhibit a decrease in Q in spring
and summer across GCM/RCMs and time slices with the exception of spring of the IPSL-
CM5A/WRF381P (warm and wet) model and the HadGEM2/CCLM4-8-17 (dry and hot) model
in the middle of the century (see Figure E.17). A considerable number of the sub-basins with
decreasing Q under RCP 8.5 in spring and summer (48-94% of such sub-basins across the time
slices) are located in the upstream part of the basin, in HER A (Figures 6.14, 6.15, and E.17).
Note that decreases in Q under RCP 8.5 get larger towards the end of the century (Figures 6.14).
Such a spatial variability in Q changes is also observed for P, but to a lesser extent (Figures 6.10
and 6.11 for RCP 8.5).

A likely shift in low flows is projected by the HadGEM2/CCLM4-8-17 (dry and hot) model
since a considerable decrease in median Q changes happens from summer to fall across time
slices, especially under RCP 8.5 (from -28 % to -40 % over the 2040–2069 period, and from -43
to -55% over the 2070–2099; see Table. 6.4, and Figures 6.14, 6.15).

The median annual cycle of Q under RCP 8.5 at a sub-basin in the upstream part of the
basin (Figure 6.16, right panel) shows a decrease in Q with respect to the historical period in
the whole year for all GCM/RCMs, and time slices. For a sub-basin in the downstream part
of the basin (Figure 6.16, left panel), such a decrease is less important with the exception of
the HadGEM2/CCLM4-8-17 (dry and hot) model, especially during low flow periods. For
the latter sub-basin, the IPSL-CM5A/WRF381P model projects an increase in Q in high flow
periods. Moreover, the HadGEM2/CCLM4-8-17 (dry and hot) model shows a clear shift in
the timing of low flows periods towards the end of the century in both sub-basins, which is
expected as mentioned previously. Note that projected Q over the historical period (grey),
compared to the retrospective simulation (black), shows important overestimation during high
flows, especially for the sub-basin located upstream part of the Loire River basin (Figure 6.16),
which is consistent with overestimation in precipitation found for sub-basins in the southern
part of the basin (see Figure 6.4).

Across GCM/RCMs, RCPs, and time slices, a considerable decrease in low flows is also
found (median change=[-58.46 % ; -2.05 %]; Figure 6.17). The smallest decrease in low flows
occurs for the IPSL-CM5A/WRF381P (warm and wet) model under RCP 8.5 (median=-2.05 %),
and the greatest decrease in low flows happens for the HadGEM2/CCLM4-8-17 (dry and hot)
model under RCP 8.5 (median=-58.46 %). Indeed, most of the sub-basins (53-100 %) exhibit
a decrease in low flows across GCM/RCMs and RCPs. Most of these sub-basins (48-77 % of
such sub-basins) are located in the upstream part of the basin, HER A. The most pronounced
decrease in low flows occurs towards the end of the century across GCM/RCMs, and RCPs with
the exception of the IPSL-CM5A/WRF381P (warm and wet) model (see Figure 6.17).

Under RCP 4.5, like RCP 8.5, there is a decrease in Q across GCM/RCMs and time slices in
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Figure 6.14: Map of changes in seasonal and annual Q with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 8.5 in the middle of the century (2040–2069). The map of changes in Q under other RCPs over the
sub-basins are provided in Appendix E, section E.5.
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Figure 6.15: Map of changes in seasonal and annual Q with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 8.5 at the end of the century (2070–2099). The map of changes in Q under other RCPs over the sub-basins
are provided in Appendix E, section E.5.
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Figure 6.16: Median annual cycle of Q under three GCM/RCMs and RCP 8.5 in the historical period (1990–2019),
in the middle (2040–2069), and at the end of the century (2070–2099) for two sub-basins: (right) in the upstream
part (L’Allier à Monistrol-d’Allier), and (left) in the downstream part (La Loire à Montjean-sur-Loire) of the Loire
River basin. For each cycle, average of Q over the desired time slice for each day is calculated then a 30-day
moving average is applied on this daily cycle. The colors show different time slices.

spring and summer (considering the decrease in median change of both seasons: [-37 % ; -10 %]
over the 2040–2069 period, and [-37 % ; -1 %] over the 2070–2099 period) with the exception
of spring of the IPSL-CM5A/WRF381P (warm and wet) model in both time slices and summer
of this model in the middle of the century (Table 6.4). Indeed, most of the sub-basins under
RCP 4.5 (43-100 %) exhibit a decrease in Q in spring and summer across GCM/RCMs and time
slices with the exception of spring of the IPSL-CM5A/WRF381P (warm and wet) model in both
time slices. A significant number of sub-basins with a decrease in Q in spring and summer (49-
100 %) are located in the upstream part of the basin in HER A with the exception of the summer
of the CNRM-CM5-LR/ALADIN63 (intermediate) model in both time slices (see Figures E.18,
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Figure 6.17: Changes in low flow values in different HERs under 3 GCM/RCMs and RCP 8.5 in the middle of
the century (2040–2069) and at the end of the century (2070–2099) over the sub-basins. The low flow value is the
10-quantile of Q over the whole desired time slice.

E.19, and E.6).

Under RCP 2.6, there is also a decrease in Q across time slices in spring and summer (-6%
over the 2040–2069 period; -14 and -11% over the 2070–2099 period) (Table 6.4). In contrast
to RCP 8.5 and RCP 2.6, a lower proportion of sub-basins with a decrease in Q (30-52 % of
such sub-basins) are located in the upstream part of the basin, HER A (see Figures E.21, E.22,
and E.12).

Regardless of GCM/RCM, RCP, season, and time slice, the majority of pronounced de-
creases in Q ([-70 % ; -40 %]) are found in upstream part of the basin, in HER A (see Fig-
ures 6.14 and 6.15 for RCP 8.5).

Consequently, the median changes in Q across sub-basins demonstrate that Q is decreasing
considerably in spring and summer in both the middle (median change up to -40 % depending
on GCM/RCM, RCP, and season) and the end of the century (median change up to -55 %). In
such a case, the majority of the sub-basins with decreasing Q (up to -76 %) are located in HER
A for RCP 8.5 and 4.5. So, in contrast to the Ta changes with rather uniform spatial variability,
there is considerable spatial variability in Q changes, which follow the spatial variability in P
changes. Note that like changes in P, most of the sub-basins with increasing Q are found in
HER B and C. Across GCM/RCMs, RCPs, and time slices, a considerable decrease in low
flows is also observed (median change=-58.46 to -2.05 % depending on the GCM/RCM, RCP,
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and time slice). Moreover, the annual cycle of Q shows that there is a shift in low flows under
the HadGEM2/CCLM4-8-17 (dry and hot) model.

6.5 Changes in stream temperature

The above results demonstrated a consistent increase in future Ta regardless of the season.
Moreover, a significant decrease in future Q was found in spring and summer. Such changes in
Ta and Q may have an influence on future Tw as well. Therefore, this question arises: what are
the potential Tw changes in the future (?).

Figures 6.18 and 6.19 show a consistent increase in Tw for both the middle (2040-2069)
and end of the century (2070-2099) across GCM/RCMs, RCPs, and seasons. In the mid-
dle of the century, the median (across reaches) Tw changes ranges between +0.72 °C and
+2.68 °C across seasons, GCM/RCMs, and RCPs (see Figure 6.18). At the end of century,
such range is [+0.47 °C ; +4.95 °C] (see Figure 6.19). Indeed, with the exception of the CNRM-
CM5/ALADIN63 (intermediate) model under RCP 2.6, the increase in median Tw gets greater
towards the end of the century for almost all GCM/RCMs, RCPs, and seasons.

NA

NA

Figure 6.18: Changes in Tw under the 3 varied GCM/RCMs and 3 different RCPs in the middle of the century
(2040–2069) with respect to the 1990–2019 period.
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NA

NA

Figure 6.19: Changes in Tw under the 3 varied GCM/RCMs and 3 different RCPs at the end of the century (2070–
2099) with respect to the 1990–2019 period.
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There is no considerable spatial variability in Tw changes across GCM/RCMs, RCPs, and
seasons. Compared to other RCPs, Tw changes under RCP 8.5 are more variable across GCM/RCMs
(see Figures 6.18 and 6.19). However, the spatial variability in Tw changes under RCP 8.5 still
remains small across seasons in both time slices (see Figures 6.20 and 6.21). In the middle of
the century, most of changes are in the range of [+1 °C ; +2 °C] except for winter of the IPSL-
CM5A/MRWRF381P model in HER B, and all seasons of the HadGEM2/CCLM4-8-17 model
([+2 °C ; +3 °C]) (see Figure 6.20). However, under this RCP, at the end of the century, there
is spatial variability in Tw changes in summer for the IPSL-CM5A/MRWRF381P (warm and
wet) model as well as in spring, summer, fall, and annual of the HadGEM2/CCLM4-8-17 (dry
and hot) model (Figure 6.21). In this time slice, most of changes are in range of [+3 °C ; +4 °C]
across seasons and GCM/RCMs under RCP 8.5 with the exception of spring, summer, fall and
annual of the HadGEM2/CCLM4-8-17 (dry and hot) model. Changes in Tw projected by the
IPSL-CM5A/MRWRF381P (warm and wet) model in the summer ranges between +1 °C and
+2 °C in HER B. The northern part of HER A for the CNRM-CM5-LR/ALADIN63 (interme-
diate) model has changes> 4 °C. Such changes are also found for the HadGEM2/CCLM4-8-17
(dry and hot) model in HER A in spring, summer, fall, and annual.

The map of changes in seasonal and annual Tw under other RCPs also shows that there is
no significant spatial variability in Tw changes regardless of the season and the time slice (see
Figure E.24, E.25, E.26, E.26). Such non-spatial variability in Tw changes is also observed for
Ta (see for example Figures 6.12 and 6.13 for RCP 8.5). Although there is an increase in Q
under RCP 8.5 in sub-basins in HER B and C (see Figures 6.14 and 6.15), there is a consistent
increase in Tw across the basin, which may be due to an increase in Ta found over the whole
basin.
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Figure 6.20: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 8.5 in the middle of the century (2040–2069). Solid black lines show the Hydro-Ecoregion (HER)
delineation (see Figure 2.1).
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Figure 6.21: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 8.5 at the end of the century (2070–2099). Solid black lines show the Hydro-Ecoregion (HER) delineation
(see Figure 2.1).
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Across GCM/RCMs and RCPs, the projected Tw changes are not considerably different
from one season to another in the middle of the century (see Figure 6.18). However, such
difference between the seasons gets larger towards the end of the century (see Figure 6.19).
Nevertheless, across GCM/RCMs and RCPs, the greatest median changes in Tw are in spring
and summer of both time slices with the exception of the IPSL-CM5A/MRWRF381P (warm
and wet) model, and the CNRM-CM5/ALADIN63 (intermediate) model under RCP 4.5 at the
end of the century (Figures 6.18 and 6.19). In such a case, the median change in Tw is in
range of [+1.14 °C ; +2.68 °C] in the middle of century, and [+0.88 °C ; +4.95 °C] at the end of
the century. However, for the IPSL-CM5A/MRWRF381P (warm and wet) model, the greatest
changes are in winter ([+1.14 °C ; +3.43 °C] across time slices and RCPs).

In the previous chapter, the maps of summer Tw in the retrospective simulation (over the
1963–2019) showed that the high Tw (> 20 °C) are getting frequent in the last decades (2000-
2019), especially in 2003, 2017, and 2019 compared to the first decade (1963–1970) (see Ap-
pendix D). Here, the maps of mean summer Tw over the middle and end of the century demon-
strate that, under all GCM/RCMs, such increase in the frequency of the high Tw (> 20 °C)
continues towards the end of the century, and it is the highest for the HadGEM2/CCLM4-8-
17 (dry and hot) model across GCM/RCMs, and under RCP 8.5 across RCPs (Figures 6.22
and 6.23). Moreover, the largest mean summer Tw (> 23 °C) occurs in large rivers regardless
of the GCM/RCM and RCP.

The above results demonstrate that projected Tw changes are to a large extent sensitive
to the selected RCP and GCM/RCM. To better understand the influence of the selected RCP
on projected Tw changes, Tw changes are assessed for one GCM/RCM under all RCPs (the
CNRM-CM5/ALADIN63 (intermediate) model). Moreover, to address the influence of the
selected GCM/RCM on Tw changes, Tw changes are assessed for all selected GCM/RCMs in
the current study under one important RCP, which is here RCP 8.5 based on the pronounced Tw
changes projected under this RCP (see Figures 6.18, 6.19, 6.22 and 6.23).
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NA

NA

Figure 6.22: Map of mean summer Tw under 3 varied GCM/RCMs and 3 different RCPs over the middle of the
century (2040–2069). Solid black lines show the Hydro-Ecoregion (HER) delineation (see Figure 2.1, p. 44).
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NA

NA

Figure 6.23: Map of mean summer Tw under 3 varied GCM/RCMs and 3 different RCPs over the end of the
century (2070–2099). Solid black lines show the Hydro-Ecoregion (HER) delineation (see Figure 2.1, p. 44).
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6.5.1 Uncertainty of emission scenarios (RCPs)

Here, Tw changes under the CNRM-CM5/ALADIN63 (intermediate) model and 3 RCPs are
studied to assess the RCPs uncertainty. To understand the difference between the 3 RCPs, in
addition to seasonal Tw changes, we compare the annual cycle of Tw and seasonal Tw anoma-
lies – with respect to the 1990–2019 interannual mean – under these 3 RCPs. Finally, the
longitudinal profile of summer Tw for the Loire River is compared under these RCPs.

Seasonal changes in stream temperature

Changes in Tw under RCP 4.5 are larger than those under RCP 2.6, with the exception of
fall in the middle of the century (see Figure 6.24). But, changes in Tw under RCP 4.5 are
lower than those under RCP 8.5. Median changes in Tw (across the reaches) under different
RCPs are more important towards the end of the century except for RCP 2.6 with a median
change of [+0.9 °C ; +1.15 °C] across seasons in the middle of the century, and median change
of [+0.47 °C ; +0.94 °C] across seasons at the end of the century. Such behavior for RCP 2.6
seems compatible with the representation of the future behavior of emissions evolution under
RCP 2.6 (Figure 6.1). Moreover, the difference between RCPs in projecting Tw changes gets
greater towards the end of the century. The small difference between RCPs in the middle of the
century can also be seen in Figure 6.22, middle panel. Regardless of the RCP, the median of
Tw changes is not significantly different from one season to another. This could be due to the
nature of the CNRM-CM5/ALADIN63 (intermediate) model, which shows a small difference
between seasons in terms of Tw changes compared to the other two GCM/RCMs in both time
slices (see Figures 6.18 and 6.19). Nevertheless, even for the other two GCM/RCMs, such a
difference between seasons is larger at the end of the century.

The greatest median Tw changes across time slices, and seasons belong to RCP 8.5 with
range of [+1.51 °C ; +1.74 °C] across seasons in the middle of century (vs [+0.91 °C ; +1.33 °C]
for the other two RCPs together), and range of [+3.21 °C ; +3.38 °C] across seasons at the end
of century (vs [+0.47 °C ; +1.70 °C] for the other two RCPs together). Under this RCP, the
high summer Tw (> 20 °C) are more frequent over the basin compared to two other RCPs (see
Figures 6.22 and 6.23, middle panel). Indeed, for RCP 2.6 and 4.5, the spatial variability of
mean summer Tw in the middle of the century is not much different from that at the end of
the century. The greatest median change in Tw is under RCP 8.5 in summer at the end of the
century (+3.38°C). Moreover, more variability in Tw changes under RCP 8.5 is observed in
summer at the end of the century ([-0.06 °C ; +5.56 °C]; and see Figures 6.22 and 6.23).
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Figure 6.24: Changes in Tw under the CNRM-CM5-LR/ALADIN63 (intermediate) model and 3 different RCPs in
the middle (2040–2069) and at the end of the century (2070–2099) with respect to the 1990–2019 period.

Annual cycle of stream temperature

There is a good agreement between the median (across reaches) annual cycle of Tw in projec-
tions (grey line) and in the retrospective simulation (black line) (Figure 6.25). There is a very
small difference between the annual cycle of Tw in the middle of the century and at the end of
the century for RCP 2.6 and 4.5. Compared to the historical period, they are shifted up by up
to +2°C over the summer (Figure 6.25). For RCP 8.5, compared to the historical period, there
is a clear upward shift over the whole year in the middle of the century (up to +2.16°C), and
at the end of the century (up to +3.90°C). For all RCPs, there is no shift in the timing of the
maximum value of Tw (horizontal shift).

Seasonal anomalies of stream temperature

The median anomalies (across reaches) of Tw with respect to the 1990–2019 period under all 3
different RCPs exhibit a clear increase in Tw in the middle and at the end of the century (Fig-
ure 6.26). The range of anomalies under different RCPs is not really different from one season
to another. Across seasons, the range of Tw anomalies under RCP 2.6, and under RCP 4.5
are close ([-1.88 °C ; +3.92 °C] depending on the RCP, and season). Across RCPs, the greatest
positive anomalies across seasons occur under RCP 8.5 (≈+5 °C).

For RCP 2.6 and 4.5, an increase in Tw anomalies is observed from the past until the middle
of the century. However, under these RCPs, such an increase in Tw is more moderate at the end
of the century compared to that for RCP 8.5. Indeed, under RCP 8.5, such an increase in Tw
continues toward the end of the century at the same rate as in the middle of the century.
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Figure 6.25: Median (across reaches) annual cycle of Tw under the CNRM-CM5-LR/ALADIN63 (intermediate)
model, and 3 different RCPs in the historical period (1990–2019), in the middle (2040–2069) and at the end of the
century (2070–2099). The black line shows the median annual cycle of Tw over the historical period (1990–2019)
in the retrospective simulation. For each cycle, the average of Tw over the time slice for each day is calculated;
then the 30-day moving average is applied to this daily cycle. The colors show different time slices.

Longitudinal profile of stream temperature for the Loire River

There is also a good agreement between the longitudinal profile of summer Tw for the Loire
River in the retrospective simulation (black line) and in observation at four Tw stations along
the river (in point) across RCPs (Figure 6.27). Note that there are Tw data over the 1990–2019
period at these four stations (see Table 2.1, p. 48). Compared to the longitudinal profile in
the retrospective simulation (black line), an overestimation (up to +0.9 °C) in projections (grey
line) is observed in the middle and at the end of the profile for all RCPs. Such a longitudinal
profile of summer Tw was seen before in Figure 4.22 (p. 116) for the Loire River in 2003, and
in Figure 1.4 (p. 34).

The longitudinal profile in projections and in the retrospective simulation mimics the same
pattern. Like what was observed for the annual cycle of Tw (Figure 6.25), the longitudinal
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Figure 6.26: Comparing median anomalies of Tw (across reaches) with respect to the 1990–2019 period at the
seasonal and annual scale under the CNRM-CM5-LR/ALADIN63 (intermediate) model, and 3 different RCPs.
Colors are showing different RCPs. Numbers in colors in the top left corner of each graph show the range of median
anomalies. The black line is showing median anomalies of Tw (across reaches) in the retrospective simulation with
respect to the 1990–2019 period.

profile of summer Tw in the middle and at the end of the century almost overlaps for RCP 2.6
and 4.5. They are shifted up (by [+1.3 °C ; +2 °C] depending on RCP) compared to the historical
period. The magnitude of this upward shift is almost the same all along with the longitudinal
profile. For RCP 8.5, compared to the historical period, there is a clear upward shift in the
middle of the century (up to +2°C), and at the end of the century (up to +4.5°C).
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Figure 6.27: The longitudinal profile of summer Tw for the Loire River under the CNRM-CM5-LR/ALADIN63
(intermediate) model, and 3 different RCPs in the historical period (1990–2019), in the middle (2040–2069) and
at the end of the century (2070–2099). The black line shows the longitudinal profile of summer Tw over the
historical period (1990–2019) in the retrospective simulation. The points are showing observed Tw (see Table 2.1,
p. 48 about these stations). The colors show different time slices.

6.5.2 Uncertainty of climate modeling

At this step, to show the uncertainty among the different GCM/RCMs in a more simple way,
the analyses will focus on all selected GCM/RCMs in the current study under one RCP. Here
RCP 8.5 is selected since it projects more important changes based on the above results (see
section 6.5.1). Like what was done in the section 6.5.1 for assessing RCPs uncertainty, here,
in addition to seasonal Tw changes, we compare the annual cycle of Tw for three different
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GCM/RCMs under RCP 8.5. The longitudinal profile of summer Tw for the Loire River across
these various GCM/RCMs are also compared.

Seasonal changes in stream temperature

For all GCM/RCMs under RCP 8.5, median Tw changes (across reaches) show an increase in
Tw regardless of season and time slice ([+0.76 °C ; +4.95 °C]) (Figure 6.28). Such an increase
in median Tw gets greater towards the end of the century for all GCM/RCMs. Consequently,
the frequency of the high summer Tw (> 20 °C) increases towards the end of the century with
the worst case for the HadGEM2/CCLM4-8-17 (dry and hot) model with an increase in the
frequency of summer Tw> 23 °C (see Figures 6.22 and 6.23). In winter, median Tw changes
under all models are close unlike in summer when median Tw changes is considerably different
from one model to another.

Across GCM/RCMs, the greatest changes in median Tw (across reaches) are in the spring
and summer of both time slices with the exception of the IPSL-CM5A/MRWRF381P (warm and
wet) model (Figure 6.28). In such a case, the median change in Tw is in range of [+1.64 °C ; +2.68 °C]
in the middle of century, and [+3.21 °C ; +4.95 °C] at the end of the century. For the IPSL-
CM5A/MRWRF381P (warm and wet) model, the greatest changes are in winter with a median
change of [+1.86 °C ; +3.83 °C] , respectively, in the middle and at the end of the century.

Annual cycle of stream temperature

Like Figure 6.25 for RCPs, there is a good agreement between the median annual cycle of Tw
in retrospective simulation (black line) and in projections (grey line) over the historical period
across GCM/RCMs under RCP 8.5. Compared to the historical period, across GCM/RCMs
under RCP 8.5, the annual cycle of Tw is shifted up over the whole year in the middle of the
century (by up to +2.8°C), and at the end of the century (by up to +5.17°C at the end of the
century), with the exception of the IPSL-CM5A/MRWRF381P (warm and wet) model for which
such a shift is less clear during summer (Figure 6.29). The greatest shift in the annual cycle of
Tw in both time slices happens under the HadGEM2/CCLM4-8-17 (dry and hot) model. For all
GCM/RCMs, there is no shift in the timing of the maximum value of Tw (horizontal shift) like
what was observed across RCPs in Figure 6.25.

Longitudinal profile of stream temperature for the Loire River

There is also a good agreement between the longitudinal profile of summer Tw for the Loire
River in retrospective simulation (black line) and in observation at four Tw stations (in point)
across GCM/RCMs (Figure 6.30). There is a similarly good agreement in projections (grey
line) and in the retrospective simulation (black line) (Figure 6.30) across different GCM/RCMs,
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Figure 6.28: Seasonal changes in Tw under different GCM/RCMs and RCP 8.5 with respect to the 1990–2019
period in the middle of the century (2040–2069) and at the end of the century (2070–2099). The numbers are
showing median Tw changes across reaches.

except for the HadGEM2/CCLM4-8-17 (dry and hot) model in the lower distances from the
source (up to 1 °C underestimation), and for the two other GCM/RCMs at the end of the profile
(up to 1 °C overestimation).

Across GCM/RCMs, the longitudinal profile of summer Tw in projections and in the retro-
spective simulation mimic the same pattern as across RCPs in Figure 6.27. Compared to the
historical period, across GCM/RCMs and time slices, the longitudinal profile of summer Tw
has an upward shift (Figure 6.30), except for the IPSL-CM5A/MRWRF381P (warm and wet)
model in the middle and at the end of the longitudinal profile at the end of the century. In such a
case, in the middle of the century, the maximum upward shift along the profile ranges between
+1.64 °C and +3.2 °C depending on the GCM/RCM. Such range at the end of the century is
[+2.5 °C ; +5.7 °C].
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Figure 6.29: Median (across reaches) annual cycle of Tw under three GCM/RCMs and RCP 8.5 in the historical
period (1990–2019), in the middle (2040–2069) and at the end of the century (2070–2100). The black line shows
the median annual cycle of Tw over the historical period (1990–2019) in the retrospective simulation. For each
cycle, the average of Tw over the desired time slice for each day is calculated then the 30-day moving average is
applied to this daily cycle. The colors show different time slices.

216



CHAPTER 6. FUTURE PROJECTIONS OF STREAM TEMPERATURE 6

Figure 6.30: The longitudinal profile of summer Tw for 3 GCM/RCMs under RCP 8.5 for the Loire River in
the historical period (1990–2019), in the middle (2040–2069) and at the end of the century (2070–2099). The
black line shows the longitudinal profile of summer Tw over the historical period (1990–2019) in the retrospective
simulation. The colors show different time slices.
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6.5.3 Evolution of summer stream temperature over two centuries (1880-
2099) for the Loire River

Figure 6.31 presents the evolution of summer Tw anomalies with respect to the 1976–2005
period over two centuries at Dampierre on the Loire River, a Tw station with long-term observed
data (see Table 2.1, p. 48 for more information about this station). In fact, to have this type of
information, different types of Tw data are combined as follows:

• Reconstructed Tw over the 1880-2003 period adopted from Moatar and Gailhard (2006)
(referred as reconstruction (Moatar and Gailhard, 2006) here). Moatar and Gailhard
(2006) reconstructed Tw over this period by developing a statistical link between Tw,
Ta and Q.

• Retrospective simulation over the 1963-2019 period provided by the T-NET thermal
model (referred as retrospective simulation (T-NET) here). This simulation was done
in the current study in the previous chapter (see section 5.3, p. 137).

• Projected Tw under different GCM/RCMs, and RCPs over the 1976–2100 period.

• Finally, observed Tw (over the 1977-2019 period) is added to this combination of Tw
data to have a control over the past and present, and a reference for the future. The
agreement between observation and the retrospective simulation (T-NET) for seasonal
Tw was already seen at this station in Figure 5.4 (p. 137).

Since all of these different Tw data have data over the 1976–2005 period, and there is also an
agreement between Tw absolute values in projections and in the retrospective simulation over
this period (see Figure 6.5), the Tw anomalies are considered with respect to the 1976–2005
period.

Figure 6.31, first of all, reveals a great increase in Tw in the 1890s. Devers et al. (2021)
showed a negative anomaly in P over France in the 1890s, and this resulted in a negative
anomaly in Q over the Loire river basin (see Figure 5.1 of Devers, 2019). The other great
increase in Tw is observed in the 1940s. Moatar and Gailhard (2006) explained such increase
due to a great decrease in Q. Devers (2019) (see Figure 5.16, p. 212) also observed such a de-
crease in Q in the 1940s as a result of an increase in Ta. In other words, this period was hot and
dry, which had impacts on Tw.

A difference between the reconstruction and the retrospective simulation (< 0.67 °C) can be
seen. This difference may originate from the fact that the reconstruction is based on a statistical
link between Tw, Ta, and Q, and does not consider the influence of other drivers, while the ret-
rospective simulation considers other drivers as well as their physical relationship (see Equ. 4.6,
p. 93).
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Across GCM/RCMs, the largest summer Tw anomalies belong to projections under RCP
8.5, with the exception of the IPSL-CM5A/MRWRF381P (warm and wet) model. The increase
in Tw started in the late 1980s, which was previously seen in the past trend analyses (see Fig-
ure 5.14, p. 150). Such an increase in Tw anomalies in summer will continue towards the end
of the century, and can reach up to [+2 °C ; +5 °C] depending on the GCM/RCM and RCP.

Finally, for RCP 2.6 and 4.5 across GCM/RCMs, the rate of an increase in the summer Tw
anomaly between 1980 and 2030 is higher than that at the end of the century. In other words,
changes in summer Tw anomalies under RCP 2.6 and 4.5 get more moderate at the end of the
century, which is compatible with the representation of future behavior of emissions evolution
under these RCPs (see Figure 6.1, and observed Tw anomalies across these RCPs in Figure 6.26)
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Figure 6.31: The anomalies of the 10-year moving average of Tw in summer with respect to the 1976–2005 period
over the two centuries at Dampierre on the Loire River (see Table 2.1, p. 48 for more information about this
station). Different types of Tw data are combined to produce this figure including reconstruction (1880-2003)
adopted form Moatar and Gailhard (2006), the retrospective simulation (1963-2019) (from the previous chapter,
Chapter 5), observation (1977-2019), and projections (1976–2099). Colors show different types of Tw data.
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6.6 Hydroclimate drivers of changes in future stream tem-
perature

Since Tw changes under RCP 8.5 are the most important ones across RCPs based on the above
results, we decide to focus the next analyses on this RCP. This also makes assessments simpler.

In Chapter 5, spatial and temporal links between past trends in Tw, Ta, and Q were found (see
section 5.4, p. 142). This arises a question, which is whether such spatial and temporal links
between changes in these variables are also observed in the future. To answer this question,
first, anomalies of these variables – with respect to the 1990–2019 interannual mean – are
computed for different seasons and GCM/RCMs under RCP 8.5 over the 1976–2099 period.
The anomalies of Tw, Ta, and Q are reported in °C, °C, and %, respectively, with respect
to the 1990–2019 period. Then, the median anomalies of these variables across reaches are
compared to investigate whether the greatest Tw anomalies, Ta anomalies, and Q anomalies
are concomitant or not (i.e., whether there is a temporal link between Tw, Ta, and Q). Finally,
to determine the spatial links, jointly positive Tw changes, negative Q changes, and positive Ta
changes under all GCM/RCMs and RCP 8.5 are identified for all 52 278 reaches across seasons.

6.6.1 Synchronicity of stream temperature anomalies with air tempera-
ture and streamflow anomalies in future

Ta anomalies (°C) are always increasing across seasons and GCM/RCMs (Figure 6.32). The
same was observed for the Ta anomalies in the retrospective simulation (see Figure 5.14, p. 150).
The greatest positive median of Ta anomaly (across reaches) is in summer (up to 10°C) under
the HadGEM2/CCLM4-8-17 (dry and hot) model at the end of the century. Across GCM/RCMs
and seasons, the negative anomalies are mainly before the middle of the century.

On the other hand, Q anomalies are relatively decreasing (Figure 6.33). Across GCM/RCMs
and seasons, the median of Q anomalies are negative (up to -97%) for the majority of the years
over the 1976–2099 period, with the exception of median anomalies of the IPSL-CM5A/MRWRF381P
(warm and wet) model. The lowest median of Q anomalies is projected by the HadGEM2/CCLM4-
8-17 (dry and hot) model in fall (up to -97%).

Tw anomalies (°C), like Ta anomalies, are always increasing across seasons and GCM/RCMs
(Figure 6.34). Tw anomalies are more variable across the basin than Ta anomalies. The same
feature was already observed for the Tw anomalies in the retrospective simulation (see Fig-
ure 5.14, p. 150). Moreover, compared to Ta anomalies, the range of Tw anomalies is smaller
across GCM/RCMs and seasons. The greatest median of Tw anomalies is observed in summer
(up to 7°C) under the HadGEM2/CCLM4-8-17 (dry and hot) model.
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Figure 6.32: Seasonal and annual anomalies of Ta with respect to the 1990–2019 period for different GCM/RCMs
under RCP 8.5. Numbers in black in the top left corner of each graph show the range (minimum and maximum)
of median anomalies. The solid line shows the median anomaly across reaches.
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Figure 6.33: Seasonal and annual anomalies of Q with respect to the 1990–2019 period for different GCM/RCMs
under RCP 8.5. Numbers in black in the top left corner of each graph show the range of median anomalies. The
solid line shows the median anomaly across reaches.
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Figure 6.34: Seasonal and annual anomalies of Tw with respect to the 1990–2019 period for different GCM/RCMs
under RCP 8.5. Numbers in black in the top left corner of each graph show the range of median anomalies.
The solid line shows the median anomaly across reaches. This figure has the same scale as the Ta anomalies
(Figure 6.32).
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Anomalies of Ta and Tw (Figures 6.32 and 6.34) are generally increasing while both de-
creasing and increasing Q anomalies is observed (Figure 6.33). To understand the temporal
links between anomalies of Tw and Q in one hand, and anomalies of Tw and Ta in the other
hand, the median of such anomalies across the reaches are compared together (see Figure 6.35).

Figure 6.35 depicts that the majority of negative median Tw anomalies across seasons and
GCM/RCMs occur before the middle of the century (>80% of such anomalies). These negative
Tw anomalies happen when there are either negative Ta anomalies or positive Q anomalies
or both conditions (Figure 6.35). Moreover, a larger dispersion in future anomalies (cross and
triangle shapes) is observed compared to the recent period anomalies (circles) (see Figure 6.35).

To test whether the greatest values of positive median Tw anomalies can be due to co-
occurrence of increase in Ta and decrease in Q, which are the main hydro-climate drives of
Tw, first, a threshold for spotting the greatest Tw anomalies is selected. Here, the median of
Tw anomalies over the basin in the summer of 2003 in the retrospective simulation is used.
The summer of 2003 is selected since it is the most important hot summer in the recent period
(Moatar and Gailhard, 2006; Bustillo et al., 2014). For the retrospective simulation, the median
of summer Tw anomalies across all reaches with respect to the 1990–2019 period is 2.3 °C.
Afterward, the median Ta and Q anomalies corresponding to these largest median Tw anomalies
(>+2.3 °C=anomaly of summer 2003) are investigated. Such an assessment can also help to
understand whether hot years like the hot summer of 2003 will be experienced again in the
future or not.

Across seasons and GCM/RCMs, 30 to 55 years (over the 1976–2099 period) have a Tw
anomaly>+2.3 °C (anomaly of summer 2003), with the exception of spring, summer and an-
nual of the IPSL-CM5A/MRWRF381P (warm and wet) model (7-27 years) (Figure 6.35). As
mentioned before, the majority of positive Tw anomalies occur before the middle of the century,
meaning that the years with the largest Tw anomalies occur mainly over the 2040–2099 period.
Therefore, years like the hot summer of 2003 will be experienced frequently in the middle and
at the end of the century (50-80 % of the years over the 2040-2099 period) regardless of the
season.

For a considerable number of the years (41-92 %) with Tw anomaly>+2.3°C, across seasons
and GCM/RCMs, both a positive Ta anomaly (> 2°C), and a negative Q anomaly (< -10%) oc-
cur jointly, with the exception of fall of the IPSL-CM5A/MRWRF381P (warm and wet) model,
and winter of all models (5-30 % of years) (Figure 6.35), showing that the greatest values of
positive median Tw anomalies can be due to co-occurrence of increase in Ta and decrease in Q.
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Figure 6.35: Relationship between Tw anomalies and Ta anomalies (with respect to the 1990–2019 period) in one
hand, and Tw anomalies and Q anomalies in the other hand under different GCM/RCMs and RCP 8.5 in different
seasons. Points are individual years identified from median anomaly values across all reaches. Colors and shape
points are showing Ta anomalies and corresponding time slice, respectively. The grey dashed lines correspond to
zero Q and Ta anomalies. The symbol "*" in black corresponds to the median of Tw anomaly (across reaches) in
the summer of 2003 in the retrospective simulation over the 1990–2019 period ( +2.3 °C).
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6.6.2 Synchronicity of extreme changes in stream and air temperature,
and streamflow across reaches

In the previous section, temporal links between Tw and Ta and/or Q were found. Here, the
spatial links between these variables are assessed at the reach scale. To do so, the percentage
of reaches with jointly positive Tw changes, positive Ta changes, and negative Q changes is
computed for each season, time slice, and GCM/RCM under RCP 8.5.

Positive Tw changes, positive Ta changes, and negative Q changes occur coincidentally at
the majority of reaches (55-100 %) across GCM/RCMs under RCP 8.5, seasons, and time slices
(Figure 6.36), with the exception of winter of the IPSL-CM5A/MRWRF381P (warm and wet)
model and the CNRM-CM5-LR/ALADIN63 (intermediate) model in both time slices, spring
and fall of the IPSL-CM5A/MRWRF381P (warm and wet) model in both time slices, and spring
of the HadGEM2/CCLM4-8-17 (dry and hot) model in the middle of the century (12-43% of
reaches, considering all these exceptions). In both time slices, the majority of such joining
conditions (60-100 % of such reaches) are in HER A (see Figures E.28 and E.29).

227



6.6. HYDROCLIMATE DRIVERS OF CHANGES IN FUTURE STREAM TEMPERATURE6

Figure 6.36: Percentage of reaches with consistent changes in Tw, Ta and Q categorised with respect to sign of
change in Tw, Ta, and Q for different GCM/RCMs under RCP 8.5, seasons, and time slices. The changes are
calculated with respect to the 1990–2019 period.
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6.7 Landscape drivers of stream temperature

6.7.1 Influence of stream size

In Chapter 5, stream size, HER and riparian shading factor (SF) were identified as the major
potential landscape drivers, especially in the summer period (see Figures 5.19, p. 155, and 5.20,
p. 156). To evaluate the influence of such drivers on future Tw over the summer, a similar
approach to Chapter 5 (see section 5.5, p. 154) is used. To do so, first, the mean summer
Tw over the different time slices including the 1990–2019, 2040–2069 and 2070–2099 periods
is computed for all reaches, and for all GCM/RCMs under RCP 8.5. The same indicator is
also calculated by using the retrospective simulation over the 1990–2019 period to use it as a
control for the past and a reference for the future. Then, to see the influence of reach size on
interannual means, the Strahler order of each reach is used as a proxy for stream size. Reaches
with Strahler order 5–8 are combined into a single group termed “large rivers”. Finally, the
relationship between the median of summer Tw (i.e., median across all reaches) and Strahler
order is assessed across HERs, time slices, and GCM/RCMs.

The evolution of median summer Tw and reach size in projections along with that in the
retrospective simulation over the historical period 1990–2019 across HERs (see Figure 6.37).
Across GCM/RCMs under RCP 8.5, HERs, and time slices, Strahler order is positively corre-
lated with median summer Tw (Figures 6.37). Indeed, across GCM/RCMs, and HERs, median
summer Tw in large rivers (Strahler order ≥ 5) is greater (by [+5 °C ; +6.7 °C]) than that in
small streams (Strahler order 1) in both time slices. Overall, there is [+5 °C ; +7 °C] difference
between median summer Tw in large rivers and in small streams across GCM/RCMs, HERs,
and time slices including the historical period.

6.7.2 Influence of riparian shading

At this step, the relationship between summer Tw and riparian shading is assessed. To do
so, similarly to what was done for assessing the influence of stream size on summer Tw in
the previous section, first, the mean summer Tw over the different time slices including the
historical period is computed for all reaches, and for all GCM/RCMs under RCP 8.5. Then,
five levels of riparian shading (<15 %; 15-25 %; 25-40 %; 40-60 %; >60 %) for small streams
(distance from the source<30 km) are considered like in the past trend analysis in the previous
chapter (section 5.5, p. 154). Then, the relationship between median of summer Tw (i.e., median
across all reaches) and levels of riparian shading is assessed across HERs, time slices, and
GCM/RCMs.

The relationship between median summer Tw and riparian shading in projections along
with that in the retrospective simulation over the historical period 1990–2019 across HERs as
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Figure 6.37: Relationships between reach size, and median summer Tw across reaches for different HERs and
GCM/RCMs under RCP 8.5 in the middle (2040–2069) and at the end of the century (2070–2099). The colors
show different GCM/RCM. The black line shows the median summer Tw in the retrospective simulation.

shown in Figure 6.38. There is an important mitigation effect of shading on summer Tw for
small streams for all GCM/RCMs and HERs (Figures 6.38). The median summer Tw, across
GCM/RCMs and HERs, is [+3.5 °C ; +4.5 °C] lower in the middle and at end of the century
in sparsely shaded reaches (SF < 15%) with respect to highly shaded reaches (SF > 40%).
Overall, there is [+3.3 °C ; +4.6 °C] difference between median summer Tw in sparsely shaded
reaches (SF < 15%) and in highly shaded reaches (SF > 40%) across GCM/RCMs, HERs and
time slices including the historical period.
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Figure 6.38: Relationships between riparian shading factor (SF) and median summer Tw across small reaches
(distance from the source< 30 km) for different HERs and GCM/RCMs under RCP 8.5 in the middle (2040–2069)
and at the end of the century (2070–2099). The colors show different GCM/RCM. The black line shows the median
summer Tw in the retrospective simulation.

6.8 Increase in stress on brown trout in the future

In the past trend analyses, the evolution of the number of days with Tw>17 °C (NTw > 17=the
lethal temperature of juvenile brown trout) was studied in rivers with non-zero density (individ-
ual/100 m2) for brown trout (see section 5.6, p. 156). It was observed that there was an increase
in NTw > 17 metric over the recent period. This section aims at determining the evolution of
this metric under future projections. To do so, the mean of NTw > 17 over different time slices
and the historical period is calculated for all GCM/RCMs under RCP 8.5. The NTw > 17 is
also calculated through the retrospective simulation over the 1990–2019 period. Note that, like
section 5.6 (p. 156), only rivers with non-zero density for brown trout are considered.

There is a quite good agreement between the median of NTw > 17 (across reaches) in projec-
tions (25-35 days, depending on the GCM/RCMs) and in the retrospective simulation (27 days)
over the historical period 1990–2019 (Figure 6.39). Median of NTw > 17 increases from the his-
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Figure 6.39: The evolution of the number of days with Tw>17 °C for different GCM/RCMs under RCP 8.5 over
the historical period (1990–2019), in the middle (2040–2069) and the end of the century (2070–2099). The grey
boxplots are showing results in the retrospective simulation over the 1990–2019 period. Only rivers with non-zero
density for brown trout depicted in Figure 5.21 (p. 157) are used. The numbers are showing median values across
reaches.

torical period to the end of the century for all GCM/RCMs. In the middle of the century, median
NTw > 17 increases by 50-200 % with respect to the 1990–2019 period across GCM/RCMs. At
the end of the century, such an increase seems more critical (by 100-300 %, depending on the
GCM/RCM).

6.9 Summary of findings

6.9.1 Performance of future projections

There is a good correlation (r> 0.9) between meteorological variables in projections and in
the retrospective simulation (provided by the SAFRAN reanalysis data), with the exception of
PET of all models (cor=0.51-0.55 across GCM/RCMs) (see Figure 6.3). As mentioned before,
such a bias can be due to different formulas used in SFARAN and in GCM/RCMs to calculate
PET. Nevertheless, there is a small bias between Tw absolute values in projections and in the
retrospective simulation (see Figures 6.5 and 6.6). In fact, projections can get the right absolute
values of Tw (median bias=0.13-0.43 across seasons, and GCM/RCMs), but they fail to reach
the right magnitude of trends and their spatial variability (see Figure 6.7 and 6.8). However, like
in the retrospective simulation, projections show a significant increasing trend in Tw over the
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recent period (1976–2019) (Figure 6.9). Moreover, in different assessments, a good agreement
between the projections and the retrospective simulation or even observations was found (e.g.,
see Figures 6.25, 6.26, 6.27, 6.29, 6.30, 6.31, 6.37, 6.38 and 6.31).

6.9.2 Uncertainty of projections

As expected, projected Tw changes are different from one RCP to another (section 6.5.1), and
from GCM/RCM to another (section 6.5.2). In the current study, to assess the RCPs uncer-
tainty, the Tw changes projected by one GCM/RCM under different RCPs are studied and
compared (see section 6.5.1). In the current study, the 3 RCPs are available for the CNRM-
CM5/ALADIN63 (intermediate) model. As this GCM/RCM is the intermediate one, the uncer-
tainty resulting from the GCM/RCM itself is lower compared to the other selected GCM/RCMs,
which are either warm and wet or hot and dry.

Under the CNRM-CM5/ALADIN63 (intermediate) model, the difference between RCPs in
projecting Tw changes is not significant in the middle of the century, but it gets larger towards
the end of the century (see Figure 6.24). The largest median changes in Tw across time slices,
and seasons belongs to RCP 8.5 with a range of [+1.51 °C ; +1.74 °C] across seasons in the mid-
dle of century (vs [+0.91 °C ; +1.33 °C] for the two other RCPs), and range of +3.21 ; +3.38°C
across seasons at the end of century (vs [+0.47 °C ; +1.70 °C] for the two other RCPs) (see
Figure 6.24).

Compatible with the representation of future behavior of emission evolution under RCP 2.6
(Figure 6.1), the median changes in Tw under this RCP across seasons is smaller at the end of
the century compared to the middle of the century ([+0.9 °C ; +1.15 °C] vs [+0.47 °C ; +0.94 °C];
and see Figure 6.24). Moreover, compared to the historical period, the median annual cycle of
Tw under RCP 2.6 and 4.5 is shifted up in the middle of the century (up to +2°C), but there
is no upward shift at the end of the century under these RCPs. In contrast to that, under RCP
8.5, an important upward shift over the whole year is found in the median annual cycle of Tw
for both the middle (up to +2.16°C) and the end of the century (up to +3.9°C). The median Tw
anomalies under RCP 2.6 and 4.5 across seasons also show that Tw changes get moderate at the
end of the century in contrast with median Tw anomalies under RCP 8.5 for which an increase
in Tw continues toward the end of the century with the same rate of increase in the middle of the
century. The longitudinal profile of summer Tw for the Loire River also reveals such a moderate
behavior for RCP 2.6 and 4.5 at the end of the century all along with the profile.

In addition to RCP uncertainty, there is climate modeling uncertainty. In fact, Tw changes
projected by the three selected GCM/RCMs in the current study can vary significantly from
one GCM/RCM to another (see section 6.5.2). For instance, under RCP 8.5, in the mid-
dle of the century (resp. at the end of the century), the range of median Tw changes across
seasons is [+0.76 °C ; +1.86 °C] (resp. [+1.56 °C ; +3.43 °C]) for the warm and wet (IPSL-
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CM5A/MRWRF381P) model whereas for the hot and dry (HadGEM2/CCLM4-8-17) model,
this range is larger, [+1.77 °C ; +2.68 °C] (resp. [+3.36 °C ; +4.95 °C]) (see Figure 6.28). Such a
difference can also be seen in the median annual cycle of Tw under these two GCM/RCMs (see
Figure 6.29).
Moreover, depending on the GCM/RCMs, the season with the largest projected Tw changes is
different. For instance, this season for the warm and wet (IPSL-CM5A/MRWRF381P) model
is winter whereas for the two other models is spring and summer (see Figure 6.28). For the
intermediate (CNRM-CM5-LR/ALADIN63) model, projected Tw changes across seasons do
not vary so much in contrast to the other GCM/RCMs. The median annual cycle of Tw con-
firms such seasonal differences between GCM/RCMs. Indeed, the median annual cycle of Tw
is shifted up over the whole year in the middle of the century (by up to +2.8°C), and at the
end of the century (by up to +5.17°C at the end of the century) for all GCM/RCMs with the
exception of the warm and wet (IPSL-CM5A/MRWRF381P) model for which this shift is less
clear during summer (Figure 6.29).

The longitudinal profile of summer Tw for the Loire River also shows that there is an in-
crease in Tw until 400 km distance from the source for the warm and wet (IPSL-CM5A/MRWRF381P)
model for both time slices (see Figure 6.30). In contrast to this GCM/RCM, for the other two
GCM/RCMs, such an increase in summer Tw occurs all along the profile for both time slices.
Surely, the magnitude of increase in summer Tw is different from GCM/RCM to another.

The difference between GCM/RCMs can also be seen in projected Q changes. For instance,
under the hot and dry (HadGEM2/CCLM4-8-17) model, there is a shift towards the fall in
the timing of low flows whereas such shifts are less visible for the other GCM/RCMs (see
Figure 6.16).

Finally, these uncertainties in projections should be considered in river management projects.
The more GCM/RCMs and RCPs considered, the better would be our understanding of plau-
sible futures, and the more reliable actions can be taken for adapting to the impacts of climate
change.

6.10 Discussion

6.10.1 Worldwide increase in future stream temperature

The large scale and high spatial resolution assessment of future Tw changes in the current study
shows a consistent increase in Tw (with respect to the 1990–2019 period) in the middle (2040–
2069) and at the end of the century (2070–2099). Such important changes in Tw can also be
found in other climate change impact studies on future Tw around the world, which used RCPs
of the fifth IPCC (IPCC, 2014). These studies are summarized in Table 6.10.1. As seen in this
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Table, the large scale and fine spatial resolution of the current study clearly stands out as unique
as well as being among very few studies conducted in Europe. Although the reference period
and future time slices considered in these future studies may be different, comparisons with
them gives a comprehensive view of the overall future Tw changes all around the world.

In the current study, the median Tw change (across reaches) ranges between +0.72 °C and
+2.68 °C across GCM/RCMs, RCPs, and seasons in the middle of the century. Other future
studies also found an increase in Tw up to +3.8 °C in the middle of the century, with the excep-
tion of the study of Carlson et al. (2017), which found more increase in Tw (up to +6.8 °C) in
surface-runoff dominated systems (see Table 6.10.1).

At the end of century, the range of median Tw change is [+0.47 °C ; +4.95 °C] across GCM/RCMs,
RCPs, and seasons. Along with our findings, other future studies anticipated up to +7 °C
increase in Tw at the end of the century. In Europe, Michel et al. (2021) recently found
[+0.9 °C ; +3.5 °C] increase in Tw at the end of the century (over 12 catchment across Switzer-
land), which is in accordance with our findings over the Loire River basin in France.
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6.10.2 Implications for aquatic biota

Both Q, and Tw are the key factors affecting the suitability of instream habitats (Benda et al.,
2004). Therefore, the worldwide increase in Tw (see Table 6.10.1) can have an important impact
on cold-water habitats. For instance, Lee et al. (2020) found that stream warming may limit
particular species and life stages in the future. They found that vulnerability scores would
increase by more than 50% for both life stages of all species during August, and the vulnerability
was more important for adults than juveniles. In the Loire River basin (current study), the
pronounced increase (up to 300% at the end of the century) in the number of days exceeding the
upper tolerance temperature of juvenile brown trout may pose a potential threat to this species
(see Figure 6.39).

The evolution of summer Tw anomalies – with respect to the 1990–2019 period – over two
centuries (at Dampierre) also demonstrates a fast increase after 1980, which was also seen in the
past trend analyses (see Figure 5.17, p. 5.17). Nevertheless, depending on GCM/RCM and RCP
such an increase can continue or get moderate at the end of the century compared to the middle
of the century (summer Tw anomaly at the end of the century=[+2 °C ; +5 °C]). These observed
changes in Tw can alter habitat availability and freshwater quality for organisms. Indeed, the
organisms may not be able to adapt to such changes.

Here, in addition to increasing in Tw, a pronounced decrease (median change up to -43 %)
in Q, especially in spring and summer was found across GCM/RCMS, RCPs, and time slices
(Table 6.4; Figures 6.24 and 6.28). The synchronicity of a decrease in Q and an increase in
Tw can affect the persistence of specialized aquatic organisms (e.g., for cold-water biota, Aris-
mendi et al., 2013b) and the completion of their life cycle (e.g., for diadromous fish, Arevalo
et al., 2020). Here, findings show that the largest median Tw anomaly (>+2.3°C=summer Tw
anomaly in 2003), and the greatest positive median Ta anomaly (>+2°C), and the largest nega-
tive median Q anomaly (< -10%) occur jointly in the future (see Figure 6.35). Such events can
double the problem for cold-water aquatic species. Importantly, such events are mainly in the
upstream part of the basin (HER A), where mostly cold-water aquatic communities are present.

Therefore, thermal model outputs (like T-NET outputs) can also be used to assess the various
stresses on freshwater habitat sustainability due to changes in Q and Tw in the future, and
their synchronicity. Such future assessments are critical for developing effective management
responses to climate change.

6.10.3 Sensitivity of results to the selected historical period 1990–2019

The 1990–2019 period selected as the historical period here, seems a risky choice since Tw
warming has already occurred during this period (+2 °C increase compared to the 1963–1990
period; see Figures 5.14, p. 150, Figure 6.31). To see the sensitivity of reported Tw changes
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to this selected historical period, another historical period (1976–2005) is tested. This period
was also used as the reference period to correct biases of climate models (see section 6.3.1).
A large proportion of the years over this selected period (1976–2005), has negative anomalies
with respect to the 1963–2019 period (see Figure 5.14, p. 150).

There is a slight difference between median (across reaches) changes in Tw with respect to
the 1990–2019 period and those with respect to the 1976–2005 period. The largest changes in
Tw with respect to the 1976–2005 period, like the 1990–2019 period, are in spring and summer
across GCM/RCMs and time slices except for the IPSL-CM5A/MRWRF381P (warm and wet)
model (Figure 6.40). In these seasons, median Tw changes with respect to the 1976–2005 period
(resp. the 1990–2019 period) is [+1.95 °C ; +3.07 °C] (resp. [+1.64 °C ; +2.68 °C]) in the middle
of the century, and [+3.51 °C ; +5.35 °C] (resp. [+3.21 °C ; +4.95 °C]) at the end of the century
(Figure 6.40). Note that for these two historical periods, a similar variability is observed for
Tw change (see Figure 6.40). Comparing median (across reaches) Tw anomalies with respect
to the 1990–2019 period to that with respect to the 1976–2005 period also exhibits a very small
difference across seasons and GCM/RCMs under RCP 8.5 (range difference=[-0.7 °C ; +7 °C];
see Figure 6.41).

Figure 6.40: Comparing seasonal changes in Tw with respect to the 1990–2019 period (grey) to that with respect
to the 1976–2005 period (black) for different GCM/RCMs under RCP 8.5 and seasons.
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Figure 6.41: Comparing median (across reaches) anomalies of Tw with respect to the 1990–2019 period to that
with respect to the 1976–2005 period for different GCM/RCMs under RCP 8.5 at the seasonal scale. The values
in the top left corner show the range of difference between two anomalies with different historical period.

6.10.4 Riparian vegetation under climate change

For future projections, an increase of riparian shading, higher than 25 % , could mitigate the
increase in the mean summer Tw by [+3.3 °C ; +4.6 °C] in small streams (see Figure 6.38).
Along with this result, Seixas et al. (2018) found that, in some small mountain streams, the
riparian landscape explains the low sensitivity of projected Tw to projected Ta. Such mitigation
impacts of riparian shading were also seen for Tw past trends in the previous chapter (see
Figure 5.20, p. 156). Nevertheless, here, the T-NET model is ran under constant land use/land
cover (see section 6.2), and hence no changes in riparian vegetation under climate change is
considered while the survival of certain plants and vegetation cover may be also threatened by
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recent climate change (Zarei et al., 2020).
As Ta increases due to climate change, a shift in the spatial distribution of vegetation can

occur. This shift mainly occurs toward the upslopes where the climate would be more favorable
under climate change (Breshears et al., 2008; Feeley et al., 2011). Moreover, decreases in
species abundance, competition, and change in the available plant are observed due to climate
change (Breshears et al., 2008). It is thus important to understand how vegetation cover relates
to climate change. Such knowledge underlies mitigation impacts of vegetation cover for stream
warming.

Some management scenarios related to vegetation cover such as a decrease or increase in
current vegetation cover like the study of Wondzell et al. (2019), can be considered to un-
derstand the impacts of changes in vegetation cover on future Tw changes with respect to the
influence of hydroclimate changes. However, to have a wider perspective, in addition to such
scenarios, as pointed out in the previous chapter (see section 5.7.5), the survival, persistence,
growth rate of planted species, required time for thermal regime recovery under possibly severe
future conditions, and the efficacy of riparian planting (e.g., the type and structure of forest
stands) (Caissie, 2006; Dugdale et al., 2018) should be also considered in management strate-
gies.
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6.11 Conclusion on future changes

Future seasonal and annual Tw changes at the reach resolution are assessed by using the phys-
ical process-based T-NET model coupled with the semi-distributed EROS hydrological model
over the Loire basin. This study is the first one uses the DRIAS-2020 climate projections for
hydrological and thermal projections. Assessing the performance of the selected projections
demonstrate that they are able to get the right values of meteorological variables and seasonal
Tw absolute values, but they fail to reach the observed magnitude of recent trends in Tw. Never-
theless, an increasing trend in Tw in the recent period (1976–2019) is found in projections like
in the retrospective simulation.

Using model outputs across 52 278 reaches over the Loire basin, a consistent increase
in Tw (with respect to the 1990–2019 period) is found in the middle (2040–2069) and at
the end of the century (2070–2099). The median Tw change ranges between +0.72 °C and
+2.68 °C across GCM/RCMs, RCPs, and seasons in the middle of the century. Such range is
[+0.47 °C ; +4.95 °C] at the end of the century. Moreover, two centuries of summer Tw anoma-
lies for the Loire River – with respect to the 1990–2019 period – show a fast increase in the
late 1980s. Nevertheless, depending on the GCM/RCM and RCP such an increase can continue
or get moderate at the end of the century compared to the middle of the century (summer Tw
anomaly at the end of the century=[+2 °C ; +5 °C]).

The greatest changes in Tw happen in spring and summer, especially at the end of the cen-
tury. Moreover, in these seasons, the majority of sub-basins show a decrease in Q in the middle
(median change up to -40 %) and at the end of the century (median change up to -43 %), most
of which are located in HER A. Although there is an increase in Q under RCP 8.5 in sub-basins
in HER B and C, the influence of the increase in Ta (anomalies up to 10 °C with respect to the
1990–2019 period) on Tw changes is more pronounced as a consistent increase in Tw across the
basin is found.

Results show that the largest median (across reaches) Tw anomalies (>+2.3°C=summer Tw
anomaly in 2003), and the largest positive median Ta anomalies (>+2°C), and the largest nega-
tive Q anomalies (< -10%) occur jointly regardless of the season in the future (see Figure 6.35)
except for the winter. This also highlights that hot years like that of the summer of 2003 will be
experienced frequently in the middle and at the end of the century regardless of the season.

Moreover, for the majority of reaches with positive Tw changes, positive Ta changes and
negative Q changes (with respect to the 1990–2019 period) are concomitant, most of which are
located in the upstream part of the basin, HER A. This will likely generate a double penalty
for existing cold-water aquatic communities. However, riparian shading in small mountainous
streams may mitigate such warming. In fact, an increase of > 25 % of riparian shading (from
< 15 % to > 40 %) can mitigate the increase in future summer Tw by [+3.3 °C ; +4.6 °C].
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These findings highlight that both future Tw and Q are required to be used to explain stresses
and shifts experienced by aquatic communities in the future, and using future Ta is not suffi-
cient. This knowledge is imperative to implement effective management measures to lower
the impacts of climate change and to assess future needs for increasing thermal resilience for
aquatic communities.
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CHAPTER7
Final conclusions and perspectives

7.1 Conclusions

Stream temperature is a key factor for water quality, aquatic communities and socio-economic
activities (Poole and Berman, 2001; Ducharne, 2008; Caissie, 2006; Ouellet et al., 2020). There
is an emerging concern about the cumulative effects of impoundments and recent climate change
on thermal regimes at a large scale and a high spatial resolution. The main objective of this
doctoral project was to address these issues at a scale of the Loire River basin, one of the largest
European basin (105 km2) by using a physical process-based thermal (T-NET) (Beaufort et al.,
2016b; Loicq et al., 2018) coupled with a semi-distributed hydrological model (EROS) (Thiéry,
1988; Thiéry and Moutzopoulos, 1995; Thiéry, 2018).

Identifying the influence of impoundments

To address the influence of impoundments, two challenges were encountered. Firstly, the T-
NET thermal model does not take into account impoundments, and thus could only produce
“natural” thermal regimes. Therefore, it could not be used at this step. Secondly, we lacked
Tw data for both upstream and downstream parts of impoundments, and thus the impacts of im-
poundments could not be evaluated by using upstream reference conditions – a traditional prac-
tice favored in the literature (Webb and Walling, 1993, 1996, 1997; Lowney, 2000; Preece and
Jones, 2002; Casado et al., 2013; Maheu et al., 2016c; Chandesris et al., 2019). Consequently,
the first objective of this doctoral project was to distinguish between altered and natural thermal
regimes and identify the influence of impoundments without a prior information on the source
of modification or upstream water temperature conditions, using observed Tw data at the scale
of the Loire River basin. To do so, analogous to “hydrological signatures” (Gupta et al., 2008),
we defined the novel “thermal signatures” based on observed stream-air temperature linear re-
gression and seasonality analysis at 330 Tw stations on medium and small streams (i.e., regimes
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sensitive to anthropogenic alterations) scattered over the Loire River basin (see Figure 3.5, p. 58
and Table 3.1, p. 58).

Thermal signatures were designed to identify two dominant modes of thermal alteration in-
duced by dams and ponds in the Loire River basin. Indeed, thermal signatures enabled a rapid
and clear evaluation of the cumulative impacts of human impoundments, and helped distin-
guishing between altered and natural regimes and identifying the influence of dams and ponds
(see section 3.4, p. 63). Results indicated that large dams, at local scales, decreased sum-
mer stream temperature and delayed the annual stream temperature peak relative to the natural
regimes (see Figure 3.18, p. 80). Moreover, very large dams (IRI>20% ) completely erased the
stream-air temperature correlation (see Figure 3.15, p. 74). In contrast, the cumulative effects
of upstream ponds increased summer stream temperature and increased synchronicity with the
air temperature regime (see Figure 3.18, p. 80).

Improving the hydraulic geometry and riparian shading in T-NET

The second objective of this work was to make some modifications to the T-NET thermal model
to improve hydraulic geometry and riparian shading, using natural stations identified through
the thermal signatures in the first objective. In this regard, firstly, a new hydraulic geometry
model developed through a Random Forest approach (Morel et al., 2020) was used and could
better predict river width and river depth compared to the previous hydraulic geometry model,
ESTIMKART (Lamouroux et al., 2010). It slightly improved the model performance in simu-
lating daily Tw over winter months in small and medium rivers compared to the ESTIMKART
model (see Figure 4.16, p. 109). Secondly, dynamic riparian shading as a function of tree
height, river width, solar elevation angle, vegetation density, and phenology (Li et al., 2012;
Loicq et al., 2018) was implemented instead of considering a constant riparian shading, which
also improved T-NET performance over the summer months in small and medium streams (see
Figure 4.17, p. 111).

Quantifying the influence of impoundments by T-NET bias

After improving the T-NET thermal model, the third objective was to use its outputs to infer and
quantify the impacts of dams and ponds at the altered stations identified through the thermal sig-
natures in the first objective. Comparison between T-NET model bias – i.e. difference between
simulated (natural) and observed (influenced) Tw – in hot and in cool years at stations in a re-
gion with a lots of ponds (the Vienne basin and its surroundings), and in another region with
several large dams (the upstream part in HER A) helped to quantify impacts of impoundments
in a hot year with respect to a cool year (see Figures 4.27, p. 122 and 4.30, p. 125 and 4.31,
p. 126). Moreover, a significant increase in the heating effect of ponds – i.e. mean positive
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difference of daily observed (influenced) and simulated (natural) Tw from March–October –
was found in recent years over the 2009–2017 period with the most pronounced increase at the
most ponded station (see Figure 4.28, p. 123).

Assessing regional, multi-decadal past trends in natural Tw

The fourth objective was to reconstruct Tw over the 1963–2019 period, using the T-NET thermal
model outputs to estimate the magnitude of past trends in simulated Tw (at the seasonal and
annual scales) and assess the variation in such trends in relation with hydroclimate changes (i.e.,
Ta and Q), stream size, landscape diversity (different HERs) and riparian shading (extracted
from the T-NET model).

We found consistent increasing Tw trends at the scale of the entire Loire River basin, regard-
less of the season (see Figures 5.8, p. 143 and 5.5, p. 139). Such results were consistent with
past trends observed in other European basin with clear increases in Tw over the recent decades
(see Table 5.7.2, p. 162). Critically, the rate of warming for stream temperature in the current
study was in the majority of cases higher than the rate of atmospheric warming (see Figure 5.8,
p. 143), suggesting a decoupling of thermal trajectories linked to other factors like decreasing
Q, especially in the southern headwaters (see Figures 5.9 143 and 5.11, p. 146 and 5.12, p. 147).
Indeed, spring and summer stream temperature, air temperature, and streamflow time series ex-
hibited common change-points occurring in the late 1980s, suggesting a temporal coherence
between changes in the hydroclimatic drivers and a rapid stream temperature response (see Fig-
ure 5.17, p. 153). Moreover, Tw trends in all seasons except winter were greater in rivers with
Strahler order> 5 (see Figure 5.19, p. 155), which we attributed to lack of the mitigation ef-
fect of riparian shading for large rivers. There was also a synchronicity of years with extreme
low flows and high stream temperature in the southern headwaters, doubling the problem for
cold-water aquatic communities (see Figure 5.5, p. 139). However, riparian shading in small
mountainous streams mitigated this warming (see Figure 5.20, p. 156).

The current study suggested that Ta and Q could exert a joint influence on Tw, based on
an analysis of the spatial coherence and temporal synchronicity of these variables. Assessing
causal influence of these factors on Tw trends was left for future research. In this regard, one
could devise a formal attribution framework where one may e.g. remove trends in Q and trends
in Ta alternatively in T-NET inputs.

Assessing regional changes in natural Tw over the 21st century

Finally, the last objective was to understand the magnitude of Tw changes under a few future
climate projections (provided by DRIAS-2020 over France, Soubeyroux et al., 2020) and effects
of hydroclimate changes (i.e., Ta and Q), stream size, landscape diversity (different HERs) and
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riparian shading on such Tw changes at a large scale and a high spatial resolution.

First of all, seven carefully contrasted projections managed to get the right values of mete-
orological variables and seasonal Tw absolute values over the recent period, but they failed to
reach the observed magnitude of recent trends in Tw and their spatial variability (see Figures 6.3
p. 179 and 6.5 p. 181 and 6.7 p. 184). Projected Tw showed a consistent increase in future Tw
towards the end of the century over the whole Loire River basin across projections and seasons
(see Figure 6.18, p. 201 and 6.19, p. 202). Nevertheless, depending on the RCP, the magnitude
of this increase would continue or become moderate at the end of the century compared to the
middle of the century (see Figure 6.26, p. 212 and Figure 6.31, p. 220). Such important changes
in future Tw were also found in other climate change impact studies, which used RCPs of the
fifth report of IPCC like the current study (IPCC, 2014). But, the large scale and fine spatial
resolution of the current study is unique as well as being among the very few studies conducted
in Europe or even over the world (see Table 6.10.1, p. 237).

In addition to positive Tw changes, a considerable decrease in future Q especially in spring
and summer, was found (see Table 6.4). The majority of the sub-basins with a decrease in Q
were located in the upstream part of the basin, HER A. Indeed, like in the past trend analysis, the
largest Tw anomalies synchronized with the negatives Q anomalies, suggesting a decoupling of
thermal trajectories linked to decreasing Q (see Figure 6.35, p. 226). Moreover, the positive Tw
changes, positive Ta changes and negative Q changes (with respect to the 1990–2019 period)
were concomitant at the majority of the reaches (see Figure 6.36, p. 228) especially in upstream
part of the Loire River basin, in HER A (see Figures E.28 and E.29). Like in the past trend anal-
ysis, such joint effects would likely generate a double penalty for existing cold-water aquatic
communities in the mountain streams. Nevertheless, riparian vegetation shading could mitigate
future increase in the summer Tw for small streams (see Figure 6.38, p. 231). Moreover, an
increase in Q in sub-basins in HER B and C was found; however the influence of the increase
in Ta (see Figure 6.12, p. 194) on Tw changes was more pronounced as a consistent increase in
Tw across the basin was found (see Figure 6.20, p. 204).

Natural Tw and the influence of impoundments

It should be noted that natural Tw time series were used in the current study for detecting trends
over the past and assessing changes in future Tw as both the EROS and the T-NET models
do not consider the influence of impoundments (see section 4.1, p. 85 and section 4.2, p. 89).
However, dams and ponds can alter these natural downstream Tw regimes in a diversity of ways
(see Figure 3.18, p. 80). For instance, large dams, by releasing cold hypolimnetic water in
summer (like what was found through first objective) can lower downstream Tw and mitigate
the increasing trend in Tw, which could be important for streams in southern headwaters (HER
A) since this area experience the largest past Tw trends (see Figure 5.5, p. 139), and gathers
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most of existing large dams (see Figure 2.1, right panel, p. 44).
In contrast to large dams, the cumulative effects of upstream ponds can exacerbate increas-

ing trends in Tw (which was also found in the first objective). In this regard, an increase in
the heating effect of ponds on Tw over recent years (2009–2017) was found here (through third
objective) (see Figure 4.28, p. 123). The warming effect of such surface waters in the current
study may be more significant for streams located in lowlands in the middle and north of the
Loire River basin where most of the shallow reservoirs are located (see Figure 2.1 (right panel),
p. 44).

Moreover, the impacts of dams and ponds can be exacerbated in hot years, which were
projected here to be more frequent in future (Figure 6.35, p. 226). In this regard, using T-NET
natural simulations at altered stations revealed that the impacts of impoundments in a hot year
could be 2-4 times larger than in a cool year.

7.2 Perspectives

The perspectives of this dissertation are multiple and they are explained in different sections.

Applications of thermal signatures

The proposed thermal signatures approach can be applied to the other regions impacted by
anthropogenic impoundments to identify highly influenced reaches and hotspots, and trace sys-
tematic thermal alterations at a large scale. Our thermal signatures were designed to identify
two dominant modes of thermal alteration induced by dams and ponds in the Loire River basin,
but they may reveal other modes of operation in other regions, and other thermal signatures may
be needed there. They can also be used in regions with the available data for both the upstream
and downstream parts of impoundments to validate this thermal signature approach by compar-
ing altered regimes identified through observations – a traditional practice favored by existing
literature. Other thermal signatures can also be added to proposed ones. For instance, signatures
like the amplitude and phase of paired annual air and stream temperature can be used to identify
the influence of shallow groundwater inputs, which show a high vulnerability to climate change
(Hare et al., 2021). Moreover, the synthesis of thermal signatures and hydrological signatures
could be applicable to analyze fish and macroinvertebrate communities or to identifying the
influence of groundwater inputs.

Critically, by identifying near natural thermal regimes, and distinguishing between natural
and altered regimes, thermal signatures provide some important information to managers on
reference conditions and strategic Tw measurement networks. Managers may synthesize and
collect data along spatial gradients of identified alterations. For instance, such signatures un-
derscore a need to grow and maintain Tw sensor networks over the Loire basin as well as at the
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national scale. Figure 2.5 (p. 47) however shows a strong decrease in Tw measurements in the
last years over the Loire River basin.

In the current study we lacked data on the depth of the pond/shallow reservoirs at this scale,
preventing us from using the residence time, which is an important descriptor of alterations
induced by ponds (Maheu et al., 2016c; Chandesris et al., 2019). The relationship between this
descriptor and alterations induced by ponds can be assessed once such data are available or
when proposed thermal signatures are applied to other regions with available data on the depth
of ponds/shallow reservoirs.

Ultimately, these signatures can be used to differentiate natural regimes from altered ones
to develop a reference-condition model based on identified natural regimes (Hill et al., 2013).
Then, this natural model can be used at the identified altered stations to quantify the influence
of impoundments like what was done in the current study in the third objective (using T-NET
thermal model). They can also be used in conjunction with thermal models like in the current
study to identify biases, leading to improve the performance of the thermal model.

Improving the thermal model

At the level of the thermal model, further modifications can be applied to improve its perfor-
mance. Such modifications or improvements can be considered in other thermal models as
well. For instance, shading resulting from topography has been neglected in the T-NET thermal
model of the current study. However, this can be high of importance especially for reaches in
high altitudes in HER A in the Loire River basin. Therefore, a routine for computing topography
shading (e.g., Moore et al., 2014; Sun et al., 2015) can be inserted in the T-NET model.

Moreover, the estimated tree height and vegetation density in the routine used for computing
riparian shading (the so-called variable method) can be improved using LiDAR data. In the
future, when LiDAR data are available at a large scale (e.g., at the scale of the Loire River
basin), such data can be used to improve the performance of the model following Loicq et al.
(2018). Note that changes in land-use between the time of extraction and usage of the data may
lead to some uncertainties in the results.

Further, a routine for snow melt can be considered in the thermal model. For instance, here,
the EROS hydrological model coupled with the T-NET thermal model does not provide data on
snow melt. However, solid precipitation can have a significant influence on Q and Tw of rivers
at high altitudes. Recently Yan et al. (2021) showed that the thermal regime of snowmelt-fed
rivers are more vulnerable to a warming climate, showing the importance of considering snow
melt in thermal models for future assessments.

Models like T-NET can be transferred to regions with an available connected hydrographic
network, available hourly meteorological variables, and modeled stream flows. In this regard,
the T-NET thermal model coupled with the J2000 hydrological model (instead of the EROS
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hyrological model) is going to be used over the Saône basin (29 000 km2). The J2000 hy-
drological model was originally developed at Friedrich-Schiller University in Jena (Germany)
to meet the challenges of the Water Framework Directive (Krause et al., 2006), and has been
co-developed at INRAE, Riverly since 2011. This hydrological model has been implemented
over the Rhône basin (J2000-Rhône) since 2013 (Cipriani et al., 2014; Branger et al., 2016). A
significant improvement to the underground part of this model (classification of the lithology
and parameterization) was reached (Branger et al., 2020), allowing a better representation of
the underground contribution to flows, especially on the Saône basin.

The J2000 hydrological model is indeed a fully distributed process-based hydrological
model, based on the Hydrological Response Unit (HRU) concept. The units are homogeneous
in terms of topography, geology, land use and soil properties. In contrast to the hydrological
model of the current study (EROS), J2000- Rhône can have a finer spatial resolution, and it con-
siders the impact of impoundments. As J2000 can provide regulated streamflows, a routine for
considering the influence of impoundments can be added to the thermal model. Consequently,
this thermal model can be applied to assess different management scenarios. For instance, they
can be executed with and without considering the influence of impoundments, and obtained
thermal regimes from these execution can be compared to quantify and infer the influence of
impoundments on the thermal regime. Quantifying the impact of impoundments may provide
managers with required knowledge and materials to take proper actions against the negative
impacts of impoundments. This quantification is similar to what was done in Chapter 4 of the
current study at the altered stations identified through thermal signatures. Moreover, scenarios
of impoundments management and future projections can be combined to assess the influence of
impoundments in the context of climate change and to have a better understanding of plausible
futures.

Further exploration on stream temperature under climate change

In the current study, three varied GCM/RCMs and RCPs, and seven projections in total provided
by DRIAS-2020 (Soubeyroux et al., 2020) were used. These projections were selected from the
30 projections provided by DRIAS-2020 and further a subset of five from DRIAS-2020 pro-
jections suggested by Météo-France (see section 6.1). Therefore, in future assessments, more
projections e.g. all 30 DRIAS-2020 projections can be used in both EROS and T-NET models.
Indeed, the more GCM/RCMs and RCPs, the better would be our understanding of plausible
futures and climate model uncertainty. Additionally, we tried to describe the future projec-
tions and assessed performance of projections with the available observed data. We described
the projections; however, there is still a need to understand better propagation of uncertainties
coming from the hydrological and hydraulic geometry models on the thermal model.

Moreover, a national project called “EXPLORE2” is going to publish a collection of pro-
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jected streamflows from multiple hydrological models under the DRIAS-2020 projections over
France between 2022 and 2023 (https://professionnels.ofb.fr/fr/node/1244). In fact, the objec-
tive of this project is to evaluate the impacts of climate change on water resources over France
for the 21st century. Such hydrological projections can be used to project Q, which can be
used in T-NET model to project Tw. Projected Q and Tw by these hydrological projections can
be compared with those projected by EROS. This can help assessing the differences between
projected stream temperatures across different hydrological projections and to have better un-
derstating of uncertainties across different hydrological models. Additionally, EXPLORE2 is
going to provide new climate projections on top of DRIAS-2020 (Soubeyroux et al., 2020).
These new projections can also be used to project Q and Tw in the future in addition to DRIAS-
2020 projections.

In the current study, both EROS and T-NET were run under constant land use/land cover (see
section 6.2, p. 177), therefore no change in vegetation cover due to current and future climate
change was considered. However, the perspectives of beyond EXPLORE2 is to provide land
use/land cover scenarios in hydrological models. Once they will be available, they can be used
in the hydrolgoical model(s) forcing T-NET. However, riparian shading itself is an important
regulator for Tw, and scenarios of changes in riparian vegetation may be implemented directly
in the thermal model like the study of Wondzell et al. (2019). All these scenarios may help
understanding the impacts of reduction/increase in vegetation cover induced by climate change
on future stream temperature and assess the mitigation impacts of planting trees along rivers.

Integrating the impacts of impoundments in both hydrological and thermal
models

As mentioned several times in the text, the EROS hydrological model and consequently, the
T-NET thermal do not take into account the influence of impoundments. Therefore, another
improvement to T-NET or thermal models like T-NET (which produce natural regimes) would
be to consider the impact of impoundments on thermal regimes. For this aim, first of all, a
hydrological model, which considers such impacts is required. Nevertheless, other information
and data on top of regulated Q by impoundments may be required since, for instance, large
dams may affect thermal regimes not only through Q regulation, but also through modifying
the components of heat budget as a results of a reservoir thermal stratification. The literature
also shows that although there are a few distributed thermal models (e.g., Yearsley, 2009; Wu
et al., 2012; Yearsley, 2012; Li et al., 2015), they do not include reserevoir thermal stratifi-
cation (Niemeyer et al., 2018). In fact, these thermal models mainly increase the river cell
to increase the travel time at the site of the reservoir, which could successfully simulate Tw
downstream of impoundments with a relatively short residence time (e.g., Yearsley, 2012; Li

253



7.2. PERSPECTIVES 7

et al., 2015, and see Niemeyer et al. (2018), Table 1). However, such a representation decreased
model performance at locations of large dams. In this regard, Niemeyer et al. (2018) developed
a new component to represent the effects of stratification on reservoir, and used this compo-
nent to their thermal model to simulate Tw. Their proposed module could decrease the bias in
simulating downstream Tw. Therefore, combination of these approaches for different types of
anthropogenic impoundments can be taken into account in a thermal model provided that the
information on dam mode-of-operation, is available.

Using thermal models outputs in ecological settings

The current study mainly used seasonal and annual Tw metrics to present and explain the im-
pacts of past and future climate changes. These metrics explain the magnitude components of
a thermal regime; nevertheless, many other Tw metrics including ecologically important Tw
metrics (see Verneaux et al., 1977; Buisson et al., 2008; Steel et al., 2017) can be used. Note
that the T-NET performance in simulating the desired metric should be assessed before hand.
For instance, the model can simulate quite well the maximum monthly Tw at 67 stations with
continuous daily data over the 2010–2014 period (median bias=0.5°C).

Finally, outputs of thermal models like the T-NET model can be applied in many ecological
settings. Indeed, such implications are already in progress over the Loire River basin by using
outputs of both EROS and T-NET models. For instance, the current study was defined in parallel
with a doctoral project related to the spatial organization of aquatic communities at a large scale.
In this project, in the first step, using the EROS and T-NET outputs and extensive biological
monitoring data, the influence of fine scale modeled Tw and Q (extracted from the T-NET
model) on the spatial organization of aquatic communities at a large scale (Loire basin) over
the period 1990–2010, is assessed. The contents of this assessment were already submitted and
the manuscript is under review. In the second step, the spatial distribution of (contemporary)
fish and macroinvertebrates communities at the reach scale is going to be modeled by using
biological abundance data and environmental and landscape variables (e.g., vegetation cover,
slope, stream temperature, streamflow, air temperature river depth and width extracted from the
T-NET model) over the period 2007-2017. Ultimately, the potential impacts of climate change
on the future aquatic communities using species distribution models developed by the same
approach in the second step will be assessed.

Moreover, Recently, Arevalo et al. (2020) proposed an approach to study impacts of joint
temporal trends in Tw and Q on migratory fish. They have tested this methodological framework
on more than 30 years (1976–2019) of Tw and Q data for 6 large French rivers (the Garonne,
Dordogne, Rhône, Rhine, Loire and Vienne rivers in France), and found influences of joint
temporal trends on species migrating. This study is going to continue at the scale of the Loire
River basin using T-NET and EROS outputs.
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Conclusions finales et perspectives

Conclusion

La température des cours d’eau est un facteur clé pour la qualité de l’eau, les communautés
aquatiques et les activités socio-économiques (Poole and Berman, 2001; Ducharne, 2008; Caissie,
2006; Ouellet et al., 2020). Il existe une inquiétude émergente concernant les effets cumulatifs
des retenues et des changements climatiques récents sur les régimes thermiques à grande échelle
et à haute résolution. L’objectif principal de ce projet doctoral était d’aborder ces questions à
l’échelle du bassin de la Loire, l’un des plus grands bassins européens (105 km2) en utilisant un
procédé physique thermique (T-NET) (Beaufort et al., 2016b; Loicq et al., 2018) couplé à un
modèle hydrologique semi-distribué (EROS) (Thiéry, 1988; Thiéry and Moutzopoulos, 1995;
Thiéry, 2018).

Identifier l’influence des retenues

Pour contrer l’influence des retenues, deux défis ont été rencontrés. Premièrement, le mod-
èle thermique T-NET ne prend pas en compte les retenues, et ne pourrait donc produire que
des régimes thermiques « naturels ». Par conséquent, il n’a pas pu être utilisé à cette étape.
Deuxièmement, nous manquions de données Tw pour les parties amont et aval des retenues, et
donc les impacts des retenues n’ont pas pu être évalués en utilisant des conditions de référence
en amont – une pratique traditionnelle privilégiée dans la littérature (Webb and Walling, 1993,
1996, 1997; Lowney, 2000; Preece and Jones, 2002; Casado et al., 2013; Maheu et al., 2016c;
Chandesris et al., 2019). Par conséquent, le premier objectif de ce projet doctoral était de dis-
tinguer les régimes thermiques altérés et naturels et d’identifier l’influence des retenues sans
information préalable sur la source de modification ou les conditions de température de l’eau
en amont, à partir des données Tw observées à l’échelle de la Loire bassin. Pour ce faire, de
manière analogue aux « signatures hydrologiques » (Gupta et al., 2008), nous avons défini les
nouvelles « signatures thermiques » sur la base de la régression linéaire de Tw-Ta observée et de
l’analyse de la saisonnalité à 330 stations Tw sur des cours d’eau moyens et petits (c’est-à-dire,
des régimes sensibles aux altérations anthropiques) dispersées sur le bassin de la Loire (voir
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Figure 3.5, p. 58 et Tableau 3.1, p. 58). Les signatures thermiques ont mis en évidence deux
modes dominants d’altération thermique induits par les barrages et les étangs du bassin de la
Loire. En effet, les signatures thermiques ont permis une évaluation rapide et claire des impacts
cumulatifs des retenues humaines, et ont aidé à faire la distinction entre les régimes altérés et
naturels. Ils pourraient aider à distinguer les régimes altérés des régimes naturels et à identifier
l’influence des barrages et des étangs (voir section 3.4, p. 63). Les résultats ont indiqué que
les grands barrages, à l’échelle locale, diminuaient la température estivale des cours d’eau et
retardaient le pic annuel de température des cours d’eau par rapport aux régimes naturels. De
plus, les très grands barrages (IRI>20%) ont complètement effacé la corrélation entre Tw et Ta.
En revanche, les effets cumulatifs des étangs en amont ont augmenté la température estivale des
cours d’eau et augmenté la synchronisation avec le régime de température de l’air.

Amélioration de la géométrie hydraulique et de l’ombrage riverain dans
T-NET

Le deuxième objectif de ce travail était d’apporter quelques modifications au modèle thermique
T-NET pour améliorer la géométrie hydraulique et l’ombrage riverain en utilisant des stations
naturelles identifiées grâce aux signatures thermiques du premier objectif. À cet égard, tout
d’abord, un nouveau modèle de géométrie hydraulique développé grâce à une approche de forêt
aléatoire (Morel et al., 2020) a été utilisé et pourrait mieux prédire la largeur et la profondeur
de la rivière par rapport au modèle de géométrie hydraulique précédent, ESTIMKART (Lam-
ouroux et al., 2010). Il a légèrement amélioré les performances du modèle en simulant la Tw
quotidienne au cours des mois d’hiver dans les petites et moyennes rivières par rapport au mod-
èle ESTIMKART (voir Figure 4.16, p. 109). Deuxièmement, un ombrage riverain dynamique
en fonction de la hauteur des arbres, de la largeur de la rivière, de l’angle d’élévation solaire,
de la densité de la végétation et de la phénologie (Li et al., 2012; Loicq et al., 2018) a été
mis en œuvre au lieu de considérer un ombrage riverain constant, qui a également amélioré les
performances du T-NET au cours des mois d’été dans les petits et moyens cours d’eau (voir
Figure 4.17, p. 111).

Quantification de l’influence des retenues par biais T-NET

Après avoir amélioré le modèle thermique T-NET, le troisième objectif était d’utiliser ses résul-
tats pour déduire et quantifier les impacts des barrages et des étangs aux stations modifiées qui
ont été identifiées grâce aux signatures thermiques du premier objectif. Comparaison entre le
biais du modèle T-NET – c’est-à-dire la différence entre la Tw simulée (naturelle) et observée
(influencée) – pendant les années chaudes et fraîche aux stations d’une région avec beaucoup
d’étangs (le bassin de la Vienne et ses environs), et dans une autre région avec plusieurs grands
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barrages (la partie amont dans HER A) a permis de quantifier les impacts des retenues en an-
née chaude par rapport à une année fraîche (voir Figures 4.27, p. 122 et 4.30, p. 125 et 4.31,
p. 126). De plus, une augmentation significative de l’effet de chauffage des étangs - c’est-à-dire
une différence positive moyenne de la Tw quotidienne observée (influencée) et simulée (na-
turelle) de mars à octobre - a été trouvée ces dernières années sur la période 2009-2017 avec
l’augmentation la plus prononcée à la station la plus étangée (voir Figure 4.28, p. 123).

Évaluer les tendances passées de la Tw naturelle à l’échelle régionale

Le quatrième objectif était de reconstruire Tw sur la période 1963–2019, en utilisant les sorties
du modèle thermique T-NET pour estimer l’ampleur des tendances passées de la Tw simulée
(aux échelles saisonnières et annuelles) et évaluer la variation de ces tendances en relation avec
les changements hydroclimatiques (c’est à dire Ta et Q), la taille des cours d’eau, différentes
HERs et l’ombrage riverain (extrait du modèle T-NET). Nous avons trouvé des tendances à
la hausse cohérentes de Tw à l’échelle de l’ensemble du bassin de la Loire, quelle que soit
la saison (voir Figures 5.8, p. 143 et 5.5 , p. 139). Ces résultats étaient cohérents avec les
tendances passées observées dans d’autres bassins européens avec une nette augmentation de
Tw au cours des dernières décennies (voir Tableau 5.7.2, p. 162). De manière critique, le taux
de réchauffement de la température du cours d’eau dans l’étude actuelle était dans la majorité
des cas supérieur au taux de réchauffement atmosphérique (voir Figure 5.8, p. 143), suggérant
un découplage des trajectoires thermiques lié à d’autres facteurs comme la diminution de Q,
en particulier dans les eaux d’amont sud (voir Figures 5.9 143 et 5.11, p. 146 et 5.12, p. 147).
En effet, les séries temporelles de la température des cours d’eau au printemps et en été, de la
température de l’air et des débits ont montré des points de changement communs survenant à la
fin des années 1980, suggérant une cohérence temporelle entre les changements dans les facteurs
hydroclimatiques et une réponse rapide de la température des cours d’eau (voir la Figure 5.17,
p. 153). De plus, les tendances Tw en toutes saisons sauf en hiver étaient plus importantes dans
les rivières avec un ordre Strahler> 5 (voir Figure 5.19, p. 155), ce que nous avons attribué au
manque d’atténuation effet de l’ombrage riverain pour les grandes rivières. Il y avait également
une synchronicité d’années avec des débits extrêmement faibles et une température élevée des
cours d’eau dans les eaux d’amont sud, doublant le problème pour les communautés aquatiques
d’eau froide (voir Figure 5.5, p. 139). Cependant, l’ombrage riverain dans les petits ruisseaux
de montagne a atténué ce réchauffement (voir Figure 5.20, p. 156).
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Évaluer les changements de Tw naturel au cours du 21e siècle à l’échelle
régionale

Enfin, le dernier objectif était de comprendre l’ampleur des changements de Tw sous quelques
projections climatiques futures (fournies par DRIAS-2020 sur la France, Soubeyroux et al.,
2020) et les effets des changements hydroclimatiques (Notamment Ta et Q), cours d’eau la
taille, la diversité du paysage (différentes HER) et l’ombrage riverain sur de tels Tw changent à
grande échelle et à haute résolution spatiale. Tout d’abord, sept projections soigneusement con-
trastées ont pu obtenir les bonnes valeurs des variables météorologiques et des valeurs absolues
saisonnières de Tw sur la période récente, mais elles n’ont pas réussi à reproduire l’ampleur
observée des tendances récentes de Tw et leur variabilité spatiale (voir les Figures Figures 6.3
p. 179 et 6.5 p. 181 et 6.7 p. 184).

Les scénarios de Tw projetée a montré une augmentation constante de la Tw future vers la
fin du siècle sur l’ensemble du bassin de la Loire à travers les projections et les saisons (voir
Figures 6.18, p. 201 et 6.19, p. 202). Néanmoins, selon les RCP, l’ampleur de cette augmen-
tation se poursuivrait ou deviendrait modérée à la fin du siècle par rapport au milieu du siècle
(voir Figure 6.26, p. 212 et Figure 6.31, p. 220). Des changements aussi importants dans le futur
Tw ont également été trouvés dans d’autres études d’impact sur le changement climatique, qui
ont utilisé les RCP du cinquième rapport du IPCC comme l’étude actuelle (IPCC, 2014). Mais,
la grande échelle et la résolution spatiale fine de l’étude actuelle est unique et fait partie des très
rares études menées en Europe ou même dans le monde (voir Tableau 6.10.1, p. 237).

En plus des changements positifs de Tw, une diminution considérable du futur Q, en parti-
culier au printemps et en été, associée aux scénarios simulés (voir le tableau 6.4). La majorité
des sous-bassins avec une diminution de Q sont situés dans la partie amont du bassin, HER
A. En effet, comme dans l’analyse de tendance passée, les plus grandes anomalies Tw se syn-
chronisent avec les anomalies Q négatives, suggérant un découplage des trajectoires liées à la
diminution de Q (voir Figure 6.35, p. 226). De plus, les changements positifs de Tw, les change-
ments positifs de Ta et les changements négatifs de Q (par rapport à la période 1990-2019) sont
concomitants à la majorité des biefs (voir Figure 6.36, p. 228) en particulier dans la partie
amont du bassin de la Loire, dans HER A (voir Figures E.28 et E.29). Comme dans l’analyse
des tendances passées, de tels effets conjoints engendreraient probablement une double pénal-
ité pour les communautés aquatiques d’eau froide existantes dans les ruisseaux de montagne.
Néanmoins, l’ombrage de la végétation riveraine pourrait atténuer l’augmentation future de la
Tw estivale pour les petits ruisseaux (voir Figure 6.38, p. 231). De plus, une augmentation de
Q dans les sous-bassins de HER B et C a été trouvée; cependant, l’influence de l’augmentation
de Ta (voir Figure 6.12, p. 194) sur les changements de Tw pourrait plus prononcée car une
augmentation cohérente de Tw dans ces HERs a été trouvée (voir Figure 6.20, p. 204).
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Natural Tw et l’influence des retenues

Il convient de noter que les séries temporelles naturelles de Tw ont été utilisées dans la présente
étude pour détecter les tendances dans le passé et évaluer les changements dans le futur Tw, car
les modèles EROS et T-NET ne tiennent pas compte de l’influence des retenues (voir la section
4.1, p. 85 et section 4.2, p. 89). Cependant, les barrages et les étangs peuvent modifier ces
régimes Tw naturels en aval de diverses manières (voir Figure 3.18, p. 80). Par exemple, les
grands barrages, en libérant de l’eau hypolimnétique froide en été (comme ce qui a été trouvé
dans le premier objectif) peuvent abaisser Tw en aval et atténuer la tendance à la hausse de
Tw, ce qui pourrait être important pour les cours d’eau des sources sud (HER A) puisque cette
zone connaît les plus grandes tendances passées Tw, et rassemble la plupart des grands barrages
existants (voir Figure 2.1, panneau de droite, p. 44).

De plus, les impacts des barrages et des étangs peuvent être exacerbés lors des années
chaudes, qui devaient ici être plus fréquentes à l’avenir (Figure 6.35, p. 226). À cet égard,
l’utilisation de simulations naturelles T-NET dans des stations modifiées a révélé que les im-
pacts des retenues pendant une année chaude peuvent être 2 à 4 fois plus importants que pendant
une année froide.

Perspectives

Les perspectives de cette thèse sont multiples et elles sont expliquées dans différentes sections.

Applications des signatures thermiques

L’approche des signatures thermiques proposée peut être appliquée aux autres régions touchées
par les retenues anthropiques pour identifier les tronçons et les points chauds fortement in-
fluencés, et tracer les altérations thermiques systématiques à grande échelle. Nos signatures
thermiques ont mis en évidence deux modes dominants d’altération thermique induite par les
barrages et étangs du bassin de la Loire, mais elles peuvent révéler d’autres modes de fonc-
tionnement dans d’autres régions, et d’autres signatures thermiques peuvent y être nécessaires.
Ils peuvent également être utilisés dans les régions disposant des données disponibles pour les
parties amont et aval des retenues afin de valider cette approche de signature thermique en
comparant les régimes modifiés qui ont été identifiés grâce aux observations - une pratique tra-
ditionnelle favorisée par la littérature existante. D’autres signatures thermiques peuvent égale-
ment être ajoutées à celles proposées. Par exemple, des signatures telles que l’amplitude et
la phase de la température annuelle appariée de l’air et du cours d’eau peuvent être utilisées
pour identifier l’influence des apports d’eaux souterraines peu profondes, qui montrent une
grande vulnérabilité au changement climatique (Hare et al., 2021). De plus, la synthèse des
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signatures thermiques et des signatures hydrologiques pourrait être applicable pour analyser
les communautés de poissons et de macroinvertébrés ou pour identifier l’influence des apports
d’eau souterraine.

De manière critique, en identifiant les régimes thermiques naturels et en distinguant les
régimes naturels des régimes altérés, les signatures thermiques fournissent des informations
importantes aux gestionnaires sur les conditions de référence et les réseaux stratégiques de
mesure Tw. Les gestionnaires peuvent synthétiser et collecter des données le long de gradients
spatiaux d’altérations identifiées. Par exemple, de telles signatures soulignent un besoin de
développer et de maintenir des réseaux de capteurs Tw sur le bassin de la Loire ainsi qu’à
l’échelle nationale. La Figure 2.5 (p. 47) montre cependant une forte diminution des mesures
de Tw ces dernières années sur le bassin de la Loire.

Dans la présente étude, nous manquions de données sur la profondeur des étangs/réservoirs
peu profonds à cette échelle, nous empêchant d’utiliser le temps de résidence, qui est un de-
scripteur important des altérations induites par les étangs (Maheu et al., 2016c; Chandesris
et al., 2019). La relation entre ce descripteur et les altérations induites par les étangs peut être
évaluée une fois que ces données sont disponibles ou lorsque les signatures thermiques pro-
posées sont appliquées à d’autres régions avec des données disponibles sur la profondeur des
étangs/réservoirs peu profonds.

En fin de compte, ces signatures peuvent être utilisées pour différencier les régimes na-
turels des régimes altérés afin de développer un modèle de conditions de référence basé sur des
régimes naturels identifiés (Hill et al., 2013). Ils peuvent également être utilisés en conjonction
avec des modèles thermiques comme dans l’étude actuelle pour identifier les biais, conduisant
à améliorer les performances du modèle thermique.

Amélioration du modèle thermique

Au niveau du modèle thermique, d’autres modifications peuvent être apportées pour améliorer
ses performances. De telles modifications ou améliorations peuvent également être envisagées
dans d’autres modèles thermiques. Par exemple, l’ombrage résultant de la topographie a été
négligé dans le modèle thermique T-NET de la présente étude. Cependant, cela peut être d’une
grande importance en particulier pour les tronçons en haute altitude dans HER A dans le bassin
de la Loire. Par conséquent, une routine de calcul de l’ombrage de la topographie (e.g., Moore
et al., 2014; Sun et al., 2015) peut être insérée dans le modèle T-NET.

De plus, l’estimation de la hauteur des arbres et de la densité de végétation dans la rou-
tine utilisée pour calculer l’ombrage riverain (la méthode dite variable) peut être améliorée à
l’aide des données LiDAR. À l’avenir, lorsque les données LiDAR seront disponibles à grande
échelle (par exemple, à l’échelle du bassin de la Loire), ces données pourront être utilisées
pour améliorer les performances du modèle en suivant Loicq et al. (2018). Il est à noter que
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les changements dans l’utilisation des terres entre le moment de l’extraction et l’utilisation des
données peuvent entraîner certaines incertitudes dans les résultats.

De plus, une routine pour la fonte des neiges peut être considérée dans le modèle thermique.
Par exemple, ici, le modèle hydrologique EROS couplé au modèle thermique T-NET ne fournit
pas de données sur la fonte des neiges. Cependant, les précipitations solides peuvent avoir
une influence significative sur Q et Tw des rivières à haute altitude. Récemment, Yan et al.
(2021) a montré que le régime thermique des rivières alimentées par la fonte des neiges est plus
vulnérable au réchauffement climatique, montrant l’importance de prendre en compte la fonte
des neiges dans les modèles thermiques pour les évaluations futures.

Des modèles tels que T-NET peuvent être transférés dans des régions disposant d’un réseau
hydrographique connecté disponible, de variables météorologiques horaires disponibles et de
débits de cours d’eau modélisés. A cet égard, le modèle thermique T-NET couplé au mod-
èle hydrologique J2000 (en lieu et place du modèle hydrologique EROS) va être utilisé sur le
bassin de la Saône (29 000 km2). Le modèle hydrologique J2000 a été initialement développé
à l’Université Friedrich-Schiller d’Iéna (Allemagne) pour répondre aux défis de la Directive
Cadre sur l’Eau (Krause et al., 2006), et a été co-développé à l’INRAE, Riverly depuis 2011.
Ce modèle hydrologique a été implantée sur le bassin du Rhône (J2000-Rhône) depuis 2013
(Cipriani et al., 2014; Branger et al., 2016). Une amélioration significative de la partie souter-
raine de ce modèle (classification de la lithologie et paramétrage) a été atteinte (Branger et al.,
2020), permettant une meilleure représentation de la contribution souterraine aux écoulements,
notamment sur le bassin de la Saône.

Le modèle hydrologique J2000 est en effet un modèle hydrologique entièrement distribué
basé sur les processus, et sur le concept d’unité de réponse hydrologique (HRU). Les unités
sont homogènes en termes de topographie, de géologie, d’occupation du sol et de propriétés
du sol. Contrairement au modèle hydrologique de l’étude actuelle (EROS), J2000-Rhône peut
avoir une résolution spatiale plus fine, et il considère l’impact des retenues. Comme J2000 peut
fournir des débits régulés, une routine pour considérer l’influence des retenues peut être ajoutée
au modèle thermique. Par conséquent, ce modèle thermique peut être appliqué pour évaluer
différents scénarios de gestion. Par exemple, ils peuvent être exécutés avec et sans tenir compte
de l’influence des retenues, et les régimes thermiques obtenus à partir de ces exécutions peu-
vent être comparés pour quantifier et déduire l’influence des retenues sur le régime thermique.
La quantification de l’impact des retenues peut fournir aux gestionnaires les connaissances et
le matériel nécessaires pour prendre les mesures appropriées contre les impacts négatifs des
retenues. Cette quantification est similaire à ce qui a été fait dans le chapitre 4 de la présente
étude aux stations altérées identifiées par les signatures thermiques. De plus, des scénarios de
gestion des retenues et des projections futures peuvent être combinés pour évaluer l’influence
des retenues dans le contexte du changement climatique et avoir une meilleure compréhension
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des futurs plausibles.

Exploration plus poussée sur la température des cours d’eau sous le change-
ment climatique

Dans la présente étude, trois GCM/RCM et RCP variés, et sept projections au total fournies par
DRIAS-2020 (Soubeyroux et al., 2020) ont été utilisées. Ces projections ont été sélectionnées
parmi les 30 projections fournies par DRIAS-2020 et en outre un sous-ensemble de cinq projec-
tions de DRIAS-2020 suggérées par Météo-France (voir section 6.1). Par conséquent, dans les
évaluations futures, davantage de projections, par exemple les 30 projections DRIAS-2020 peu-
vent être utilisées dans les modèles EROS et T-NET. En effet, plus il y aura de GCM/RCM et de
RCP, meilleure sera notre compréhension des futurs plausibles et de l’incertitude des modèles
climatiques.

De plus, un projet national appelé « EXPLORER2 » va publier entre 2022 et 2023 une
collection de débits projetés à partir de plusieurs modèles hydrologiques sous les projections
DRIAS-2020 sur la France (https://professionnels.ofb.fr /fr/noeud/1244). En effet, l’objectif de
ce projet est d’évaluer les impacts du changement climatique sur les ressources en eau de la
France pour le 21ème siècle. De telles projections hydrologiques peuvent être utilisées pour
projeter Q, qui peut être utilisée dans le modèle T-NET pour projeter Tw. Q et Tw projetés par
ces projections hydrologiques peuvent être comparés à ceux projetés par EROS. Cela peut aider
à évaluer les différences entre les températures projetées des cours d’eau dans différentes pro-
jections hydrologiques et à diminuer les incertitudes dans les différents modèles hydrologiques.
De plus, EXPLORE2 fournira de nouvelles projections climatiques en plus de DRIAS-2020
(Soubeyroux et al., 2020). Ces nouvelles projections peuvent également être utilisées pour pro-
jeter Q et Tw dans le futur en plus des projections DRIAS-2020.

Dans la présente étude, EROS et T-NET ont été exécutés sous une utilisation/couverture des
terres constante (voir la section 6.2), donc aucun changement dans la couverture végétale dû
au changement climatique actuel et futur n’a été pris en compte. Cependant, les perspectives
d’au-delà d’EXPLORER2 sont de fournir des scénarios d’utilisation des terres/d’occupation
des terres dans les modèles hydrologiques. Une fois disponibles, ils pourront être utilisés dans
le(s) modèle(s) hydrologique(s) forçant T-NET. Cependant, l’ombrage riverain lui-même est un
régulateur important pour Tw, et des scénarios de changements dans la végétation riveraine peu-
vent être mis en œuvre directement dans le modèle thermique comme l’étude de Wondzell et al.
(2019). Tous ces scénarios peuvent aider à comprendre les impacts de la réduction/augmentation
de la couverture végétale induite par le changement climatique sur la température future des
cours d’eau et à évaluer les impacts d’atténuation de la plantation d’arbres le long des rivières.
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Intégrer les impacts des retenues dans les modèles hydrologiques et ther-
miques

Comme mentionné à plusieurs reprises dans le texte, le modèle hydrologique EROS et par
conséquent, le modèle thermique T-NET ne prennent pas en compte l’influence des retenues.
Par conséquent, une autre amélioration du T-NET ou des modèles thermiques comme le T-NET
(qui produisent des régimes naturels) serait de considérer l’impact des retenues sur les régimes
thermiques. Pour ce faire, tout d’abord, un modèle hydrologique, qui considère de tels impacts
est nécessaire. Néanmoins, d’autres informations et données en plus du Q régulé par les retenues
peuvent être nécessaires car, par exemple, les grands barrages peuvent affecter les régimes
thermiques non seulement par la régulation du Q, mais aussi en modifiant les composants du
bilan thermique en raison d’une stratification thermique du réservoir. La littérature montre
également que bien qu’il existe quelques modèles thermiques distribués (e.g., Yearsley, 2009;
Wu et al., 2012; Yearsley, 2012; Li et al., 2015), ils n’incluent pas la stratification thermique du
réservoir (Niemeyer et al., 2018). En fait, ces modèles thermiques augmentent principalement
la cellule de la rivière pour augmenter le temps de trajet sur le site du réservoir, ce qui pourrait
simuler avec succès Tw en aval des retenues avec un temps de séjour relativement court (eg,
Yearsley, 2012; Li et al., 2015, et voir Niemeyer et al. (2018), Tableau 1). Cependant, une telle
représentation a diminué les performances du modèle aux emplacements des grands barrages. À
cet égard, Niemeyer et al. (2018) a développé un nouveau composant pour représenter les effets
de la stratification sur le réservoir, et a utilisé ce composant dans son modèle thermique pour
simuler Tw. Leur module proposé pourrait diminuer le biais dans la simulation de Tw en aval.
Par conséquent, la combinaison de ces approches pour différents types de retenues anthropiques
peut être prise en compte dans un modèle thermique à condition que les informations sur le
mode de fonctionnement des barrages soient disponibles.

Utilisation des sorties de modèles thermiques dans des contextes écologiques

La présente étude a principalement utilisé des métriques Tw saisonnières et annuelles pour
présenter et expliquer les impacts des changements climatiques passés et futurs. Ces métriques
expliquent les composantes de magnitude d’un régime thermique ; néanmoins, de nombreuses
autres métriques Tw qui sont écologiquement importantes (voir Verneaux et al., 1977; Buisson
et al., 2008; Steel et al., 2017) peuvent être utilisées. Notez que les performances de T-NET
dans la simulation de la métrique souhaitée doivent être évaluées au préalable. Par exemple,
le modèle peut assez bien simuler la Tw mensuelle maximale à 67 stations avec des données
continues à long terme sur la période 2010-2014 (biais médian=0,5°C).

Enfin, les sorties de modèles thermiques comme le modèle T-NET peuvent être appliquées
dans de nombreux contextes écologiques. En effet, de telles implications sont déjà en cours
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sur le bassin de la Loire en utilisant les sorties du modèle thermique T-NET. Par exemple, la
présente étude a été définie en parallèle d’un projet de doctorat portant sur l’organisation spa-
tiale des communautés aquatiques à grande échelle. Dans ce projet, dans la première étape,
en utilisant les sorties T-NET et des données de surveillance biologique étendues, l’influence
de Tw et Q modélisés (extraits du modèle T-NET) sur l’organisation spatiale des communautés
aquatiques à grande échelle (bassin de la Loire) sur la période 1990-2010, est évalué. Le con-
tenu de cette évaluation a déjà été soumis et est en cours de révision. Dans la deuxième étape,
la distribution spatiale des communautés (contemporaines) de poissons et de macroinvertébrés
à l’échelle du tronçon en utilisant des données d’abondance biologique et des variables envi-
ronnementales et paysagères (par exemple, la couverture végétale, la pente, la température du
cours d’eau, le débit, la température de l’air, la profondeur et la largeur de la rivière extraites
du modèle T-NET) sur la période 2007-2017 va être modélisé. À terme, les impacts poten-
tiels du changement climatique sur les futures communautés aquatiques à l’aide de modèles de
distribution d’espèces développés par la même approche dans la deuxième étape seront évalués.

De plus, Arevalo et al. (2020) a récemment proposé une approche pour étudier les impacts
des tendances temporelles conjointes de Tw et Q sur les poissons migrateurs. Ils ont testé
ce cadre méthodologique sur plus de 30 ans (1976-2019) de données Tw et Q pour 6 grands
fleuves français (Garonne, Dordogne, Rhône, Rhin, Loire et Vienne en France), et ont trouvé
des influences de tendances temporelles conjointes sur les espèces migratrices. Cette étude va
se poursuivre à l’échelle du bassin de la Loire à l’aide des sorties T-NET et EROS.

265



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Bibliography

Ali, S., Mishra, P., Islam, A., and Alam, N. (2016). Simulation of water temperature in a
small pond using parametric statistical models: Implications of climate warming. Journal of

Environmental Engineering, 142(3):04015085.

Allaby, M. (2019). A Dictionary of Plant Sciences. Oxford University Press.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration – Guide-
lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO.

Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-Ocampo, J. A., Carvajal-Vallejos,
F. M., Encalada, A. C., Rivadeneira, J. F., Hidalgo, M., Cañas, C. M., Ortega, H., et al. (2018).
Fragmentation of andes-to-amazon connectivity by hydropower dams. Science advances,
4(1):eaao1642.

Arevalo, E., Lassalle, G., Tétard, S., Maire, A., Sauquet, E., Lambert, P., Paumier, A., Vil-
leneuve, B., and Drouineau, H. (2020). An innovative bivariate approach to detect joint tem-
poral trends in environmental conditions: Application to large french rivers and diadromous
fish. Science of the Total Environment, 748:141260.

Arismendi, I., Johnson, S. L., Dunham, J. B., and Haggerty, R. (2013a). Descriptors of natural
thermal regimes in streams and their responsiveness to change in the pacific northwest of
north america. Freshwater Biology, 58(5):880–894.

Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R., and Hockman-Wert, D. (2012). The
paradox of cooling streams in a warming world: regional climate trends do not parallel vari-
able local trends in stream temperature in the pacific continental united states. Geophysical

Research Letters, 39(10).

Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L. (2014). Can air temperature be
used to project influences of climate change on stream temperature? Environmental Research

Letters, 9(8):084015.

268



BIBLIOGRAPHY 7

Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., and Haggerty, R. (2013b). Increas-
ing synchrony of high temperature and low flow in western north american streams: double
trouble for coldwater biota? Hydrobiologia, 712(1):61–70.

Arora, R., Tockner, K., and Venohr, M. (2016). Changing river temperatures in northern ger-
many: trends and drivers of change. Hydrological Processes, 30(17):3084–3096.

Aulinger, T., Mette, T., Papathanassion, K., Hajnsek, I., Heurich, M., and Krzystek, P.
(2005). Validation of heights from interferometric sar and lidar over the temperate forest
site“nationalpark bayerischer wald”. In ESA Special Publication, volume 586, page 11.

Bador, M., Terray, L., Boe, J., Somot, S., Alias, A., Gibelin, A.-L., and Dubuisson, B. (2017).
Future summer mega-heatwave and record-breaking temperatures in a warmer france climate.
Environmental Research Letters, 12(7):074025.

Bae, M.-J., Merciai, R., Benejam, L., Sabater, S., and García-Berthou, E. (2016). Small weirs,
big effects: disruption of water temperature regimes with hydrological alteration in a mediter-
ranean stream. River Research and Applications, 32(3):309–319.

Batalla, R. J., Gomez, C. M., and Kondolf, G. M. (2004). Reservoir-induced hydrological
changes in the ebro river basin (ne spain). Journal of hydrology, 290(1-2):117–136.

Bauer, D. F. (1972). Constructing confidence sets using rank statistics. Journal of the American

Statistical Association, 67(339):687–690.

Beaufort, A. (2015). Modélisation physique de la température des cours d’eau à l’échelle

régionale: application au bassin versant de la Loire. PhD thesis, Tours.

Beaufort, A., Curie, F., Moatar, F., Ducharne, A., Melin, E., and Thiéry, D. (2016a). T-net,
a dynamic model for simulating daily stream temperature at the regional scale based on a
network topology. Hydrological Processes, 30(13):2196–2210.

Beaufort, A., Moatar, F., Curie, F., Ducharne, A., Bustillo, V., and Thiéry, D. (2016b). River
temperature modelling by strahler order at the regional scale in the loire river basin, france.
River Research and Applications, 32(4):597–609.

Beaufort, A., Moatar, F., Sauquet, E., Loicq, P., and Hannah, D. M. (2020a). Influence of
landscape and hydrological factors on stream–air temperature relationships at regional scale.
Hydrological Processes, 34(3):583–597.

Beaufort, A., Moatar, F., Sauquet, E., and Magand, C. (2020b). Thermie en rivière : Analyse
géostatistique et description de régime : Application à l’échelle de la France. Research report,
INRAE.

269



BIBLIOGRAPHY 7

Benda, L., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G., and Pollock, M. (2004). The
network dynamics hypothesis: how channel networks structure riverine habitats. BioScience,
54(5):413–427.

Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., and Bobée, B. (2007). A review of
statistical water temperature models. Canadian Water Resources Journal, 32(3):179–192.

Berhanu, B., Seleshi, Y., Demisse, S., and Melesse, A. (2015). Flow regime classification and
hydrological characterization: a case study of ethiopian rivers. Water, 7(6):3149–3165.

Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A., Parajka, J., Merz, B., Lun, D., Arheimer, B.,
Aronica, G. T., Bilibashi, A., et al. (2019). Changing climate both increases and decreases
european river floods. Nature, 573(7772):108–111.

Boon, P. and Shires, S. (1976). Temperature studies on a river system in north-east england.
Freshwater Biology, 6(1):23–32.

Bourges, B. (1985). Improvement in solar declination computation. Solar Energy, 35(4):367–
369.

Branger, F., Gouttevin, I., Tilmant, F., Cipriani, T., Barachet, C., Montginoul, M., Le Gros,
C., Sauquet, E., Braud, I., and Leblois, E. (2016). Modélisation hydrologique distribuée du

Rhône. PhD thesis, irstea.

Branger, F., Horner, I., Marçais, J., Caballero, Y., and Braud, I. (2020). Diagnostic of a regional
distributed hydrological model through hydrological signatures. In EGU General Assembly.

Branger, F. and McMillan, H. (2019). Deriving hydrological signatures from soil moisture data.
Hydrological Processes.

Breshears, D. D., Huxman, T. E., Adams, H. D., Zou, C. B., and Davison, J. E. (2008). Vege-
tation synchronously leans upslope as climate warms. Proceedings of the National Academy

of Sciences, 105(33):11591–11592.

Briggs, M. A., Lane, J. W., Snyder, C. D., White, E. A., Johnson, Z. C., Nelms, D. L., and Hitt,
N. P. (2018). Shallow bedrock limits groundwater seepage-based headwater climate refugia.
Limnologica, 68:142–156.

Bruno, D., Belmar, O., Maire, A., Morel, A., Dumont, B., and Datry, T. (2019). Structural and
functional responses of invertebrate communities to climate change and flow regulation in
alpine catchments. Global change biology, 25(5):1612–1628.

270



BIBLIOGRAPHY 7

Brutsaert, W. and Stricker, H. (1979). An advection-aridity approach to estimate actual regional
evapotranspiration. Water resources research, 15(2):443–450.

Buendía, C., Sabater, S., Palau, A., Batalla, R., and Marcé, R. (2015). Using equilibrium
temperature to assess thermal disturbances in rivers. Hydrological Processes, 29(19):4350–
4360.

Buisson, L., Blanc, L., and Grenouillet, G. (2008). Modelling stream fish species distribution
in a river network: the relative effects of temperature versus physical factors. Ecology of

Freshwater Fish, 17(2):244–257.

Buisson, L. and Grenouillet, G. (2009). Contrasted impacts of climate change on stream fish
assemblages along an environmental gradient. Diversity and Distributions, 15(4):613–626.

Bustillo, V., Moatar, F., Ducharne, A., Thiéry, D., and Poirel, A. (2014). A multimodel compar-
ison for assessing water temperatures under changing climate conditions via the equilibrium
temperature concept: case study of the middle loire river, france. Hydrological Processes,
28(3):1507–1524.

Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater biology, 51(8):1389–
1406.

Caissie, D., Satish, M. G., and El-Jabi, N. (2007). Predicting water temperatures using a deter-
ministic model: Application on miramichi river catchments (new brunswick, canada). Jour-

nal of Hydrology, 336(3-4):303–315.

Caissie, D., St-Hilaire, A., and El-Jabi, N. (2004). Prediction of water temperatures using
regression and stochastic models. 57th Canadian Water Resources Association Annual

Congress, 6.

Carlson, A. K., Taylor, W. W., Hartikainen, K. M., Infante, D. M., Beard, T. D., and Lynch, A. J.
(2017). Comparing stream-specific to generalized temperature models to guide salmonid
management in a changing climate. Reviews in Fish Biology and Fisheries, 27(2):443–462.

Casado, A., Hannah, D. M., Peiry, J.-L., and Campo, A. M. (2013). Influence of dam-induced
hydrological regulation on summer water temperature: Sauce grande river, argentina. Eco-

hydrology, 6(4):523–535.

Chandesris, A. and Pella, H. (2006). Constitution d’une base d’information spatialisée «bar-

rages, retenues et plans d’eau» au niveau national en vue d’évaluer les modifications hydro-

morphologiques. PhD thesis, irstea.

271



BIBLIOGRAPHY 7

Chandesris, A., Van Looy, K., Diamond, J. S., and Souchon, Y. (2019). Small dams alter thermal
regimes of downstream water. Hydrology & Earth System Sciences, 23(11).

Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., and Charrad, M. M. (2014). Package
‘nbclust’. Journal of statistical software, 61:1–36.

Cheng, Y., Voisin, N., Yearsley, J. R., and Nijssen, B. (2020). Reservoirs modify river thermal
regime sensitivity to climate change: a case study in the southeastern united states. Water

Resources Research, 56(6):e2019WR025784.

Christensen, O. B., Christensen, J. H., Machenhauer, B., and Botzet, M. (1998). Very high-
resolution regional climate simulations over scandinavia—present climate. Journal of Cli-

mate, 11(12):3204–3229.

Chu, C., Jones, N. E., Mandrak, N. E., Piggott, A. R., and Minns, C. K. (2008). The influence
of air temperature, groundwater discharge, and climate change on the thermal diversity of
stream fishes in southern ontario watersheds. canadian Journal of Fisheries and aquatic

sciences, 65(2):297–308.

Cipriani, T., Tilmant, F., Le Gros, C., Barachet, C., Branger, F., Sauquet, E., Braud, I., Leblois,
E., and Gouttevin, I. (2014). Modélisation hydrologique distribuée du Rhône. Rapport

d’avancement 2014-version finale. PhD thesis, irstea.

Colin, J., Déqué, M., Radu, R., and Somot, S. (2010). Sensitivity study of heavy precipitation in
limited area model climate simulations: influence of the size of the domain and the use of the
spectral nudging technique. Tellus A: Dynamic Meteorology and Oceanography, 62(5):591–
604.

Comte, L., Buisson, L., Daufresne, M., and Grenouillet, G. (2013). Climate-induced changes
in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology,
58(4):625–639.

Cox, T. J. and Rutherford, J. C. (2000). Predicting the effects of time-varying temperatures
on stream invertebrate mortality. New Zealand Journal of Marine and Freshwater Research,
34(2):209–215.

Daniels, M. E. and Danner, E. M. (2020). The drivers of river temperatures below a large dam.
Water Resources Research, 56(5):e2019WR026751.

Dayon, G., Boe, J., Martin, E., and Gailhard, J. (2018). Impacts of climate change on the
hydrological cycle over france and associated uncertainties. Comptes Rendus Geoscience,
350(4):141–153.

272



BIBLIOGRAPHY 7

Devers, A. (2019). Vers une réanalyse hydrométéorologique à l’échelle de la France sur les 150

dernières années par assimilation de données dans des reconstructions ensemblistes. Theses,
Université Grenoble Alpes.

Devers, A., Vidal, J.-P., Lauvernet, C., and Vannier, O. (2021). Fyre climate: A high-resolution
reanalysis of daily precipitation and temperature in france from 1871 to 2012. Climate of the

Past, 17(5):1857–1879.

Domisch, S., Araújo, M. B., Bonada, N., Pauls, S. U., Jähnig, S. C., and Haase, P. (2013).
Modelling distribution in e uropean stream macroinvertebrates under future climates. Global

Change Biology, 19(3):752–762.

Drange, H., Roelandt, C., Seierstad, I., Hoose, C., and Kristjnsson, J. (2012). The norwegian
earth system model, noresm1-m part 1: description and basic evaluation. Geosci Model Dev

Discuss, 5(3):28432931Bollasina.

Dripps, W. and Granger, S. R. (2013). The impact of artificially impounded, residential headwa-
ter lakes on downstream water temperature. Environmental earth sciences, 68(8):2399–2407.

Du, X., Shrestha, N. K., and Wang, J. (2019). Assessing climate change impacts on stream
temperature in the athabasca river basin using swat equilibrium temperature model and its
potential impacts on stream ecosystem. Science of the Total Environment, 650:1872–1881.

Ducharne, A. (2008). Importance of stream temperature to climate change impact on water
quality. Hydrology and Earth System Sciences, 12(3):797–810.

Ducharne, A., Sauquet, E., Habets, F., Déqué, M., Gascoin, S., Hachour, A., Martin, E., Oudin,
L., Pagé, C., Terray, L., et al. (2011). Evolution potentielle du régime des crues de la seine
sous changement climatique. La Houille Blanche, (1):51–57.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y.,
Bekki, S., Bellenger, H., Benshila, R., et al. (2013). Climate change projections using the
ipsl-cm5 earth system model: from cmip3 to cmip5. Climate dynamics, 40(9):2123–2165.

Dugdale, S. J., Hannah, D. M., and Malcolm, I. A. (2017). River temperature modelling: A
review of process-based approaches and future directions. Earth-Science Reviews, 175:97–
113.

Dugdale, S. J., Malcolm, I. A., Kantola, K., and Hannah, D. M. (2018). Stream temperature
under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange
processes. Science of The Total Environment, 610:1375–1389.

273



BIBLIOGRAPHY 7

Edinger, J. E., Duttweiler, D. W., and Geyer, J. C. (1968). The response of water temperatures
to meteorological conditions. Water Resources Research, 4(5):1137–1143.

Edmonds, R., Murray, G., and Marra, J. (2000). Influence of partial harvesting on stream tem-
peratures, chemistry, and turbidity in forests on the western olympic peninsula, washington.
WSU Press.

Elliott, J. and Elliott, J. (2010). Temperature requirements of atlantic salmon salmo salar, brown
trout salmo trutta and arctic charr salvelinus alpinus: predicting the effects of climate change.
Journal of fish biology, 77(8):1793–1817.

Erickson, T. R. and Stefan, H. G. (2000). Linear air/water temperature correlations for streams
during open water periods. Journal of Hydrologic Engineering, 5(3):317–321.

Fang, X. and Stefan, H. G. (2009). Simulations of climate effects on water temperature, dis-
solved oxygen, and ice and snow covers in lakes of the contiguous us under past and future
climate scenarios. Limnology and Oceanography, 54(6part2):2359–2370.

Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P.,
Revilla, N. S., Quisiyupanqui, M. N. R., and Saatchi, S. (2011). Upslope migration of andean
trees. Journal of Biogeography, 38(4):783–791.

Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C., and Souchon, Y. (2013). Global
climate change in large e uropean rivers: long-term effects on macroinvertebrate communities
and potential local confounding factors. Global change biology, 19(4):1085–1099.

Fraley, J. J. (1979). Effects of elevated stream temperatures below a shallow reservoir on a
cold water macroinvertebrate fauna. In The ecology of regulated streams, pages 257–272.
Springer.

Garcia, F., Folton, N., and Oudin, L. (2017). Which objective function to calibrate rainfall–
runoff models for low-flow index simulations? Hydrological sciences journal, 62(7):1149–
1166.

Garg, H. and Datta, G. (1993). Fundamentals and characteristics of solar radiation. Renewable

energy, 3(4-5):305–319.

Garner, G., Hannah, D. M., Sadler, J. P., and Orr, H. G. (2014). River temperature regimes of
england and wales: spatial patterns, inter-annual variability and climatic sensitivity. Hydro-

logical Processes, 28(22):5583–5598.

274



BIBLIOGRAPHY 7

Garner, G., Malcolm, I. A., Sadler, J. P., and Hannah, D. M. (2017). The role of riparian
vegetation density, channel orientation and water velocity in determining river temperature
dynamics. Journal of Hydrology, 553:471–485.

Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M., Bi, X., Elguindi, N., Diro, G., Nair,
V., Giuliani, G., et al. (2012). Regcm4: model description and preliminary tests over multiple
cordex domains. Climate Research, 52:7–29.

Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A. (2013). Low flows in france and their rela-
tionship to large-scale climate indices. Journal of Hydrology, 482:105–118.

Gomi, T., Moore, R. D., and Dhakal, A. S. (2006). Headwater stream temperature response
to clear-cut harvesting with different riparian treatments, coastal british columbia, canada.
Water Resources Research, 42(8).

Gooseff, M. N., Strzepek, K., and Chapra, S. C. (2005). Modeling the potential effects of
climate change on water temperature downstream of a shallow reservoir, lower madison river,
mt. Climatic Change, 68(3):331–353.

Grantz, E. M., Haggard, B. E., and Scott, J. T. (2014). Stoichiometric imbalance in rates of
nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency
in highly-productive reservoirs. Limnology and Oceanography, 59(6):2203–2216.

Gunawardhana, L. N., Kazama, S., and Kawagoe, S. (2011). Impact of urbanization and climate
change on aquifer thermal regimes. Water resources management, 25(13):3247–3276.

Gupta, H. V., Wagener, T., and Liu, Y. (2008). Reconciling theory with observations: elements
of a diagnostic approach to model evaluation. Hydrological Processes: An International

Journal, 22(18):3802–3813.

Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S., Hachour, A., Martin, E., Pagé, C.,
Sauquet, E., Terray, L., et al. (2013). Impact of climate change on the hydrogeology of two
basins in northern france. Climatic change, 121(4):771–785.

Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D. (2018). The cumulative im-
pacts of small reservoirs on hydrology: A review. Science of the Total Environment, 643:850–
867.

Handcock, R., Gillespie, A., Cherkauer, K., Kay, J., Burges, S., and Kampf, S. (2006). Accuracy
and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial
scales. Remote Sensing of Environment, 100(4):427–440.

275



BIBLIOGRAPHY 7

Handcock, R. N., Torgersen, C. E., Cherkauer, K. A., Gillespie, A. R., Tockner, K., Faux, R. N.,
Tan, J., and Carbonneau, P. (2012). Thermal infrared remote sensing of water temperature in
riverine landscapes. Fluvial remote sensing for science and management, 1(2012):85–113.

Hannah, D. M. and Garner, G. (2015). River water temperature in the united kingdom: changes
over the 20th century and possible changes over the 21st century. Progress in Physical Ge-

ography, 39(1):68–92.

Hannah, D. M., Malcolm, I. A., and Bradley, C. (2009). Seasonal hyporheic tempera-
ture dynamics over riffle bedforms. Hydrological Processes: An International Journal,
23(15):2178–2194.

Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F. (2004). Heat exchanges
and temperatures within a salmon spawning stream in the cairngorms, scotland: seasonal and
sub-seasonal dynamics. River Research and Applications, 20(6):635–652.

Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F. (2008). A comparison of forest
and moorland stream microclimate, heat exchanges and thermal dynamics. Hydrological

Processes: An International Journal, 22(7):919–940.

Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W., and Briggs, M. A. (2021). Continental-
scale analysis of shallow and deep groundwater contributions to streams. Nature communi-

cations, 12(1):1–10.

Hari, R. E., Livingstone, D. M., Siber, R., BURKHARDT-HOLM, P., and Guettinger, H. (2006).
Consequences of climatic change for water temperature and brown trout populations in alpine
rivers and streams. Global Change Biology, 12(1):10–26.

Harrison, J. A., Maranger, R. J., Alexander, R. B., Giblin, A. E., Jacinthe, P.-A., Mayorga,
E., Seitzinger, S. P., Sobota, D. J., and Wollheim, W. M. (2009). The regional and global
significance of nitrogen removal in lakes and reservoirs. Biogeochemistry, 93(1-2):143–157.

Hazeleger, W., Guemas, V., Wouters, B., Corti, S., Andreu-Burillo, I., Doblas-Reyes, F. J.,
Wyser, K., and Caian, M. (2013). Multiyear climate predictions using two initialization
strategies. Geophysical Research Letters, 40(9):1794–1798.
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APPENDIXA
List of hydrometric stations

A.1 Calibration stations

Table A.1: Hydrometric stations used for calibrating the EROS model. The coordinate system is Lambert 93.

Code X Y Code X Y Code X Y
K0030010 782951.5 6414192.53 K2994010 736672.91 6540594.87 L5323010 545858.81 6574379.22
K0100020 772656.16 6421130.17 K3030810 735469.79 6551442.81 L5401810 541026.08 6577325.24
K0114020 782012.53 6425971.35 K3060310 736668.98 6557845.24 L5411810 536388.26 6593688.03
K0120020 772342.34 6433586.37 K3074010 734989.94 6559798.81 L5511910 566061.64 6601927.25
K0214010 777234.49 6435320.18 K3153010 727642.86 6580048.82 L5561910 553958.69 6609399.05
K0253010 771322.79 6440119.92 K3222010 688282.05 6525966.37 L5623010 566129.59 6585376.24
K0260020 771122.62 6441373.46 K3273010 677001.58 6531871.31 L5733020 545749.08 6600837.33
K0274010 775767.88 6440265.03 K3292020 684155.16 6541572.7 L5741910 541210.53 6616557.38
K0323010 764733.08 6463225.53 K3302010 692376.4 6547771.09 L6020710 525254.72 6648032.12
K0333010 769051.99 6456732.82 K3322010 707289.97 6557394.06 L6202030 534042.26 6647476.55
K0433010 793328.79 6452049.75 K3373010 717470.43 6573726.36 L6216920 534804.39 6655744.8
K0454020 804549.45 6458743.05 K3382010 722819.39 6578859.87 L7024030 512558.18 6674243.89
K0513010 769765.95 6475999.17 K3400810 724449.11 6589153.6 L7123001 494104.55 6674771.59
K0550010 787629.76 6466827.68 K3450810 724945.61 6606875.99 L8000010 478654.44 6683523.68
K0567530 806852.21 6467648.28 K3464010 722732.58 6609889.92 L8000020 465026.76 6691030.66
K0614010 798209.5 6492243.69 K3533010 711630.41 6615778.6 L8102120 449468.79 6620233.71
K0624510 792741.2 6486346.52 K3553010 711291.92 6620523.47 L8134020 456571.82 6635375.61
K0643110 788306.28 6488474.34 K3570810 702854.72 6630134.65 L8134030 454221.47 6630380.96
K0663310 818834.02 6504313.2 K3603010 700318.51 6624148.77 L8142110 460974.38 6647372.85
K0690010 795444.71 6505606.35 K3650810 705312.18 6649600.15 L8213010 456845.66 6651016.08
K0700010 794011.24 6516916.61 K4000010 705478.14 6657309.81 L8222110 457351.54 6655168.68
K0704510 800844.99 6509017.36 K4013010 694860.63 6643833.83 L8343010 445025.5 6660677.07
K0733220 767468.69 6511172.29 K4073110 692174.97 6685604.64 L8503010 470917.08 6645472.99
K0744010 775055.52 6517711.39 K4080010 689932.68 6693437.73 L8523010 465646.45 6670831.16
K0753210 777764.72 6516595.07 K4094010 699774.98 6695047.52 L8602110 466404.46 6684947.45
K0773210 789867.36 6514831.69 K4180001 671170.55 6731766.36 L8700010 434438.96 6708084.56
K0813020 777866.55 6526232.8 K4350010 620421.84 6755955.81 L9113020 472674.57 6705504.14
K0910010 783495.88 6548195.42 K4383110 619581.93 6750919.04 L9213010 456751.85 6711149.44
K0943010 803043.67 6543369.82 K4414010 601734.76 6745208.3 M0014110 511124.95 6830559.2
K0974010 791941.72 6540145.1 K4470010 567715.82 6711930.06 M0050620 476191.8 6813716.45
K0983010 786635.94 6542928.86 K4672210 582000.2 6715910.7 M0064310 474030.15 6816704.98
K1063010 789033.35 6561789.47 K4793010 568727.89 6712260.08 M0104010 471084.96 6812816.82
K1173210 780716.65 6584764.08 K4800010 563737.76 6711029.54 M0114910 466609.04 6807989.92
K1180010 775416.87 6598045.25 K4843010 567279.26 6717758.14 M0124010 470175.53 6803608.36
K1211810 805741.33 6668125.12 K4853000 546701.73 6705808.19 M0134010 474407.73 6800822.25
K1243010 807709.22 6658665.57 K4856020 548382.99 6708030.58 M0153010 492525.81 6804453.09
K1251810 800395.36 6656379.63 K4873110 541692.62 6718434.37 M0250610 492076.05 6780273.93
K1273110 795640 6655320.94 K4900030 522757.55 6701739.51 M0301510 519962.6 6821670.61
K1314010 796369.69 6641255.62 K4923030 523091.01 6708333.55 M0361510 537960.4 6804263.49
K1321810 790857.92 6639718.73 K5083010 667880.44 6563896.54 M0365010 538447.41 6803460.97
K1363010 801601.89 6614847.57 K5090910 665099.49 6564156 M0401510 524785.82 6787488.02
K1414010 772221.98 6591042.11 K5143110 644188.08 6567616.83 M0421510 506671.93 6774450.03
K1440010 758704.68 6604553.88 K5210910 669411.79 6579236.14 M0424810 506092.38 6770111.79
K1503010 752595.8 6558819.46 K5220910 669548.89 6588291.52 M0434010 498419.79 6774479.36
K1524010 751666.96 6566505.43 K5333110 692450.33 6600889.29 M0500610 486747.44 6760780.35
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Table – continued from previous page
Code X Y Code X Y Code X Y

K1533010 749768.8 6569862.16 K5336010 669263.45 6591861.1 M0504510 490897.76 6763220.33
K1533020 748477.97 6574001.65 K5343210 681138.37 6579271.36 M0514010 487154.66 6757938.95
K1563010 751628.12 6600038.56 K5363210 686719.93 6589600.12 M0525210 482025.47 6762082.49
K1713010 748787.77 6662603.36 K5383010 675020.6 6603279.23 M0535010 472687.35 6760559.71
K1753110 751861.52 6638555.88 K5383020 677965.98 6600877.38 M0556030 460428.43 6757116.3
K1764020 749737.8 6646177.95 K5400920 661103.5 6625234.75 M0583020 458486.1 6759214.86
K1773010 743874.58 6639242.04 K5424010 676883.18 6626098.63 M0613010 452888.25 6786541.34
K1775510 741035.94 6646341.56 K5433020 671240.68 6625260.44 M0624010 450428.1 6763632.24
K1810310 741012.7 6619277.05 K5490910 628944.68 6680176.26 M0633010 448822.96 6760568.59
K1833010 732963.62 6631860.24 K5543010 668077.37 6656775.46 M0653110 447343.66 6757373
K1900010 719237.65 6648564.3 K5552300 667365.24 6661087.75 M0680610 446696.74 6749682.71
K1914510 725491.38 6651469.17 K5574100 656041.58 6669124.65 M1021610 579516.95 6789386.02
K1930010 712538.91 6653662.98 K5623010 673373.21 6633957.63 M1024810 580451.65 6796363.89
K1943010 715762.14 6670786.66 K6102420 636675.4 6639122 M1025510 581897.5 6794662.95
K1954010 719177.03 6670488.02 K6192410 626433.44 6673961.09 M1034020 577257.18 6791139
K1963010 715420.36 6662497.85 K6220910 587480.35 6686733.37 M1041610 582396.96 6784692.43
K2064010 768036.92 6403973.02 K6332520 644267.59 6718465.63 M1073010 583350.4 6780367.07
K2070810 770083.71 6399656.73 K6334010 657517.29 6710286.25 M1114011 570170.99 6770401.64
K2090810 758148.9 6415950.36 K6373020 647624.24 6705374.95 M1124810 573547.14 6766372.66
K2134010 759282.77 6403083.65 K6402510 620801.04 6699709.72 M1151610 541989.11 6741998.37
K2143020 756470.79 6407837.48 K6593010 583594.56 6685964.02 M1214010 539428.53 6774705.01
K2163110 750376.37 6410166.94 K6720910 510073.62 6696866.37 M1233040 535834.49 6755628.4
K2173010 758159.03 6415730.36 K6888888 504041.49 6694278.9 M1244010 531409.95 6756250.32
K2210810 750948.31 6430038.27 K7202610 610704.55 6627512.79 M1254010 525400.73 6747168.55
K2223020 749804.25 6422237.32 K7207510 600095.52 6637984.3 M1313010 515673.46 6746916.44
K2223030 749311.88 6424262.58 K7424010 564519.64 6677363.99 M1324010 517754.69 6748807.85
K2233020 750199.11 6430049.61 K7433030 555863.05 6677229.2 M1341610 511637.74 6738259.97
K2240810 747038.82 6436626.23 K7542610 502619.83 6690088.81 M1424410 490523.01 6722732.01
K2254010 743424.21 6430371.73 L0050630 603177.5 6515649.78 M1463020 482667.09 6738625.62
K2283110 741942.66 6441592.78 L0093010 587609.27 6519590.89 M1531610 456567.93 6734782.88
K2300810 738585.41 6446506.65 L0123030 604380.98 6525491.5 M1534510 458785.53 6740138.78
K2316210 734438.48 6449249.22 L0140610 576145.81 6532951 M3014010 453612.63 6820615.89
K2330810 732040.25 6462428.39 L0201510 618636.04 6532588.99 M3020910 452174.43 6825773.09
K2335510 728022.81 6460287.35 L0231510 610747.58 6544738.61 M3040910 447668.6 6828522.79
K2363020 739462.55 6456890.63 L0244510 600487.85 6545634.7 M3060910 434868.21 6822130.27
K2383110 739912.58 6461547.54 L0321510 575843.52 6533490.79 M3103010 430255.32 6838319.86
K2430810 727435.69 6476843.28 L0400610 570147.12 6530328.32 M3133010 428554.3 6828213.29
K2450810 726195.18 6481053.92 L0513010 570349.3 6515621.48 M3213010 418513.95 6822516.47
K2514020 694743.48 6458879.82 L0700610 552429.56 6528656.45 M3223010 428711.63 6813063.8
K2534010 714375.85 6460229.81 L0914010 534207.87 6530397.57 M3230910 430888.44 6804093.78
K2544010 715468.34 6461353.55 L0920610 529943.29 6532328.48 M3230920 434588.61 6811582.43
K2623010 714870.72 6481211.54 L0940610 519849.45 6548569.75 M3253110 431126.77 6802693.75
K2644010 727901.38 6502651.18 L1400610 523453.59 6591969.92 M3313010 408122.91 6806599.73
K2654010 708674.33 6494591.89 L2103020 488108.96 6587342.19 M3340910 421176.35 6774584.46
K2674010 708164.13 6498657.58 L2201610 488630.6 6587674.22 M3403010 441603.26 6789384.4
K2680810 715735.12 6506906.31 L2253010 481675 6596691.33 M3504010 418107.23 6772123.37
K2680820 716477.96 6501759.58 L2313050 491289.01 6596307.13 M3600910 423731.17 6752857.52
K2698210 710133.51 6510984.05 L2321610 491719.94 6596952.98 M3630910 423426.88 6737493.86
K2714010 721763.96 6523835.51 L2334010 495969.1 6609112.42 M3711810 406840.23 6766673.64
K2724220 713392.14 6521811.04 L2341620 496739.53 6611765.37 M3771810 406013.34 6748828.88
K2753010 704428.32 6547200.87 L2404030 491240.93 6612485.33 M3774010 401606.08 6750125.13
K2763110 708494.65 6525024.99 L2501610 503121.22 6625741.29 M3813010 394514.86 6741073.7
K2773120 723923.21 6534263.06 L3100610 512198.52 6637247.61 M3823010 403638.95 6738341.8
K2774020 717395.71 6532278.12 L3123010 511933.5 6637334.43 M3834030 409826.02 6734380.84
K2783010 723969.22 6534304.3 L3200610 514769.47 6645514.6 M3851810 410467.31 6738856.38
K2784510 725208.73 6535865.96 L4110710 624824.04 6558635.88 M3861810 417514.43 6736439.21
K2790810 734729.01 6541118.88 L4210710 616674.31 6569122.11 M3910910 428330.25 6721795.82
K2821910 758348.62 6476155.94 L4523010 593324.14 6587527.46 M4101921 432023.02 6713951.14
K2834010 749296.63 6483211.34 L4530710 593549.12 6595922.69 M4114010 428242.6 6716846.14
K2851910 756980.86 6494073.44 L4653010 595016.65 6619337.52 M5014220 435287.67 6703144.21
K2884010 746234.72 6511569.07 L4710710 569129.59 6616131.21 M5124310 436601 6686179.05
K2944010 742758.8 6517314.35 L5301810 541790.51 6566963.28 M5214020 426482.73 6695431.4
K2981910 737043.05 6532500.7 L5301811 581228.04 6559554.67 M5300010 408857.48 6706221.26
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A.2 Hydrometric stations on the Reference Hydrometric Net-
work

Table A.2: Hydrometric stations with long-term continuous daily data located on the Reference Hydrometric
Network. The coordinate system is Lambert 93.

Code X Y Code X Y Code X Y
K0010010 791375.44 6408562.73 K2871910 747510.65 6510159.49 L2443010 490191.09 6617355.1
K0403010 802401.56 6440678.06 K3264010 674712.2 6530166.07 L4220710 598477.39 6587347.52
K0454010 795337.61 6458003.17 K3374710 715272.82 6571544.75 L4321710 623221.41 6584565.78
K0523010 773565.84 6468033.13 K4443010 599274.27 6739425.6 L4411710 599253.63 6588169.36
K0567520 798002.01 6469025.4 K5183010 655710.56 6565553.43 L5034010 583787.34 6556316.2
K0673310 807203.23 6501839.54 K5200910 664208.83 664208.83 L5101810 578997.01 6558306.51
K1284810 790906.06 6656780.1 K5653010 655005.78 6660896.66 L5134010 556619.25 6562905.24
K1341810 779283.4 6604359.27 K6492510 587732.21 6687266.69 L5223020 546585.47 6562341.84
K1383010 783354.72 6597220.43 K7312610 557740.57 6659092.39 L7000610 513799.08 6664712.54
K1724210 758122.06 6645915.05 K7414010 566649.23 6672109.22 M0243010 492217.25 6788044.53
K2363010 740999.39 6455503.89 K7514010 535046.72 6685285.32 M1213010 537414.42 6770526.61
K2514010 700546.24 6448347.57 L0314010 589894.82 6540597.58 M1354020 510446.79 6725644.89
K2523010 702148.01 6451101.5 L0563010 563206.59 6518987.08 M3323010 419385.98 6791915.44
K2593010 720781.8 6476056.23 L0813010 538441.77 6536959.68 M3423010 423967.87 6776825.99
M3423010 423967.87 6776825.98 M5102010 444579.08 6682426.15 M5222010 425705.89 6696960.64

A.3 Naturalized hydrometric stations

Table A.3: List of hydrometric stations influenced by dams. The time series of these stations are naturalized by
French Electricity (EDF).

Code Location

K0100020 La Loire at Goudet
K0120020 La Loire at Coubon
K0260020 La Loire at Chadrac
K0550010 La Loire at Bas-en-Basset
K0690010 La Loire at Montrond-les-Bains
K0700010 La Loire at Feurs
K0910010 La Loire at Villerest
K1180010 La Loire at Digoin
K1440010 La Loire at Gilly-sur-Loire
K1900010 La Loire at Imphy
K1930010 La Loire at Nevers
K2240810 L’Allier at Prades
K2300810 L’Allier at Langeac
K2330810 L’Allier at Vieille-Brioude
K2430810 L’Allier at Agnat
K2680810 L’Allier at Vic-le-Comte
K2790810 L’Allier at Limons
K3030810 L’Allier at Saint-Yorre
K3400810 L’Allier at Chatel-de-Neuvre
K3450810 L’Allier at Moulins
K3570810 L’Allier at Livry
K3650810 L’Allier at Cuffy
K4000010 La Loire at Cours-les-Barres
K4080010 La Loire at Saint-Satur
K4180010 La Loire at Gien
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APPENDIXB
List of stream temperature stations

B.1 330 Tw stations used for identifying the influence of dams
and pond in chapter 3

Table B.1: 330 Tw stations used for identifying the influence of dams and pond in chapter 3 and their corresponding
cluster (see section 3.8, p. 62).

Code X Y Cluster Code X Y Cluster
4033300 705720.51 6546511.87 1.dam-like 4110700 513471.06 6839787.44 3.natural-like

Allier–LeVigan 764853.23 6408536.13 1.dam-like 4113050 462449.51 6801814.76 3.natural-like
Arbiche–Pont–de–la–Roue 808819.29 6500577.25 1.dam-like 4115580 539815.59 6811654.7 3.natural-like

Arnon–2 649712.98 6602886.75 1.dam-like 4115675 542431.46 6813629.81 3.natural-like
Brugere–aval 740221.22 6508901.85 1.dam-like 4119220 467550.61 6773677.77 3.natural-like

Credogne–Chez–Cottard 738262.27 6538935.58 1.dam-like 4119750 449760.49 6781304.86 3.natural-like
Credogne–la–Poncette 744224.98 6539192.33 1.dam-like 4124985 431549.11 6802740.45 3.natural-like
Credogne–Le–Bessière 750678.68 6536423.25 1.dam-like 4125500 407481 6810460.44 3.natural-like

Furan–Jardins–du–Bernay 810155.53 6480042.68 1.dam-like Aigre–Romilly 573328.31 6766316.68 3.natural-like
Gand–Amont–confl–Rhins 787770.37 6542061.42 1.dam-like Aix–Les–Sigauds 787745.17 6526749.95 3.natural-like

K2080820 765703.68 6406653.53 1.dam-like Ance–Pontempeyrat 770634.03 6472338.5 3.natural-like
K2753010 704416.33 6547181.78 1.dam-like AnceNord–Moulas 778715.16 6463049.91 3.natural-like
K3222010 688258.38 6525974.84 1.dam-like ANDELOT–a–Brout–Vernet 722527.23 6566502.77 3.natural-like
K3302010 692395.48 6547777.84 1.dam-like Andrable–Cacharat 778486.46 6473447.73 3.natural-like

Lignon–Versilhac 792592.37 6452113.66 1.dam-like Andrable–Jamillard 776741.26 6485606.63 3.natural-like
Monne–Pont–de–la–Monne 708383.07 6507477.43 1.dam-like Anzon–La–Rivalsupt 759531.05 6522835.44 3.natural-like

Morge–Montcel 705912.94 6546415.47 1.dam-like Anzon–Memos 768923.3 6523301.84 3.natural-like
Renaison–Avalbarrage 767589.28 6549879.12 1.dam-like Ardillère–amont 505244.86 6719130.93 3.natural-like
Renaison–Les–Berands 774457.7 6549404.76 1.dam-like Ardillère–aval 499138.31 6723525.85 3.natural-like

Semene–Les–Plats 810038.81 6471193.1 1.dam-like Arnon–1 648499.64 6598505.2 3.natural-like
Sioule–Chateauneuf 692297.36 6547681.35 1.dam-like Arnon–3 651824.73 6613147.41 3.natural-like

4015050 797039.92 6570610.36 2.pond-like Arnon–4 647937.51 6622504.9 3.natural-like
4017000 791142.7 6645947.97 2.pond-like ARNON–a–Viplaix 650085.13 6596289.72 3.natural-like
4017250 801851.19 6638870.5 2.pond-like Arzon–Coutarel 767766.31 6458264.6 3.natural-like
4023000 752029.15 6600455.09 2.pond-like Auron–4 665939.15 6646369.65 3.natural-like
4023130 767377.35 6624305.71 2.pond-like Auze–Torsiac 715908.23 6472910.58 3.natural-like
4023450 778429.98 6633673.96 2.pond-like Auzon–Bourg 729201.73 6477124.42 3.natural-like
4023680 749654.87 6646136.86 2.pond-like Auzon–Chanonat 702751.48 6511567.46 3.natural-like
4023700 743907.11 6639148.1 2.pond-like Barangeon–1 642142.48 6685751.33 3.natural-like
4025100 716009.55 6657911.1 2.pond-like BARBENAN–aval–a–Arfeuilles 756260.64 6562357.03 3.natural-like
4027210 758933.59 6400303.82 2.pond-like BESBRE–a–St–Clement 754226.59 6552246.37 3.natural-like
4028450 692889.56 6464672.26 2.pond-like BESBRE–a–St–Prix 749864.47 6570286.9 3.natural-like
4028500 701134.87 6449170.66 2.pond-like Bonson–Chavas 793695.14 6487832.39 3.natural-like
4036300 758324.79 6476175.7 2.pond-like Bonson–Fournier 785171 6478216.56 3.natural-like
4037900 749010.77 6508578.66 2.pond-like Bonson–Les Littes 797017.88 6492669.21 3.natural-like
4051125 628780.58 6746274.75 2.pond-like Bonsonnet–Fougerols 783455.54 6483100.17 3.natural-like
4062000 675012.72 6603312.99 2.pond-like Borne–StVidal 762537 6442387.4 3.natural-like
4082740 476016.11 6599895.3 2.pond-like BOUBLE–amont–a–Echassieres 694063.88 6568458.1 3.natural-like
4086320 510349.21 6638271.95 2.pond-like Céroux–MoulinPoudrière 725206.8 6458361.57 3.natural-like
4088000 616737.01 6569477.08 2.pond-like Charlet–Authezat 714746.52 6505371.55 3.natural-like
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Table – continued from previous page
Code X Y Cluster Code X Y Cluster

4091250 595800.36 6621533.91 2.pond-like choisille–beaumont–amont 524869.9 6720603.73 3.natural-like
4093500 571631.18 6558876.63 2.pond-like choisille–beaumont–aval 526047.55 6714216.33 3.natural-like
4094200 562498.33 6547415.4 2.pond-like choisille–chenusson–amont 528909.89 6719752.85 3.natural-like
4096430 553949.24 6609409.42 2.pond-like choisille–sembançay–amont 518181.81 6713665.11 3.natural-like
4099960 457550.74 6651854.93 2.pond-like choisille–sembançay–aval 522228.28 6706594.77 3.natural-like
4104200 455563.92 6710920.78 2.pond-like Coise–Moulin–Trunel 811669.85 6503644.36 3.natural-like
4105800 578908.83 6780129.73 2.pond-like Coise–Pont–des–Romains 803471.68 6499487.82 3.natural-like
4106000 572674.59 6775523.16 2.pond-like Cotatay–Pre–Farost 811005.95 6474769.13 3.natural-like
4111000 486696.56 6818875.16 2.pond-like Couze–Ardes–Riviere–l–eveque 712688.7 6479404.68 3.natural-like
4114500 493921.16 6790698.11 2.pond-like Couze–Pavin–no–kill 694641.65 6490518.83 3.natural-like
4116800 527295.91 6794532.15 2.pond-like Couze–Pavin–Parc 690684.41 6489026.71 3.natural-like
4123750 434920.95 6822095.59 2.pond-like Couze–Pavin–St–Pierre–Colamine 695764.43 6491244.39 3.natural-like
4123800 430911.06 6820578.81 2.pond-like Couze–Pavin–Tete-de–Lion 706758.97 6494148.96 3.natural-like
4130500 406878.04 6766726.35 2.pond-like Couze–Pavin–Villetour 689415.91 6488324.31 3.natural-like

Alagnon–Auzat 723317.47 6482523.93 2.pond-like Couzon–Aubusson 746288.14 6515630.34 3.natural-like
Allagnon–Babory 714547.05 6467878.59 2.pond-like Couzon–Cote–ratier 813440.51 6500195.76 3.natural-like

Allagnon–Chambezon 719441.74 6474799.73 2.pond-like Credogne–sources 751193.48 6536335.72 3.natural-like
Allier–Vabres 753189.97 6422534.35 2.pond-like Credogne–STEP 736483.95 6540656.66 3.natural-like

AnceNord–LeRodier 771947.89 6468219.95 2.pond-like Curraize–Le–Garet–de–la–Cote 782072.47 6494147.13 3.natural-like
AnceNord–LeTheil 782558.73 6464187.98 2.pond-like Curraize–Les–Jaquets 791378.88 6498627.34 3.natural-like
Arquejols–LaPinède 764721.93 6410376.88 2.pond-like deme–aval 523303.77 6730564.65 3.natural-like

Arzon–Beaune 764230.44 6464397.13 2.pond-like Dore–Masselebre 757204.55 6485129.94 3.natural-like
AUMANCE–a–Meaulne 671654.72 6607690.13 2.pond-like Dore–Procureur 754171.61 6476163.71 3.natural-like

Champdieu–Le–Moulin–Chandy 771500.09 6475259.4 2.pond-like Dunière–Vaubarlet 795613.41 6458298.94 3.natural-like
CHER–a–Lavault–Ste–Anne 669027.46 6578948.39 2.pond-like Egrenne 764 2012-2018 424525.35 6849863.25 3.natural-like
choisille–sembançay–median 519312.81 6713241.37 2.pond-like Egvonne–Patte–de–mouton 566989.12 6766920.57 3.natural-like

Conie–amont 588431.74 6780008.18 2.pond-like escotais–amont 516644.79 6720758.13 3.natural-like
Couzon–Pont–Du–Megain 744774.98 6515958.07 2.pond-like escotais–aval 510977.94 6727511.62 3.natural-like

Dore–Brugeailles 757496.4 6489132.04 2.pond-like Fouragettes–Goudet 772290.96 6421570.79 3.natural-like
Dore–Chauttes 756094.81 6501539.33 2.pond-like Foussarde–Vieuvicq 566559.92 6796490.94 3.natural-like

E5831–TE1–H1 596822.08 6737144.45 2.pond-like Gampille–Chazeau 799835.63 6475606.15 3.natural-like
Furan–Amont–confl–Loire 797573.19 6492480.13 2.pond-like Gand–Bois–Corcy 802599.49 6530001.02 3.natural-like

Furan–La–Porchere 804807.56 6487872.66 2.pond-like Gand–Chez–Chabout 802902.07 6529393.71 3.natural-like
Furan–Le–Pont–Blanc 801046.4 6490517.42 2.pond-like Gand–Le–Rey 801959.72 6530198.3 3.natural-like

Grande–Sauldre–2 659889.94 6717369.05 2.pond-like Gazeille–LaBesseyre 781979.77 6425986.65 3.natural-like
Grande–Sauldre–3 647641.57 6718565.73 2.pond-like Grande–Sauldre–1 677562.27 6691235.82 3.natural-like

Guette 646023.14 6691583.55 2.pond-like GRAVERON–a–Sorbier 748887.9 6585186.47 3.natural-like
K0100020 772781.2 6421537.19 2.pond-like Huisne–amont 539403.19 6807209.88 3.natural-like
K0403030 797861.36 6433169.49 2.pond-like Huisne–aval–au–dessus–du–vannage 537854.58 6804024.84 3.natural-like
K2070810 767908.95 6404314.24 2.pond-like Huisne–aval–confluence–Ronne 537806.59 6803925.3 3.natural-like
K2123010 755239.77 6397009.31 2.pond-like Huisne–aval–Le–Radray 535170.56 6802570.9 3.natural-like
K2134010 759802.76 6403075.84 2.pond-like Ionne–4 670035.76 6705583.79 3.natural-like
K2514020 694739.24 6458900.83 2.pond-like Jarnossin–Marpin 792775.66 6555226.46 3.natural-like
K2593010 720761 6476047.35 2.pond-like Jarnossin–Rajasse 785566.65 6559374.2 3.natural-like
K2674040 694559.37 6496837.4 2.pond-like Joyeuse 646226.62 6598539.74 3.natural-like
K2851910 756989.54 6494064.86 2.pond-like K2316210 734412.72 6449213.87 3.natural-like
K3030810 735498.32 6551455.77 2.pond-like K2335510 728014.8 6460293.98 3.natural-like

Lignon–Bathelane 800862.36 6447517.08 2.pond-like K2363020 739481.26 6456900.29 3.natural-like
Lignon–LesBuffets 797834.78 6434182.77 2.pond-like K2365510 739522.27 6455843.93 3.natural-like

Lignon–Vendets 792164.91 6458806.64 2.pond-like K2383110 739886.87 6461522.71 3.natural-like
Loir–median–Station–St–Maur 582338.66 6784617.22 2.pond-like K2523010 702130.96 6451091.3 3.natural-like

Loir–moyen–Alluyes 579775.2 6792287.22 2.pond-like K2623010 714851.05 6481233.59 3.natural-like
Loire–LeBrignon 771524.19 6425471.83 2.pond-like K2630310 722888.46 6492841.21 3.natural-like

Loire–Salettes 776280.42 6418129.96 2.pond-like K2644010 727902.37 6502636.2 3.natural-like
Loire–Vallet 779078.47 6417128.45 2.pond-like K2654010 708659.24 6494582.52 3.natural-like
M0583020 458443.7 6759212.92 2.pond-like K2674010 708162.46 6498633.14 3.natural-like
M3060910 434920.97 6822096.98 2.pond-like K2674030 692875.91 6496678.74 3.natural-like
M3423010 423929.43 6776858.87 2.pond-like K2698210 710185.63 6511025.36 3.natural-like
M5222210 425703.6 6696977.04 2.pond-like K2714010 721738.22 6523821.57 3.natural-like

OEIL–a–Malicorne 681171.1 6579915.07 2.pond-like K2724210 710982.96 6519098.12 3.natural-like
Ondaine–Le–Pertuiset 797741.38 6479758.63 2.pond-like K2773120 722677.81 6533379.85 3.natural-like

Onzon–Le–Moulin–Picon 808445.06 6487841.7 2.pond-like K2774010 697993.68 6533409.89 3.natural-like
Oudon–Sonde–1 404507.89 6751213.19 2.pond-like K2884010 746240.44 6511549.54 3.natural-like
Oudon–Sonde–2 404203.01 6751407.96 2.pond-like K2994010 736684.07 6540613.75 3.natural-like
Oudon–Sonde–3 403608.02 6751417.36 2.pond-like K3053100 749980.34 6547336.55 3.natural-like
Oudon–Sonde–4 403315.45 6751976.88 2.pond-like K3060310 736638.83 6557852.94 3.natural-like
Ozanne–Trizay 577245.44 6791130.91 2.pond-like K3074010 734972.03 6559803.15 3.natural-like

Petite–sauldre–2 653436.25 6703338.83 2.pond-like K3153010 726089.87 6574665.81 3.natural-like
Rhins–Ile–Berthier 785784.86 6550478.17 2.pond-like K3264010 674697.42 6530180.8 3.natural-like
Senouire–Domeyrat 739268.76 6461303.54 2.pond-like K3374710 715272.17 6571519.72 3.natural-like

Seuge–Longeval 742502.52 6426291.87 2.pond-like K3464010 722189.87 6608779.21 3.natural-like
Sinaise 638665.02 6622644.25 2.pond-like K7022620 621819.43 6611663.7 3.natural-like

Suissesse–Adiac 775346.95 6447431.5 2.pond-like Laussonne–LaTerrasse 775485.13 6430874.64 3.natural-like
Thironne–montigny 562381.81 6800173.31 2.pond-like Lignon–Alpomb 778598.21 6515471.39 3.natural-like

Vernon–1 662338.38 6689913.09 2.pond-like Lignon–Amont–pt–Neuf 769826.03 6509777.54 3.natural-like
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Virlange–LaBrugère 742239.76 6422164.81 2.pond-like Lignon–Le–Sagnat 764366.56 6514393.27 3.natural-like
Yerre–moyen–Arrou 559850.17 6778032.48 2.pond-like Loir–amont–Illiers–Combray 569466.08 6801913.12 3.natural-like

4003645 769715.89 6475994.58 3.natural-like Loise–La–Vieille–Cure 803799.46 6518110.1 3.natural-like
4003900 787335.09 6465763.17 3.natural-like Loise–Mayoliere 797237.85 6517215.29 3.natural-like
4009050 818827.2 6504302.71 3.natural-like long–amont 521637.59 6720802.99 3.natural-like
4021250 768551.46 6582925.45 3.natural-like long–aval 514399.15 6730530.6 3.natural-like
4022210 750110.42 6567622.41 3.natural-like M0613010 452902.68 6786526.66 3.natural-like
4024060 742853.03 6601451.83 3.natural-like M1313010 515645.14 6746930.17 3.natural-like
4029700 700821.64 6492596.86 3.natural-like M1463010 489334.84 6741419.85 3.natural-like
4034650 723225.85 6533704.96 3.natural-like M3313010 408492.24 6804335.56 3.natural-like
4040150 750076.45 6547335.74 3.natural-like Magnore–RD535 774902.86 6434985.64 3.natural-like
4040355 737980.7 6559209.67 3.natural-like Mare–Aval–double 794690.71 6502945.34 3.natural-like
4041700 685177.11 6531178.62 3.natural-like Mare–Le–Moulin 775439.77 6493299.75 3.natural-like
4041760 671971.84 6531570.21 3.natural-like Mare–Molley 783867 6490448.55 3.natural-like
4042100 717421.83 6573732.71 3.natural-like Mazure–Combres 558890.61 6801833.14 3.natural-like
4043800 716195.96 6604025.33 3.natural-like Méjeanne–Montbel 774379.89 6413400.6 3.natural-like
4044400 700335.81 6622069.6 3.natural-like Monne–Chabannes 701201.46 6503038.04 3.natural-like
4046960 699738.19 6695043.78 3.natural-like Morge–Manzat 692382.27 6538253.19 3.natural-like
4048550 672642.83 6718155.67 3.natural-like Ondaine–Chambon–Feugerolles 803445.29 6478445.16 3.natural-like
4049625 649245.79 6740290.73 3.natural-like Onzon–Bramefain 811549.56 6487290.82 3.natural-like
4051650 608980.02 6746970.07 3.natural-like Ouatier 665579.87 6669602.31 3.natural-like
4060900 686607.74 6599111.86 3.natural-like Portefeuille–1 645388.45 6620117.93 3.natural-like
4061400 686432.76 6591216.48 3.natural-like Rau–Charlottier–Amont 748495.81 6506760.64 3.natural-like
4066500 657055.09 6660039.87 3.natural-like Renaison–Roanne 782821.3 6548457.94 3.natural-like
4068550 647604.68 6705375.59 3.natural-like Rhins–Gai–sejour 799801.88 6545039.97 3.natural-like
4070211 599934.81 6680759.42 3.natural-like rorthe–aval 520456.47 6734067.1 3.natural-like
4070215 582832.08 6657534.84 3.natural-like Salereine–1 678132 6702991.42 3.natural-like
4072150 499262.06 6695992.46 3.natural-like SARMON–a–Brugheas 728599.9 6552859.57 3.natural-like
4075700 628112.91 6510868.98 3.natural-like Semene–Croquet 807438.4 6468339.39 3.natural-like
4076000 578911.93 6530471.28 3.natural-like Semene–Le–Mas 812546.33 6472340.79 3.natural-like
4076100 624889.34 6522762.4 3.natural-like Semene–Le–Sapt 811414.85 6471456.15 3.natural-like
4079750 554680.26 6520904.5 3.natural-like Semène–PontSalomon 797747.22 6470868.83 3.natural-like
4080830 548462.97 6538387.01 3.natural-like Semène–Vial 801965.11 6464794.32 3.natural-like
4080950 536025.59 6529242.83 3.natural-like Senouire–Mazerat 743821.78 6454021.64 3.natural-like
4082375 524610.48 6585432.09 3.natural-like Sianne–Ferrière 713354.23 6467476.7 3.natural-like
4082550 489936.27 6584120.9 3.natural-like SICHON–a–Arronnes 743844.85 6551166.62 3.natural-like
4082930 493477.1 6611191.93 3.natural-like SICHON–a–Lavoine 753791.63 6542914.22 3.natural-like
4086060 524079.4 6624818.57 3.natural-like St–Suzanne–Ferchaux 554815.66 6789239.01 3.natural-like
4093800 556575.39 6562898.73 3.natural-like Sumène–Eynac 780683.73 6438067.66 3.natural-like
4095190 545886.04 6574265.1 3.natural-like Teyssonne–Aval–Saint–Forgeux 772934.78 6558914.58 3.natural-like
4096360 555218.49 6593584.66 3.natural-like Teyssonne–Montely 783201.98 6564589.88 3.natural-like
4097050 532298.28 6662471.02 3.natural-like Teyssonne–Pt–du–Moulin–Pinay 765698.34 6559413.54 3.natural-like
4099400 458246.01 6634869.56 3.natural-like Trambouze–La–Tombee 796161.92 6545177.28 3.natural-like
4101400 439304.37 6656651.58 3.natural-like Valcherie–Bois–de–la–Montat 804888.18 6476441.36 3.natural-like
4105680 560905.88 6791165.29 3.natural-like Veyre–Pontavat 694264.35 6504535.02 3.natural-like
4108050 547228.15 6747565.35 3.natural-like Vizezy–Bullieu 786148.4 6505085.3 3.natural-like
4108290 530437.48 6772101.34 3.natural-like Vizezy–La–Guillanche 779427.13 6501776.3 3.natural-like
4108425 522514.35 6758807.33 3.natural-like Vizezy–Vizezy 789749.18 6514600.24 3.natural-like
4108440 529290.63 6744809.07 3.natural-like Yerre–amont 548898.86 6782924.3 3.natural-like
4108736 489343.68 6741419.78 3.natural-like Yerre–aval 570066.31 6771675.47 3.natural-like
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B.2 67 stations with continuous daily Tw over the 2010–2014
period

Table B.2: 67 stations with continuous daily Tw over the 2010–2014 period. Only 53 stations are presented here.
The rest of the stations with the long-term time series are presented in Table 2.1.

Code X Y Code X Y Code X Y
4021250 768551.46 6582925.45 4108425 522514.35 6758807.33 K3264010 674697.42 6530180.8
4022210 750110.42 6567622.41 4110700 513471.06 6839787.44 K3374710 715272.17 6571519.72
4024060 742853.03 6601451.83 Ance–Pontempeyrat 770634.03 6472338.5 Lignon–Amont–pt–Neuf 769826.03 6509777.54
4040150 750076.45 6547335.74 Andrable–Cacharat 778486.46 6473447.73 Lignon–Le–Sagnat 764366.56 6514393.27
4042100 717421.83 6573732.71 Andrable–Jamillard 776741.26 6485606.63 Loir–amont–Illiers–Combray 569466.08 6801913.12
4043100 723856.48 6582328.33 Anzon–La–Rivalsupt 759531.05 6522835.44 Loise–La–Vieille–Cure 803799.46 6518110.1
4043800 716195.96 6604025.33 Anzon–Memos 768923.3 6523301.84 Loise–Mayoliere 797237.85 6517215.29
4044400 700335.81 6622069.6 Bonson–Fournier 785171 6478216.56 4046800 690032.61 6693063.16

Coise–Moulin–Trunel 811669.85 6503644.36 4048550 672642.83 6718155.67 Cotatay–Pre–Farost 811005.95 6474769.13
Mare–Aval–double 794690.71 6502945.34 4049625 649245.79 6740290.73 Couzon–Cote–ratier 813440.51 6500195.76
Mare–Le–Moulin 775439.77 6493299.75 4060500 670482.64 6603987.08 Curraize–Les–Jaquets 791378.88 6498627.34

Mare–Molley 783867 6490448.55 4060900 686607.74 6599111.86 Jarnossin–Marpin 792775.66 6555226.46
Semene–Croquet 807438.4 6468339.39 4061400 686432.76 6591216.48 Jarnossin–Rajasse 785566.65 6559374.2
Semene–Le–Mas 812546.33 6472340.79 4065000 635690.14 6674511.28 K2365510 739522.27 6455843.93

St–Suzanne–Ferchaux 554815.66 6789239.01 4075700 628112.91 6510868.98 K2383110 739886.87 6461522.71
Trambouze–La–Tombee 796161.92 6545177.28 4082550 489936.27 6584120.9 Valcherie–Bois–de–la–Montat 804888.18 6476441.36

4086060 524079.4 6624818.57 Vizezy–Bullieu 786148.4 6505085.3 4091400 576556.7 6616444.39
Vizezy–Vizezy 789749.18 6514600.24 Yerre–amont 548898.86 6782924.30
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APPENDIXC
Annual regime of simulated and observed

stream temperature at 67 stations with
continuous daily data.
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Figure C.1: The annual regime of simulated and observed Tw at 67 stations with continuous daily data over the
2010-214 period.
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Map of summer stream temperature over the

1963–2019 period
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APPENDIX D. MAP OF SUMMER STREAM TEMPERATURE OVER THE 1963–2019
PERIOD D
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APPENDIX D. MAP OF SUMMER STREAM TEMPERATURE OVER THE 1963–2019
PERIOD D

Figure D.1: Frequency of Tw intervals shown in spatial maps of Appendix D for different decades over the 1963–
2019 period.
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APPENDIXE
Future climate projections

E.1 Changes in precipitation and air temperature under var-
ied climate models

Figure E.1: Summer changes in P (x-axis) and Ta (y-axis) over France at the end of the century (2071-2100) with
respect to the 1976-2005 period (historical period) under RCP 8.5. The sharp points are the “short list” of future
climate models proposed by Météo-France. The red dashed circles show the selected GCM/RCMs in the current
study. This figure is adopted from DRIAS-2020 (Soubeyroux et al. (2020); see http://www.drias-climat.fr/).

310



APPENDIX E. FUTURE CLIMATE PROJECTIONS E

Figure E.2: Winter changes in P (x-axis) and Ta (y-axis) over France at the end of the century (2071-2100) with
respect to the 1976-2005 period (historical period) under RCP 8.5. The sharp points are the “short list” of future
climate models proposed by Météo-France. The red dashed circles show the selected GCM/RCMs in the current
study. This figure is adopted from DRIAS-2020 (Soubeyroux et al. (2020); see http://www.drias-climat.fr/).
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E.2 Maps of significance levels of trends in stream tempera-
ture

Figure E.3: Spatial variability of the significance of trends in seasonal Tw for different GCM/RCMs under RCP
8.5, and retrospective simulation over the 1976–2019 period, based on a Mann-Kendall test at the 95% confidence
level. Solid black lines show the Hydro-Ecoregion delineation (see Figure 2.1).
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Figure E.4: Spatial variability of the significance of trends in seasonal Tw for different GCM/RCMs under RCP
4.5, and retrospective simulation over the 1976–2019 period, based on a Mann-Kendall test at the 95% confidence
level. Solid black lines show the Hydro-Ecoregion delineation (see Figure 2.1).
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E.2. MAPS OF SIGNIFICANCE LEVELS OF TRENDS IN STREAM TEMPERATURE E

Figure E.5: Spatial variability of the significance of trends in seasonal Tw for CNRM-CM5-LR/ALADIN63 model
under RCP 2.6, and retrospective simulation over the 1976–2019 period, based on a Mann-Kendall test at the 95%
confidence level. Solid black lines show the Hydro-Ecoregion delineation (see Figure 2.1).
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E.3 Maps of future changes in precipitation

Figure E.6: Percentage of reaches with positive and negative changes in P under different GCM/RCM and RCP
8.5 for different seasons, and time slices. The proportion of reaches with negative changes in P in each HER is
specified to trace the position of decreasing changes in P.
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Figure E.7: Map of changes in seasonal and annual P with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 in the middle of century (2040-2069).
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Figure E.8: Map of changes in seasonal and annual P with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 at the end of the century (2070-2099).
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E.3. MAPS OF FUTURE CHANGES IN PRECIPITATION E

Figure E.9: Percentage of reaches with positive and negative changes in P under different GCM/RCM and RCP
4.5 for different seasons, and time slices. The proportion of reaches with negative changes in P in each HER is
specified to trace the position of decreasing changes in P.
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Figure E.10: Map of changes in seasonal and annual P with respect to the 1990-2019 period under the CNRM-
CM5-LR/ALADIN63 model and RCP 2.6 in the middle of century (2040-2069).
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Figure E.11: Map of changes in seasonal and annual P with respect to the 1990-2019 period under the CNRM-
CM5-LR/ALADIN63 model and RCP 2.6 at the end of the century (2070-2099).
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Figure E.12: Percentage of reaches with positive and negative changes in P under the CNRM-CM5-LR/ALADIN63
model and RCP 2.6 for different seasons, and time slices. The proportion of reaches with negative changes in P in
each HER is specified to trace the position of decreasing changes in P.
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E.4 Maps of future changes in air temperature

Figure E.13: Map of changes in seasonal and annual Ta with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 in the middle of century (2040-2069). Solid black lines show the Hydro-Ecoregion (HER) delineation
(see Figure 2.1).
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Figure E.14: Map of changes in seasonal and annual Ta with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 at the end of the century (2070-2099). Solid black lines show the Hydro-Ecoregion (HER) delineation
(see Figure 2.1).
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E.4. MAPS OF FUTURE CHANGES IN AIR TEMPERATURE E

Figure E.15: Map of changes in seasonal and annual Ta with respect to the 1990-2019 period under the CNRM-
CM5-LR/ALADIN63 model and RCP 2.6 in the middle of century (2040-2069). Solid black lines show the
Hydro-Ecoregion (HER) delineation (see Figure 2.1).

324



APPENDIX E. FUTURE CLIMATE PROJECTIONS E

Figure E.16: Map of changes in seasonal and annual Ta with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 2.6 at the end of the century (2070-2099). Solid black lines show the Hydro-Ecoregion (HER) delineation
(see Figure 2.1).
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E.5 Maps of future changes in streamflow

Figure E.17: Percentage of reaches with positive and negative changes in Q under different GCM/RCM and RCP
8.5 for different seasons, and time slices. The proportion of reaches with negative changes in Q in each HER is
specified to trace the position of decreasing changes in Q.
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Figure E.18: Map of changes in seasonal and annual Q with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 in the middle of century (2040-2069).
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Figure E.19: Map of changes in seasonal and annual Q with respect to the 1990-2019 period under 3 GCM/RCMs
and RCP 4.5 at the end of the century (2070-2099).
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Figure E.20: Percentage of reaches with positive and negative changes in Q under different GCM/RCM and RCP
4.5 for different seasons, and time slices. The proportion of reaches with negative changes in Q in each HER is
specified to trace the position of decreasing changes in Q.
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Figure E.21: Map of changes in seasonal and annual Q with respect to the 1990-2019 period under the CNRM-
CM5-LR/ALADIN63 model and RCP 2.6 in the middle of century (2040-2069).
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Figure E.22: Map of changes in seasonal and annual Q with respect to the 1990-2019 period under the CNRM-
CM5-LR/ALADIN63 model and RCP 2.6 at the end of the century (2070-2099).
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Figure E.23: Percentage of reaches with positive and negative changes in Q under the CNRM-CM5-
LR/ALADIN63 model and RCP 2.6 for different seasons, and time slices. The proportion of reaches with negative
changes in Q in each HER is specified to trace the position of decreasing changes in Q.
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E.6 Maps of future changes in stream temperature
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Figure E.24: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 4.5 in the middle of the century (2040–2069). Solid black lines show the Hydro-Ecoregion (HER)
delineation (see Figure 2.1).
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Figure E.25: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period under 3 GCM/RCMs
and RCP 4.5 at the end of the century (2070–2099). Solid black lines show the Hydro-Ecoregion (HER) delineation
(see Figure 2.1).
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Figure E.26: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period he CNRM-CM5-
LR/ALADIN63 model and RCP 2.6 in the middle of the century (2040–2069). Solid black lines show the Hydro-
Ecoregion (HER) delineation (see Figure 2.1).
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Figure E.27: Map of changes in seasonal and annual Tw with respect to the 1990–2019 period he CNRM-CM5-
LR/ALADIN63 model and RCP 2.6 at the end of the century (2070–2099). Solid black lines show the Hydro-
Ecoregion (HER) delineation (see Figure 2.1).
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E.7 Synchronicity of extreme changes in stream and air tem-
perature, and streamflow across reaches

Figure E.28: Percentage of reaches with consistent changes in Tw, Q and Ta in the middle of the century (2040–
2069), categorised with respect to sign of change in Tw and Q for different GCM/RCMs, seasons and HERs under
RCP 8.5. The changes are calculated with respect to the 1990-2019 period.
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Figure E.29: Percentage of reaches with consistent changes in Tw, Q and Ta at the end of the century (2070-2099),
categorised with respect to sign of change in Tw and Q for different GCM/RCMs, seasons and HERs under RCP
8.5. The changes are calculated with respect to the 1990-2019 period.
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Hanieh Seyedhashemi 

Influence des retenues d'eau et du 

changement climatique sur la 

température des cours d’eau : 

modélisation à haute résolution et 

application au bassin de la Loire 

 

Résumé 

La température du cours d'eau (Tw) est un paramètre critique affectant la qualité de l'eau et la répartition des 

communautés aquatiques, mais notre compréhension de sa variabilité spatio-temporelle induite par les retenues 

d’eau (par exemple, barrages, petits réservoirs et étangs) à grande échelle est limitée. De plus, l'ampleur des 

changements de température des cours d'eau dans le passé et dans le futur reste mal documentée en raison d'un 

manque de données à long terme et de la difficulté à analyser les effets de la variabilité hydroclimatique et des 

caractéristiques des bassins versants. Par conséquent, dans ce projet de doctorat, ces questions sont abordées en 

utilisant à la fois les données de température des cours d'eau observées et les sorties du modèle thermique basé 

sur les processus physiques T-NET (Temperature-NETwork) couplé au modèle hydrologique semi-distribué 

EROS à l'échelle d’un grand bassin de la Loire (105 km2 avec 52278 tronçons modélisés). Les résultats montrent 

que les grands barrages diminuent la température estivale de 2°C et retardent le pic annuel de la Tw de 23 jours 

par rapport aux régimes naturels. En revanche, les effets cumulatifs des étangs augmentent la température estivale 

de 2,3°C et augmentent la synchronicité avec les régimes de température de l'air. De plus, Tw a augmenté pour 

presque tous les biefs en toutes saisons (jusqu’à 5.7°C) sur la période 1963-2019 et va se poursuivre dans le futur 

[+0,72°C ; +2,68°C] suivant les projections climatiques au milieu du siècle (2040-2069). Ces augmentations sont 

liées au réchauffement atmosphérique (jusqu’à 4°C) et à la diminution des débits (jusqu'à -70%), principalement 

dans la partie amont du bassin. 

Mots-clefs : Régime thermique, Barrages et étangs, Analyses statistiques, Tendances à long terme, Scénarios 

climatiques, Projections futures 

 

Résumé en anglais 

Stream temperature is a critical parameter affecting water quality and the distribution of aquatic communities, 

but our understanding of its spatio-temporal variability induced by anthropogenic impoundments (e.g., large 

dams, small reservoirs, and ponds) at a large scale is limited. Moreover, the magnitude of changes in stream 

temperature over both the past and future remains poorly constrained due to a paucity of long-term data and 

difficulty in parsing effects of hydroclimate and landscape variability. Hence, in this doctoral project, these issues 

are addressed using both observed stream temperature data and the outputs of the T-NET (Temperature-

NETwork) physical process-based thermal model coupled with the EROS semi-distributed hydrological model 

at the scale of the entire Loire River basin in France, a large European basin (105 km2 with 52278 reaches). 

Results show that large dams decrease summer Tw by 2°C and delay the annual Tw peak by 23 days relative to 

the natural regimes. In contrast, the cumulative effects of upstream ponds increase summer Tw by 2.3°C and 

increase the synchronicity with air temperature regimes. Moreover, Tw increased for almost all reaches in all 

seasons (up to +5.7°C) over the 1963-2019 period, and will continue in the future according to climate projections 

in the middle of the century, 2040-2069 ([+ 0.72° C; + 2.68°C] depending on season and projection). These 

increases are linked to atmospheric warming (up to +4°C) and the decrease in flows (up to -70%), mainly in the 

upstream part of the basin. 

Key words: Thermal regime, Dams and ponds, Statistical analyses, Long-term trends, Climate scenarios, Future 

projections 
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