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Abstract

This thesis is focused on Graph Matching (GM) problems and in particular the Graph
Edit Distance (GED) problems. There is a growing interest in these problems due to their
numerous applications in different research domains, e.g. biology, chemistry, computer vi-
sion, etc. However, these problems are known to be complex and hard to solve, as the GED
is a NP-hard problem. The main objectives sought in this thesis, are to develop methods
for solving GED problems to optimality and/or heuristically. Operations Research (OR)
field offers a wide range of exact and heuristic algorithms that have accomplished very
good results when solving optimization problems. So, basically all the contributions pre-
sented in thesis are methods inspired from OR field. The exact methods are designed based
on deep analysis and understanding of the problem, and are presented as Mixed Integer
Linear Program (MILP) formulations. The proposed heuristic approaches are adapted
versions of existing MILP-based heuristics (also known as matheuristics), by considering
problem-dependent information to improve their performances and accuracy.

The first contribution consists in a new and adapted Local Branching (LocBra)
matheuristic, designed to solve a sub-problem of the general GED problem. This heuristic
is based on solving small MILP formulations to perform local searches in defined neigh-
borhoods. Mechanisms such as neighborhood definition, intensification and diversification,
are all modified to consider problem/instance-dependent information. Experimentally, this
heuristic has proven to outperform existing good heuristics and its capacity in computing
near optimal solutions. More application-oriented experiments are executed, where their
results have successfully shown this version of local branching is very suitable for real
applications.

The second contribution is focused on providing a good MILP formulation that performs
better than existing ones and deals with the general GED problem. After several attempts,
a new formulation, denoted by F3, is proposed with a nice feature that its constraints are
independent from the number of edges in the graphs. The results of the experiments have
shown that this formulation is better than the best existing one, especially on dense and
very dense graphs.

Since a new and good formulation has been founded, the LocBra heuristic designed in
the first contribution, is then modified to use F3, so the heuristic can deal with the general
GED problem. This is the third main contribution. Evaluating the heuristic on different
reference databases, has shown very positive results when compared to existing heuristics.

After accomplishing good results with LocBra matheuristic, another matheuristic,
called Variable Partitioning Local Search (VPLS) is considered, following the same con-
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ABSTRACT

cept as in LocBra. An adapted VPLS is designed based on extracting problem-dependent
information to solve the GED problem. It is also based on F3 formulation. The proposed
mechanism to extract useful information turned out to be very interesting and helped
improving the performance of the heuristic.

Other contributions and realizations are mentioned in the thesis, that were essentials
and helped a lot in accomplishing the aforementioned contributions.

Keywords: Pattern Recognition, Operations Research, Graph Matching, Graph
Edit Distance, Mixed Integer Linear Program, Matheuristic, Local Branching, Variable
Partitioning Local Search.
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Chapter 1

Introduction

Context

A very convenient and efficient way to model objects and patterns is to use graph-based
representations. Graphs provide a satisfactory structural representation of an object, by
defining the main components that form the object using vertices, and drawing the relations
between them using edges. More information and characteristics can be stored in the graph
by assigning labels/attributes to vertices and edges. These attributes can be of numerical
or nominal type (or both), giving more flexibility to graphs. Due to the importance of
graphs, there is a whole field of study devoted for graphs in mathematics, known as graph
theory. It turned out to be very suitable for numerous practical problems that come from
different field, such as biology, chemistry, neuro-science, computer vision and computer
science. In Pattern Recognition (PR) field, graph-based representations appear to have a
great interest, because they form the core of structural pattern recognition. The ultimate
target in this field is to recognize objects and patterns inside images or videos, but to do so
these objects must be modeled and represented somehow. Graphs, by definition, are flexible
and do not have restrictions on the number of vertices/edges, and the attributes may be of
different sizes and types. Moreover, graphs are resilient to rotation and translation of the
objects inside the images, which makes them the potent representation of objects. But a
question arises at this point which is: how to compare the graphs?

Graph Matching (GM) problems are there to answer this question. Solving these prob-
lems provide a way to compare graphs, by computing a similarity or a dissimilarity measure
between two graphs. This measure is computed after determining the correspondences be-
tween vertices and edges of the graphs. Typically, the matching can be done in different
forms: strictly match the graphs (same number of vertices/edges, same structure), or tol-
erate some differences in the graphs. Therefore, GM problems are split into two main
categories (Conte et al., 2004): Exact Graph Matching (EGM) and Error-Tolerant Graph
Matching (ETGM). The second form is more familiar, because the matching must be tol-
erant to the differences in the topology and attributes of the graphs, since it is unlikely to
have isomorphism between graphs in real-life scenarios.

A well-known problem that belongs to the category of ETGM problems is the Graph
Edit Distance (GED) problem. Solving this problem implies minimizing a dissimilarity
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measure that stands for the cost needed to transform one graph into another through a
series of edit operations (Bunke and Allermann, 1983). The available edit operations are
substitution, insertion and deletion for vertices or edges, and a cost is associated to each
operation. The dissimilarity measure is then defined by the sum of the costs of the edit
operations realized. In the past years, the GED problem has gained more attention, mainly
because it has been shown to generalize other GM problems such as maximum common
subgraph, graph and subgraph isomorphism (Bunke, 1997, 1999). However, and since
graphs are flexible and can be large and complex, in the case of modeling complex patterns
and objects, solving to optimality the GED problem becomes difficult and intractable in
practice. In fact, GED has been proven to be in the class of NP-hard problems (Zeng
et al., 2009). Many algorithms have been proposed to solve the problem. Most of them are
heuristic approaches to compute sub-optimal solutions, due to the high complexity of the
problem. Few exact approaches exist to solve the problem to optimality, but they fail to
deal with big instances of graphs. Some of the exact approaches are Mixed Integer Linear
Program (MILP) formulations that turn out to be more efficient than Branch & Bound
(B&B) based methods. On the other hand, the heuristic approaches are more focused on
the speed, so they converge fast towards feasible solutions. Of course, there is a compromise
here between the speed of the heuristic and the quality of the solution. This is the big
dilemma in the GED problem, the ability to develop a heuristic that is fast enough but at
the same time guarantee computing close-to-optimal solutions.

The best place to find answers and ideas when it comes to complex and NP-hard
optimization problems, is the Operations Research (OR) field. OR touches many domains
and disciplines, notably industrial engineering and operations management, and computer
science. Optimization problems and their complexities are well established in OR, where
also various methods and techniques can be found to model optimization problems, such as
mathematical programming. Mathematical programming provides techniques to express
optimization problems mathematically in the form of Linear Programming models, MILP
models, etc. These models can, then, be solved to optimality using existing powerful
black-box solvers, e.g. CPLEX, Gurobi and Xpress. OR, as well, provides very advanced
heuristic techniques, metaheurstics and matheuristics to solve hard optimization problems.

Positioning of the Thesis

Somehow to enforce the relations between PR and OR fields, and to prove that OR can
offer very good techniques to solve PR optimization problems, this thesis is going to be
focused on developing solution techniques to solve the GED problem that are inspired from
OR methods. When reviewing the state-of-the-art exact methods of the GED problem, it
can be seen that the best methods are the MILP formulations, in particular JH (Justice
and Hero, 2006) and F2 (Lerouge et al., 2017) formulations. They perform better than
B&B-based methods (Lerouge et al., 2017). It will be, then, interesting to develop new
MILP formulations that can compete with the existing ones. And why MILP formulations?
The answer is simply because MILP solvers capability in solving those formulations is
increasing quickly. The solvers nowadays are able to solve bigger and harder instances.
Hence, if designing a good MILP formulation and solving it today with MILP solvers,
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yield good results, then better results are expected in the next coming years without the
need to modify the formulation because the solvers are going to be improved.

Additionally, OR can potentially contribute to heuristic methods. Many good and fast
heuristics already exist in the literature to solve the GED problem (e.g. Bipartite Graph
Matching (Riesen et al., 2007a), SBPBeam (Ferrer et al., 2015), IPFP (Bougleux et al.,
2017), etc.). Some of these heuristics are based on metaheuristic approaches, such as beam-
search based methods (BeamSearch (Neuhaus et al., 2006) and SBPBeam (Ferrer et al.,
2015)). Beam-search is a very basic metaheuristic approach, where in OR more complex
and effective ones exist that are not yet tried on the GED problem. One could think
of MILP-based heuristics, which are also known as matheuristics. Matheuristics combine
MILP formulations, MILP solvers and heuristic techniques (e.g. neighborhood exploration,
diversification, etc.) in a procedure that aims at computing near-optimal solutions. They
have shown great capability in solving optimization problems. Such techniques have not
yet been tested on the GED problem.

The focus of this thesis is summarized in the following two points:

• Developing exact approaches based on MILP formulations to solve the GED problem,
that are better than the existing methods. This gives a push to the state-of-the-art
exact methods, by scaling up to bigger and more complex instances.

• Design matheuristics to solve the GED problem, that can live up to the performance
of existing heuristics. Also, they must assure a good trade-off between speed and
accuracy, so they can be used in final GED applications.

The contributions of this thesis, if good results are achieved, may be very important
because they will benefit two research communities: PR community in introducing new
solution methods like matheuristics, which has not yet been done. As well, OR community
in bringing attention of researchers to GM and GED problems that have a wide range of
applications in machine learning and patter recognition fields.

Outline

The thesis is organized in two main parts:

I- The first part consists of two chapters:

• Chapter 2 covers the state-of-the-art of the GM and GED problems. It starts
with a panoramic review to GM problems and categories, plus the general sub-
problems in each category. Next, it gives a detailed review to the GED problem
(definition, applications, challenges). Later, it presents the most known and
efficient exact and heuristic methods for solving the GED problem. Finally, it
summarizes all the reviews, by highlighting the problematic of existing methods,
and declaring the important contributions sought by this thesis.

• Chapter 3 is dedicated to review the basics of OR. First, it discusses the im-
portance of OR techniques in modeling and solving optimization problems. It
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shows how OR studies and classifies optimization problems based on their com-
plexities. Next, it provides a review to the most known optimization methods,
including exact and heuristic approaches. Lastly, it concludes with shedding the
light on potential matheuristic methods and the possibility of applying them to
solve the GED problem.

II- The second part covers the contributions and it is divided into two chapters:

• Chapter 4 handles the GEDEnA (Edges no Attributes) sub-problem of the main
GED problem. It discusses the importance of making such distinction. Also,
it provides a experimental comparison to existing MILP formulations, with and
without the pre-processing technique adopted from OR field. Next, based on
the analyses and the results of the experiments, it presents a proposition of
an adapted local branching matheuristic to solve the GEDEnA problem. The
results of exhaustive general and application-oriented experiments are presented
afterwards. This chapter ends with concluding remarks and summarizing all the
contributions.

• Chapter 5 is dedicated to the GED problem. It is split into two main sections:
propositions of MILP formulations and propositions of adapted local branching
and variable partitioning local search matheuristics. It provides experimental
studies and evaluations to all the proposed methods. Finally, it sums up all the
contributions and comments on the results achieved.

At last, a general conclusion summarizing all the contributions and works presented
in the thesis, is given in Chapter 6. This chapter ends with perspectives and possible
directions for future research.
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Chapter 2

Graph Matching and Graph Edit
Distance problems: State of the art

Contents
2.1 Graph definitions, types and applications . . . . . . . . . . . . . 27

2.2 Graph matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Graph Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Summary and prospects for moving forward . . . . . . . . . . . 72

2.1 Graph definitions, types and applications

A graph is a structural representation that has different types and classes. There is
a lot of history to graphs and their applications that has started a long time ago. They
have gained popularity in the field of mathematics at the beginning and then spread to
computer science. With that, many challenges have come across and a new section/field of
study, known as graph theory, has started. In this section, the main definitions and types
of graphs are given, followed by the different classes of graphs and, then applications in
which they appear.

2.1.1 Graph definitions and types

Here is a review of the common types of graphs that can be encountered in fields of
mathematics and computer science.

Graph. A graph is a mathematical structure that models pairwise relations between
abstract objects. Those objects are called vertices and the relations between them are
expressed by edges. A basic and arbitrarily structured graph mainly consists of two sets:
vertices V and edges E.
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Definition 1 (Graph). A graph G = (V,E) is such that:
V is the set of vertices,
i ∈ V denotes a vertex,
E is the set of edges, with E ⊆ V × V ,
and e = (i, j) ∈ E refers to an edge, with i, j ∈ V .

Subgraph. A graph Gs is said to be a subgraph of G if Vs and Es are, respectively, parts
of V and E. A subgraph is explicitly considered induced, which means that every edge
e ∈ Es is an edge if and only if e is in E.

Definition 2 (Subgraph). A subgraph Q = (Vs, Es) is such that:
Vs ⊆ V ,
and Es ⊆ E ∩ Vs × Vs.

Directed and undirected graphs. A graph is explicitly undirected unless it is said to
be directed. In the former case, writing e = (i, j) or e = (j, i) does not matter, because
(i, j) is the same edge as (j, i). However, in a directed graph (i, j) 6= (j, i). Definition 1 is
valid for undirected graphs, while Def. 3 below introduces directed graphs.

Definition 3 (Directed graph). A graph G = (V,E) is such that:
V is the set of vertices,
i ∈ V denotes a vertex,
E is the set of edges, with E ⊆ V × V ,
e = (i, j) ∈ E refers to an edge,
and (i, j) 6= (j, i)

Attributed graph. One advantage to use graphs when representing patterns and objects
is that more information and characteristics can be stored and assigned to vertices and
edges. Such information are called attributes or labels. The attributes can be of type
numerical, i.e. L = Rn, or nominal i.e. L = {α, β, γ, ...} or even a combination of both.

Definition 4 (Attributed graph). An attributed graph is a 4-tuple G = (V,E, µ, ξ), with:
V the set of vertices,
E ⊆ E ∩ V × V the set of edges,
µ : V → LV the function that assigns attributes to vertices,
ξ : E → LE the function that assigns attributes to edges,
LV the set of all possible attributes for vertices,
and LE the set of all possible attributes for edges.

Unattributed graph Unattributed graphs are graphs in which vertices and edges have
no attributes. It can be seen as a particular case where LV = LE = {φ}, based on Def. 4.

2.1.2 Graph classes

There are many defined classes of graphs based on shared properties and structures.
Graphs belonging to such classes are considered as special cases and are explored in graph
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2.1. GRAPH DEFINITIONS, TYPES AND APPLICATIONS

Figure 2.1: Example of graphs: a) bipartite, b) planar and c) tree

theory field to model various mathematical and geometrical problems. Here is a list of
common classes.

Regular graphs. G is said a regular graph if all vertices i ∈ V have the same degree.
The degree of a vertex is the number of edges emanated from i.

Simple graphs. G is a single graph if it has no loops and no multi-edges. That is, there
is no edge that starts and ends with the same vertex and no two edges connecting the same
vertices.

Complete graphs. A complete graph is a graph in which every two vertices are con-
nected by an edge. The number of edges is 1

2 × |V | × (|V | − 1) if the graph is undirected
and |V | × (|V | − 1) otherwise.

Connected graphs. A graph is said connected if there exists a path between each pair
of vertices. In the case of directed graphs, if there exist two paths (in both directions)
between each pair of vertices, then the graph is strongly connected. A path in a graph is
a sequence of edges connecting multiple distinct vertices.

Bipartite graphs. A graph is said to be a bipartite graph in case the set of vertices can
be split into two sets V1 and V2, such that every edge in the graph connects one vertex in
V1 with another vertex in V2 (V1 ∩ V2 = {φ}). There are no edges between the vertices of
each set. Figure 2.1-a shows an example of bipartite graph.

Planar graphs. If a graph can be drawn in a plane in a such a way, there are no
intersections between edges, then it is a planar graph. An example of this graph class is
shown in Figure 2.1-b.
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Cycle graphs. Cycle graphs are graphs in which there exists one or more vertices where
a closed walk can be done. The walk starts at vertex i and ends at the same vertex. A
walk is defined as a sequence of alternating vertices and edges such as v0, e1, v1, e2, ..., ek, vk
where each edge ei = {vi − 1, vi}. The length of this walk is k.

Tree. A tree is both an acyclic (cycle free) and connected graph. The graph in Figure
2.1-c depicts an example of a tree.

Weighted graphs. Such graph is a special case of the attributed graph. Instead of
assigning multiple attributes to every edge, only one numeric attribute is associated to
edges i.e. ξ : E → R.

2.1.3 Graph applications

There is a whole field of study devoted for graphs in mathematics, known as graph
theory. Since graphs are powerful in modeling structural relations, they are applied to
several practical problems. These problems come from different fields, such as:

• Biology: in the simple case, graphs can model proteins and enzymes, where vertices
represent aminoacids and edges draw the adjacencies between them. In a bigger
picture, they model networks of relations between proteins of different species. The
vertices in such graphs represent proteins, and the edges represent interactions, which
depict the activities of different proteins (Carletti et al., 2013). The task is then to
determine groups of proteins that perform similar activities.

• Chemistry: graphs (attributed graphs in particular) form a natural representation
of the atom-bond structure of chemical molecules. Each vertex in the graph repre-
sents an atom, while an edge represents a molecular bond (Raymond and Willett,
2002). Then, a common problem is to compare and find similarities between complex
molecules.

• Computer science: the most famous field involving graphs. They are used to
model communication networks, big data organization, websites link structure, road
maps, social media, and many others (Noel and Jajodia, 2005; Grandjean, 2016; Wu
et al., 2014). Some of common problems in this field: vertex cover, maximum clique,
shortest path between two vertices, graph matching, etc.

• Computer vision: attributed graphs are used widely in this field to perform mainly
Pattern Recognition tasks, such as object recognition and detection (Wiskott et al.,
1997), object tracking Gomila and Meyer (2003), supervised and unsupervised classi-
fications (Raveaux et al., 2007), etc. It is one the fields dedicated to solve graph-based
problems.

• Physics: a graph is used to model the interaction between parts of a system like
quantum mechanical motion of electrons (Estrada, 2013). The problem of graph
coloring appears in this field.
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• Neuro-science: graphs are called Bayesian networks and they represent the infer-
ence between brain neurons (Lee and Mumford, 2003). Graphs help visualizing and
determining the active neurons or clusters of neurons.

• Other fields that use graphs such as mathematics, sociology, computational linguis-
tics.

This list is short and does not cover all the fields, even the mentioned ones employ
graphs in different forms and actually involve many tasks and problems, further to the
examples presented. However, it is presented briefly to show the importance of graph-
based representations and the diversity of application fields.

2.1.4 Graph notations

Here are general notations that will be used later in the rest of the thesis.

Graph size. |G| denotes the size of the graph and is equal to |V |.

Vertex degree. di is the degree of a vertex i ∈ V . The degree is the number of edges
emanated from i.

Graph density. For a graph G = (V,E, µ, ξ), the density is computed by Equation 2.1
for undirected graphs and 2.2 for directed graphs.

D =
2|E|

|V |(|V | − 1)
(2.1)

D =
|E|

|V |(|V | − 1)
(2.2)

Adjacency matrix. The adjacency matrix is a common approach to represent a graph.
It is generally a (0, 1)−matrix of size |V | × |V |, where the presence of a 1 indicates that
there is an edge connecting the two vertices placed on rows and columns of the matrix.

Definition 5 (Adjacency matrix). Let G = (V,E, µ, ξ) be a graph. The adjacency matrix
A = [aij ] of size |V | × |V | is defined by

aij =

{
1 if (i, j) ∈ E
0 otherwise

Incidence matrix. Another (less common) approach to represent a graph consists in
using the incidence matrix, which is a (0, 1)−matrix of size |V | × |E|. It has vertices row
wise and edges column wise. The values in the matrix are set to 1 when the vertex on a
row is part of the edge on a column, and 0 otherwise.
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Definition 6 (Incidence matrix). Let G = (V,E, µ, ξ) be a graph. The incidence matrix
B = [bij ] of size |V | × |E| is defined by

bij =

{
1 if vertex i and edge e are incident
0 otherwise

2.2 Graph matching

2.2.1 Concept and categories

In Pattern Recognition (PR) field, there is a distinction between statistical and struc-
tural pattern recognition. The former consists in computing vectors of features to represent
objects, while the latter uses structural data and in particular graphs. In both approaches,
a common task is to come up with methods to compare two objects or an object with a
defined model. Statistical methods have yielded very good results, due to the easiness of
exploiting vectors to extract information and characteristics that describe and distinguish
an object. However, few limitations exist with such approach: features vectors must have
the same size in a defined application, and it is not evident how to model the relations
between the features especially when dealing with complex objects (Riesen, 2015). On the
other hand, the use of graphs overcomes those problems, because graphs are flexible by
definition, i.e. there are no restrictions on the number of vertices/edges, and attributes
may be of different sizes and types. Moreover, graphs are resilient to rotation and transla-
tion of objects inside images, which makes them the potent representation of objects. To
this, graphs have become more known and the interest of researches in studying them has
grown in the past decades.

Graph Matching (GM) (aka graph comparison) is the core of structural pattern recog-
nition. Generally, it defines a similarity or dissimilarity measure for structural graphs.
For simplicity, and since similarity and dissimilarity are related (i.e. when similarity value
increases, dissimilarity value decreases), only dissimilarity term is used in the rest of the
thesis. Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), solving a GM problem
relates to mapping vertices V to V ′ and edges E to E′, while satisfying a set of defined
topological constraints (Conte et al., 2004). The mapping/matching between two sets of
vertices and two sets of edges is also known as correspondences. The dissimilarity mea-
sure can be computed after determining those correspondences. However, the constraints
may or may not be flexible, depending on the goal of the comparison. Accordingly, there
are two main categories of GM problems: Exact graph Matching (EGM) problems and
Error-tolerant graph matching (ETGM) problems. Exact GM approach is a very strict, in
the sense that when comparing two (sub-)graphs, they must be identical (e.g. number of
vertices/edges, structure, attributes, etc). It is not the case in ETGM, where it is possible
to map two vertices that don’t carry the same attributes, and also it tolerates differences
in structures e.g. extra vertices or edges. The second category is considered more general
than EGM, which can be considered as a special case of ETGM. Both categories are dis-
cussed in the following sub-sections starting with explaining the different problems that
fall into each category and the important methods to tackle them.
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GM problems have spread to many domains and have a large number of applications.
Below is a listing of such applications:

• 2D and 3D image analysis (Eshera and Fu, 1986; Suganthan et al., 1995; Perchant
et al., 1999; Wilson and Hancock, 1998)

• Document processing: OCR and handwritten recognition (Rocha and Pavlidis, 1994),
string recognition (Filatov et al., 1995), symbol and graphics recognition (Lladós
et al., 1996)

• Biometric identification: Face authentication and recognition (Wiskott, 1997;
Wiskott et al., 1997), fingerprint recognition (Maio and Maltoni, 1996)

• Image database: Indexing and retrieval (Petrakis and Faloutsos, 1997; Park et al.,
1997)

• Video analysis: Annotation and retrieval from databases (Shearer et al., 2001), object
tracking (Gomila and Meyer, 2001), motion estimation (Salotti and Laachfoubi, 2001)

• Biomedical and biological applications (Wang et al., 1998; Dumay et al., 1992; Fischer
et al., 2002)

2.2.2 Exact graph matching

The main constraint to meet in this category of GM problems is that the mapping
between vertices of graphs G and G′ must be edge-preserving. Matching two couples of
vertices impels matching the edges induced by them. In the case of attributed graphs, two
matched vertices or edges must carry the same attributes. The matching category is very
strict and require a bijective function. Numerous problems fall into this category and they
are all detailed in the survery about graphs by Conte et al. (2004). Some of EGM problems
are reviewed in the next sub-sections.

G G'

Figure 2.2: Graph G is a subgraph isomorphic to G′, the subgraph is highlighted in yellow.
This is not induced, because in the subgraph of G′ there is an extra edge.
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2.2.2.1 Graph isomorphism

It is the problem of finding the exact matching between two graphs, with the additional
constrain that it is edge-preserving.

Definition 7 (Graph isomorphism). Let G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′) be two
attributed graphs. A graph isomorphism is a bijective function F : V → V ′, satisfying:

1. µ(i) = µ′(F(i)) , ∀i ∈ V ,

2. e = (i, j)⇒ f = (F(i),F(j)) ∈ E′, with ξ(e) = ξ′(f), ∀e ∈ E,

3. f = (k, l)⇒ e = (F−1(k),F−1(l)) ∈ E, with ξ′(f) = ξ(e), ∀f ∈ E′.

G is said isomorphic to G′ if there exists a bijective function F satisfying the three rules
above. Graph isomorphism problem is shown to be in NP class (Kun, 2015). However,
it is known yet whether the problem is in P or NP-complete. Recently there was a
very interesting work by Babai (2016) that proposed a quasi-polynomial time algorithm
to solve this problem. A quasi-polynomial time algorithm has a worse running time of
2O((log n)c), with c > 1. Such algorithm is runs slower than polynomial time, yet faster
than the exponential time. The work is inspired by methods and analysis from group
theory domain.

2.2.2.2 Subgraph isomorphism

The problem is similar to graph isomorphism problem, except that it looks if G is a
subgraph of G′ in the strict sense (G is contained in G′). It is also called Monomorphism.

Definition 8 (Subgraph isomorphism). Let G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′) be two
attributed graphs. A subgraph isomorphism is a injective function F : V → V ′, satisfying:

1. µ(i) = µ′(F(i)) , ∀i ∈ V ,

2. e = (i, j), there exists a f = (F(i),F(j)) ∈ E′, with ξ(e) = ξ′(f), ∀e ∈ E.

An example of monomorphism between graphs is given in Figure 2.2. The presence
of an extra edge in the subgraph highlighted in yellow is acceptable and prevents it from
becoming induced subgraph isomorphism. This problem is NP-complete following the
same proof of the induced case as in Garey and Johnson (1990). There exist many heuristic
and approximation methods to compute the monomorphism, which can be found in (Conte
et al., 2004).

2.2.2.3 Induced subgraph isomorphism

It is a stronger form of Subgraph isomorphism. It requires edge-preserving and the
matched part in G′ must be exactly as G, i.e. it does not permit having extra vertices or
edges.
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Figure 2.3: Graph (c) is the maximum common subgraph of (a) and (b)

Definition 9 (Induced subgraph isomorphism). Let G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′) be two attributed graphs. An induced subgraph isomorphism is a injective
function F : V → V ′, satisfying:

1. µ(i) = µ′(F(i)), ∀i ∈ V ,

2. e = (i, j)⇒ f = (F(i),F(j)) ∈ E′, with ξ(e) = ξ′(f), ∀e ∈ E,

3. f = (k, l), there exists a e = (F−1(k),F−1(l)) ∈ E, with ξ′(f) = ξ(e), ∀f ∈ E′.

This problem is NP-complete as proved by Garey and Johnson (1990). This form
of matching is even harder than graph isomorphism. There are several works proposing
algorithms to solve this problem based on decision trees (Messmer and Bunke, 1999) and
random walks (Gori et al., 2005). In Figure 2.3, graph (c) is an induced subgraph isomor-
phism for graphs (a) and (b).

2.2.2.4 Maximum common subgraph

Another stringent problem of EGM problems is the maximum common subgraph prob-
lem. It is the problem of finding the maximal part that is common in terms of vertices,
edges and attributes, between two graphs.

Definition 10 (Maximum common subgraph). Let G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′) be two attributed graphs. Graph g is common subgraph of G and G′, if
there exists a subgraph isomorphism from g to G and from g to G′. g is called maximum
common subgraph, if there exists no bigger common subgraph.

Figure 2.3 shows an example of a maximum common subgraph. The problem of finding
the maximum common subgraph isNP-hard (Akutsu and Tamura, 2012) and the prove has
been done by reduction of a maximum clique instance to a maximum common subgraph.
There were several attempts, inspired from existing algorithms that solve the maximum
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clique problem, in order to solve the maximum common subgraph as the works by Levi
(1973) and McGregor (1982). The problem is also exploited and well studied, which has
led to compute a dissimilarity measure between two graphs, once the maximum common
subgraph is computed (Bunke and Shearer, 1998). The measure is defined by:

dMCS(G,G′) = 1− |mcs(G,G
′)|

max(|G|, |G′|)
(2.3)

withmcs(G,G′) is the size of the maximum common subgraph g. The distance gets smaller
as the maximum common subgraph gets larger. When the distance is 0, the graphs are
then isomorphic.

2.2.3 Error tolerant graph matching

This is the second and most important category of GM problems. EGM problems
impose rigid constraints on the matching, since it must be strict in terms of number of
vertices, number of edges and having equivalent attributes. For instance, when matching
a couple of vertices in the first graph to another couple of vertices in the second graph, if
there is an edge between one couple then there must be an edge in the second, otherwise
matching these two couples cannot be done. Moreover, to match two vertices (or edges),
they must have the same attributes values. However, when graphs comes from real-life
scenarios, e.g. when extracting graphs from images, they might contain extra vertices and
edges. This could be caused by the presence of noise in the images, or by a poor quality
of the images. In such cases, EGM will fail in comparing graphs as they are not exact.
To overcome this, and perform matching between graphs in a more flexible fashion, some
of EGM constraints can be relaxed. This is the family of ETGM problems, where solving
an ETGM problem leads to computing a matching between graphs that tolerates some
differences in the topologies and the attributes. The matching obtained, in this case, comes
at a cost, which is considered as a similarity or dissimilarity score, by using a function or
distance between the attributes of two vertices/edges. In the case of dissimilarity costs, the
smaller the cost, the more similar the vertices are (it is the opposite in the case of similarity
costs). EGM problems can be seen a special case of ETGM problems, such that the aim is
to find the matching with all costs are null. Therefore, ETGM problems are a more generic
form of graph matching, that is also harder than EGM problems. Allowing matching to be
tolerable and flexible, increases the complexity of the problem. In addition, the matching
problem, in the context of error-tolerant, has become an optimization problem, while it
was a decision problem in the case of exact graph matching. The goal is find the least
cost matching possible between two graphs. This category has gained more attention and
there are many interesting problems defined in this context. The most important ones are
reviewed in the following sub-sections.

2.2.3.1 Substitution-tolerant subgraph isomorphism

This type of GM problems is based on only substitution of vertices and edges, and it
is "tolerant", so it allows differences in the attributes. However, the tolerance is limited to
the attributes but sharing the same topology must be met. All vertices and edges of the
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first graph must be matched with other vertices and edges of the second graph, with the
possibility of having differences in the attributes of the matched items. This difference is
measured by a defined function or distance measure, that is called the cost of substitution.
The rest of the rules and matching constraints of subgraph isomorphism are still valid in
this type of matching.

Definition 11 (Substitution-tolerant subgraph isomorphism). Let G = (V,E, µ, ξ) and
G′ = (V ′, E′, µ′, ξ′) be two attributed graphs. A substitution-tolerant subgraph isomorphism
is a injective function F : V → V ′, satisfying:

1. µ(i) ≈ µ′(F(i)), ∀i ∈ V ,

2. e = (i, j)⇒ f = (F(i),F(j)) ∈ E′, with ξ(e) ≈ ξ′(f), ∀e ∈ E,

3. f = (k, l), there exists a e = (F−1(k),F−1(l)) ∈ E, with ξ′(f) ≈ ξ(e), ∀f ∈ E′.

This problem differs from the exact subgraph isomorphism by dropping the equality
between labels. They should be approximately equal, or the distance between them is very
small. This problem is suitable for cases where graphs are extracted from images and there
is noise introduced in graphs. This ETGM type is NP-hard minimization problem, and
there exists a Mixed Integer Linear Program (MILP) formulation proposed in the literature
to solve it (Le Bodic et al., 2012).

2.2.3.2 Error-tolerant subgraph isomorphism

Error-tolerant sugraph isomorphism problem is similar to substitution-tolerant sub-
graph isomorphism problem, but it also enables matching two graphs with different topolo-
gies (e.g. number of vertices, number of edges, ...). Basically, in this problem, a set of
dummy vertices and edges is introduced, which will be used to match vertices and edges
of graph G. A vertex in G can be then matched with a vertex in G′ or a dummy vertex,
depending on the (smallest) matching cost. So, in this problem, there is not only substitu-
tion as in the first one, but also deletions, which are represented by matching a vertex/edge
with dummy vertice/edges.

Definition 12 (Error-tolerant subgraph isomorphism). Let G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′) be two attributed graphs. An error-tolerant subgraph isomorphism is a injec-
tive function F : V ∪∆V → V ′ ∪∆V ′ , satisfying:

1. ∆V ′ is the set of dummy vertices,

2. ∆E′ is the set of dummy edges,

3. µ(i) ≈ µ′(F(i)), ∀i ∈ V,F(i) ∈ V ′ ∪∆V ′ ,

4. e = (i, j)⇒ f = (F(i),F(j)) ∈ E′ ∪∆E′ , with ξ(e) ≈ ξ′(f), ∀e ∈ E

5. f = (k, l), there exists a e = (F−1(k),F−1(l)) ∈ E, with ξ′(f) ≈ ξ(e), ∀f ∈ E′∪∆E′.

This problem is a NP-hard minimization problem, which requires a matching cost to
be defined. The algorithms designed to tackle the problem are denoted as error-correcting
or error-tolerant matching, and such an algorithm can be found in (Messmer and Bunke,
1998).
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2.2.3.3 Error-tolerant graph isomorphism

Error-tolerant graph isomorphism problem is a generalization of the error-tolerant prob-
lem, where the whole graphs must be matched and there are dummy vertices and edges on
both sides. It is completely tolerant to graphs: structures, topologies and the attributes
on vertices and edges.

Definition 13 (Error-tolerant graph isomorphism). Let G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′) be two attributed graphs. An Error-tolerant graph isomorphism is a injective
function F : V → V ′ ∪∆V ′, satisfying:

1. ∆V and ∆V ′ are the set of dummy vertices,

2. ∆E and ∆E′ is the set of dummy edges,

3. µ(i) ≈ µ′(F(i)), ∀i ∈ V ∪∆V ,F(i) ∈ V ′ ∪∆V ′ ,

4. e = (i, j)⇒ f = (F(i),F(j)) ∈ E′ ∪∆E′ , with ξ(e) ≈ ξ′(f), ∀e ∈ E ∪∆E,

5. f = (k, l), there exists a e = (F−1(k),F−1(l)) ∈ E ∪ ∆E, with ξ′(f) ≈ ξ(e), ∀f ∈
E′ ∪∆E′.

This is one of the most general form of error-tolerant GM problems, which turns out to
be NP-hard. The problem has been studied in the literature and there exists a heuristic
algorithm to solve it by Bunke and Allermann (1983). Other heuristic approaches can be
found in the literature as well. Figure 2.4 depicts an example of error-tolerant GM.

Figure 2.4: Error-tolerant graph isomorphism example. The green dashed lines and circles
are the dummy vertices and edges added to graphs. The left unmatched vertex in G′ is
matched with the dummy vertex in G.

2.2.3.4 Graph edit distance

In the same spirit, the graph edit distance (GED) problem is an error-tolerant graph
matching problem (Sanfeliu and Fu, 1983; Bunke and Allermann, 1983). Solving the GED
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problem leads to computing a distance or dissimilarity measure between two graphs. It
is tolerant, without any restrictions to differences in topologies, structures and attributes
on vertices and edges. GED consists in finding the minimum cost needed to transform
one graph into another, through a series of edit operations. The possible edit operations
are substitution, insertion and deletion of vertices or edges, with a cost associated to each
operation. The GED problem has been proven to be very flexible and can be seen as a gen-
eralization to other graph matching problems, by modifying some properties (Bunke, 1997).
Furthermore, it is able to cope with any type of graphs: attributed or non-attributed, di-
rected or undirected. The problem has been well studied by many researchers and has
been involved in many application domains. For all these reasons, GED is considered the
most important and versatile problem in ETGM. The section 2.3 is dedicated to the GED
problem, starting by defining the problem, the application domains and then the most
efficient methods to solve it. Solving the GED problem is the subject of this thesis.

2.2.3.5 Multivalent matching

This is a general type of matching and less common than the above matching types,
though it has interesting applications in graph theory (Champin and Solnon, 2003). The
multivalent matching can be emerged in both exact or error-tolerant matching. It rather
permits matching one vertex in G with one or multiple vertices in G′. More generally,
multivalent matching can be of the following types:

• One to many,

• Many to one,

• Many to many.

This problem involves special operations such as vertex merging and splitting, with a
constraint of non-overlapping between the matched group of vertices. To formalize the
multivalent matching, a relation m, that associates a vertex to multiple vertices, is intro-
duced.

Definition 14 (Multivalent matching). Let G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′) be
two attributed graphs. A relation m ⊂ V ×V ′ is a multivalent matching between G and G′,
if:

1. m(i) = {k ∈ V ′ : (i, k) ∈ m},∀i ∈ V ,

2. m(k) = {i ∈ V : (i, k) ∈ m},∀k ∈ V ′.

The work by Sorlin et al. (2007) proposes a generic distance measure based on multi-
valent matching. As well, in the same reference this problem is proven to be NP-hard, by
applying reduction from the GED problem, which is also NP-hard.
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Table 2.1: Summary of GM problems and their complexities

Matching problem Complexity

Exact GM

Graph isomorphism NP
Subgraph isomorphism NP-complete
Induced subgraph isomorphism NP-complete
Maximum common subgraph NP-hard

Error-tolerant GM

Substitution-tolerant subgraph isomorphism NP-hard
Error-tolerant subgraph isomorphism NP-hard
Error-tolerant graph isomorphism NP-hard
Graph edit distance NP-hard
Multivalent matching NP-hard

2.2.4 Summary and prospects for moving forward

So far, most of the important GM problems that can be found in the literature, have
been reviewed by giving their definitions and complexities. The problems are numerous and
each one has its own properties and restrictions for matching graphs. Table 2.1 sums up
the problems and their complexities. Most of them are NP-hard problems, which means
that finding an optimal solution is difficult and may not be possible in reasonable time.
Despite their importance, dealing with such problems is a serious challenge.

The present thesis’s main objective is to study and develop methods to solve ETGM
problems. It is meant then to deal specifically with ETGM problems and not EGM. Those
problems are more general and less restrictive: they tolerate differences in the topology
of the graphs and the attributes. Such tolerance helps accommodating to deformations,
presence of extra vertices, wrong feature values in the graphs. They appear due to the
existence of noise or non-deterministic elements during the acquisition process of the graph.
Another important factor to favor ETGM problems is that they cover the exact problems
because they can compute the exact matching if it is possible to have it. But of course,
this tolerance increases the complexity of the problem.

Among the ETGM problems, there is the GED problem that is more appealing and
most encountered in the literature. Of course, there are convincing reasons as to why this
problem is important, which are:

• The GED problem was studied and applied to many application fields, such as: Pat-
tern Recognition, Chem and Bio-informatics, Knowledge and Process Management,
etc. There is a taxonomy of the applications detailed by Stauffer et al. (2017). The
applications are discussed in details in the following sections.

• The GED problem is considered as the most important problem in the structural
pattern recognition approaches. The book by Riesen (2015) discusses in details and
provide a comparison between statistical and structural pattern recognition.

• The GED problem is considered as a distance measure and called the dissimilarity
measure between graphs. It computes the number and the strength of distortions
that have to be applied to transform one graph into a another.
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• The GED problem is very flexible and can operate with any kind of costs functions. In
particular, if the costs on edit operations satisfy the properties of metric space, then
the distance computed by solving the GED problem can be considered as a metric
between graphs. The properties of a metric space are: non-negativity, identity of
indiscernibles and triangle inequality.

• The GED problem has been shown to be a generalization of other graph matching
problems (e.g. maximum common subgraph or graph and subgraph isomorphism),
by simply changing the cost metric properties. This was shown by Bunke (1997,
1999). Then, developing techniques and methods to solve this problem will help in
contributing to other matching problems.

All these reasons have led to select the GED as the ETGM problem that this thesis will
be focusing on. The objectives are mainly to study it in particular, in order to extract
important properties to help developing efficient methods. The methods can be either exact
i.e. they provide optimal solutions at the cost of an exponential time, or heuristics i.e. they
compute sub-optimal solutions in reasonable time. The rest of this chapter is devoted to
explain the GED problem and to review the most important and recent methods introduced
in the literature.

2.3 Graph Edit Distance

This section discusses the graph edit distance problem in details. The definition of
the problem is given first, followed by the application fields where it is involved. Next, a
review of the most important methods that solve the problem, by distinguishing two main
categories: exact and heuristic methods.

2.3.1 Problem concept and definition

The graph edit distance is, by definition, considered as a dissimilarity measure between
two graphs (Eq. 2.4).

d : G × G′ → R+,
with G the graph space. (2.4)

It computes the number and the strength of the distortions that have to be applied to
transform one graph into another. In other words, given two attributed graphs G =
(V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), solving the GED problem consists in transforming the
source graph G into the target graph G′ (Bunke and Allermann, 1983). To accomplish
such a transformation, the following set of edit operations are introduced:

• i→ k: substitution of two vertices i ∈ V and k ∈ V ′, i.e. i is also said to be matched
with k,

• i→ ε: deletion of vertex i ∈ V from G,

• ε→ k: insertion of vertex k ∈ V ′ into G,
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• e→ f : substitution of two edges e = (i, j) ∈ E and f = (k, l) ∈ E′, i.e. e is also said
to be matched with f ,

• e→ ε: deletion of edge e = (i, j) ∈ E from G,

• ε→ f : insertion of edge f = (k, l) ∈ E′ into G.

with ε referring to the null vertex or edge and is used to represent deletion and insertion
operations.

In addition, each edit operation has an associated cost, computed by a function c(.).
Defining such a cost function is, in most cases, problem-dependent (e.g. graphs extracted
from images or representing chemical molecules) and graph-type dependent (e.g. attributed
or unattributed graphs). For the sake of clarity and generality, the cost function is defined
to take an elementary edit operation as a parameter, and the output is based on the type
of the operation. For example, the cost function for attributed graphs can be written as
follows:

• c(i→ k) = Subv(µ(i), µ′(k)), i ∈ V, k ∈ V ′,

• c(i→ ε) = Delv(µ(i)), i ∈ V ,

• c(ε→ k) = Insv(µ
′(k)), k ∈ V ′,

• c(e→ f) = Sube(ξ(e), ξ
′(f)), e ∈ E, f ∈ E′,

• c(e→ ε) = Dele(ξ(e)), e ∈ E,

• c(ε→ f) = Inse(ξ
′(f)), f ∈ E′.

So, in the case of attributed graphs, costs are dependent on the attributes assigned to
vertices and edges. For instance, the cost of substituting vertex i with vertex k is computed
by the function Subv(., .), which is a defined distance between the two sets of attributes
assigned to vertices i and k. Delv(.) and Insv(.) are also functions to compute a cost based
on the attributes of the vertex when deleting or inserting: such a cost is also seen as a
penalty. The same logic is applied to edges as well when designing cost functions. Eq. 2.5
lists the domain definition of costs functions for vertices and edges edit operations.

Subv : Rn × Rm → R+,
Delv : Rn → R+,
Insv : Rm → R+,

Sube : Rn × Rm → R+,
Dele : Rn → R+,
Inse : Rm → R+.

(2.5)

On the other hand, if the graphs are unattributed, the matching is mainly concerned
about the topology and the structure in the graphs. Therefore, the function becomes as
follows:

• c(i→ k) = 0, i ∈ V, k ∈ V ′,
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• c(i→ ε) = τ, i ∈ V ,

• c(ε→ k) = τ, k ∈ V ′,

• c(e→ f) = 0, e ∈ E, f ∈ E′,

• c(e→ ε) = κ, e ∈ E,

• c(ε→ f) = κ, f ∈ E′.

with τ and κ ∈ R+. The absence of attributes on vertices and edges leads to fixing the
costs of edit operations.

Other cost function properties and restrictions are discussed in section 2.3.2.

Definition 15 (Topology constraint). The topology constraint implies that matching (sub-
stituting) two edges (i, j) ∈ E and (k, l) ∈ E′ is valid if and only if their incident vertices
are matched:

• i→ k and j → l OR i→ l and j → k in case of undirected graphs,

• i→ k and j → l in the case of directed graphs.

The topology constraint imposes restrictions on edges matching and draws the relation
between vertices matching and edges matching. It is not possible to randomly match edges
of both graphs, instead edges matching must satisfy the topology constraint.

A sequence of edit operations that transforms G into G′ is called an edit path. There
is also the notion of complete edit path, which is a feasible solution to the GED problem.

Definition 16 (Edit path). An edit path is a sequence of elementary edit operations applied
on G to obtain G′. A valid edit path must consider the following:

• deleting a vertex implies deleting all its incident edges,

• inserting an edge is possible only if the two vertices already exist or have been inserted,

• inserting an edge must not create more than one edge between two vertices or self-
loops.

Definition 17 (Complete edit path). A complete edit path is basically an edit path of the
form λ(G,G′) = {o1, ..., ok} that considers the following properties:

• oi is an elementary edit operation on a vertex or an edge,

• k is a positive integer,

• a vertex/edge can have at most one edit operation applied on it.

Subsequently, solving the graph edit distance problem consists in computing the com-
plete edit path with the least total cost.
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Definition 18 (Graph edit distance). The graph edit distance between two graphs G and
G′ is defined by:

dmin(G,G′) = minλ∈Γ(G,G′)

∑
oi∈λ(G,G′)

c(oi) (2.6)

where Γ(G,G′) is the set of all complete edit paths, dmin is the minimal cost obtained by a
complete edit path λ(G,G′), and c(.) is the function that assigns costs to elementary edit
operations oi satisfying all the above constraints (Eq. 2.9 till 2.16).

It is obvious that the GED problem depends on some defined cost functions, but they
are not involved in GED’s definition. Another way to say it, the cost functions must be
defined and designed beforehand, apart from the GED solution. There is a general and easy
way to store the costs of edit operations using martices. Matrix [cv] (Eq. 2.7) represents
the costs of edit operations for vertices: ∀(i, k) ∈ V × V ′, the substitution costs are stored
as shown in the equation 2.7. Then, a column labeled ε is added to store the costs of
deletions of the vertices in V . For insertion operations, the row ε in the matrix contains
the insertion costs for vertices in V ′. The values inside the matrix are expressed by cu,v,
that is the result of calling the cost function c(u→ v) for the edit operation. For edge edit
operations, matrix [ce] (Eq. 2.8) is computed for every ((i, j), (k, l)) ∈ E × E′, plus the
row and column ε for deletions and insertions of edges.

cv =

v1 v2 . . . v|V ′| ε


c1,1 c1,2 . . . c1,|V ′| c1,ε u1

c2,1 c2,2 . . . c2,|V ′| c2,ε u2
...

...
. . .

...
...

...
c|V |,1 c|V |,2 . . . c|V |,|V ′| c|V |,ε u|V |
cε,1 cε,2 . . . cε,|V | 0 ε

(2.7)

ce =

e1 e2 . . . e|E| ε


c1,1 c2,1 . . . c|E|,1 cε,1 f1

c1,2 c2,2 . . . c|E|,2 cε,2 f2
...

...
. . .

...
...

...
c1,|E′| c2,|E′| . . . c|E|,|E′| cε,|E′| f|E′|
c1,ε c2,ε . . . c|E|,ε 0 ε

(2.8)

Property 1. The edges matching are driven by the vertices matching.

This is an important property in the GED problem and it is inferred from defintion
15. It states that edges matching are dependent on vertices matching. For example, to
substitute edges (i, j)→ (k, l), the incident vertices must be matched i.e. i→ k and k → l.
Evidently, if vertices matching (i → k and k → l) are determined before, it could be
evinced that edges (i, j) and (k, l) are going to be substituted. Another example, deleting
a vertex i, the incident edges (originated from i) will have to be deleted. Accordingly, it
could be generalized that once vertices matching are fixed, edges matching can be deduced.
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Figure 2.5: Transformation a graph G into graph G′. Edit operations: Substitution of
1 → a, 3 → b and (1, 3) → (a, b); deletion of vertex 2 and edge (1, 2)

This property is important and helpful when designing methods to solve the problem, by
focusing more on determining vertices matching, considering it the difficult part, and then
deducing edges matching.

Figure 2.5 depicts an example of the transformation of a graph G into a graph G′.
The complete edit path is composed of the following edit operations: 1 → a, 3 → b,
(1, 3) → (a, b), 2 → ε and (1, 2) → ε. This is a valid complete edit path, so it is a feasible
solution, but is it the best one? As stated before, the solution obtained after solving the
GED problem represents the sequence of edit operations with the least total cost. Based
on Definition 18, if somehow all complete edit paths in Γ(G,G′) can be enumerated, then it
is only a matter of calculating the costs of all paths and select the cheapest one. However
it is not the case, as enumerating all complete edit paths in Γ(G,G′) is not very easy and
straightforward. It involves determining all valid paths that satisfy all the conditions and
restrictions, evaluating them and selecting the best/optimal one with the least total cost.
This is the reason of the high combinatorial complexity of the GED problem. Hence, the
problem is difficult and its complexity grows exponentially with the growth of the graph
sizes i.e. number of vertices. In fact, the GED problem was proven to be NP-hard by
Zeng et al. (2009). So, unless P = NP , solving the problem to optimality cannot be done
in polynomial time of the size of the input graphs. Regarding the complexity proof, Zeng
et al. (2009) have used a reduction of an induced subgraph isomorphism instance to a GED
instance, in the special case where |V | ≤ |V ′| and |E| ≤ |E′|. The reduction, of course,
was done in polynomial time. Therefore, the GED problem is NP-hard since the sugraph
isomorphism problem is known to be NP-complete (Garey and Johnson, 1990).

Due to the high complexity of the problem, most of the researches were focused on
developing heuristic and approximation algorithms to solve it. There are plenty of those
methods in the literature, and some of them are really effective and can compute the
matching between graphs in a very short amount of time. There are also exact algorithms
and Mixed Integer Linear Program (MILP) formulations that were designed to compute the
optimal solutions to the GED problem. However, such methods suffer from the problem
of scalability, i.e. they are not applicable on large graphs. In the following sub-sections,
the most recent and important heuristic and exact algorithms are reviewed and discussed
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in details, highlighting their pros and cons.

2.3.2 Cost functions

Two main criteria are discussed in this section related to cost functions definition for
the GED problem.

2.3.2.1 Cost function restrictions

In addition to the above restrictions on the edit path in the GED problem definition,
there are certain constraints that the cost function c(.) must meet (Neuhaus and Bunke,
2007). These constraints give more sense to solutions by making the cost function a metric,
obeying the metric conditions: positivity, identity of indiscernibles, symmetry and triangle
inequality. The first constraint (Eq. 2.9) ensures that deletion and insertion operations
have positive costs, and substitution also is positive or zero.

c(i→ k) ≥ 0 and c(i→ ε) > 0 and c(ε→ k) > 0, ∀i ∈ V, k ∈ V ′. (2.9)

Those constraints favor substitution over deletion and insertion operations, by allowing
substitution to cost zero. Of course, the same constraints exist on edges.

c(e→ f) ≥ 0 and c(e→ ε) > 0 and c(ε→ f) > 0, ∀e ∈ E, f ∈ E′. (2.10)

However, this does not give priority to substitutions over insertions and deletions, in the
case where substitution has a non-zero cost. Thus, the equations 2.11, also known as the
triangle inequality, are imposed.

c(i1 → k1) ≤ c(i1 → ε) + c(ε→ k1),
c(i1 → ε) ≤ c(i1 → k2) + c(k2 → ε),
c(ε→ k1) ≤ c(ε→ k2) + c(k2 → k1),

∀i1 ∈ V and ∀k1, k2 ∈ V ′.

(2.11)

Equations 2.11 simply force a substitution operation between two vertices to cost less than
deleting the first vertex and inserting the second vertex. Deleting one vertex must always
be cheaper than substituting that vertex and then delete the replacement. Lastly, inserting
a vertex must cost less than inserting a different vertex and then substituting it with that
vertex. The triangle inequality is applied on edges as well.

c(e1 → f1) ≤ c(e1 → ε) + c(ε→ f1),
c(e1 → ε) ≤ c(e1 → f2) + c(f2 → ε),
c(ε→ f1) ≤ c(ε→ f2) + c(f2 → f1),

∀e ∈ E and ∀f1, f2 ∈ E′.

(2.12)

The function has to satisfy the identity of indiscernibles condition, which states that
substituting two vertices (resp. edges) costs zero if and only if all their attributes are equal.
The condition is imposed on vertices by Eq. 2.13 and on edges by Eq. 2.14.

c(i→ k) = 0 ⇐⇒ µ(i) = µ′(k),∀i ∈ V and k ∈ V ′ (2.13)
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c(e→ f) = 0 ⇐⇒ ξ(e) = ξ′(f),∀e ∈ E and f ∈ E′ (2.14)

This is however not yet a metric, because it still needs the symmetry constraints to be
meet. They are defined as follows:

c(i→ k) = c(k → i),
c(i→ ε) = c(ε→ i),
c(ε→ k) = c(k → ε),
∀i ∈ V and k ∈ V ′.

(2.15)

Likewise, the symmetry constraints are applied on edges costs.

c(e→ f) = c(f → e),
c(e→ ε) = c(ε→ e),
c(ε→ f) = c(f → ε),
∀e ∈ E and f ∈ E′.

(2.16)

The aforementioned constraints are crucial and must be satisfied when designing a cost
function for the edit operations. This implies that GED becomes a distance function, and
the identity property can be inferred:

d(G,G′) = 0 ⇐⇒ G = G′ (2.17)

2.3.2.2 Objective driven cost functions

Another aspect to consider when talking about the GED is the cost of edit operations.
Solving the GED problem implies minimizing the edit operations cost to transform one
graph into another. Each edit operation has an associated cost function as in Eq. 2.5.
Cost functions can take into account vertex or edge attributes. As well, cost functions
must reflect the user need, thus they can be learned to fit a specific goal. For instance,
the goal can be to reduce the gap between the ground-truth matchings and the optimal
matchings. The ground-truth matching is usually given by human experts (aka Oracle)
and reflects the true matching between a pair of graphs. When the ground-truth is missing,
cost functions can also be hand-crafted based on domain-dependent knowledge introduced
by an expert of the application. In the examples illustrated in Figure 2.10 (Page 52),
actually red lines indicate wrong correspondences computed by the GED solver, and they
are detected by comparing them to the ground-truth matching. In fact, there could be two
reasons to why there are mismatched vertices: the first reason is that GED solver used is
not an exact method and thus the computed matching is not the optimal one. A second
reason is that the GED solver has computed a very good solution (the best minimum) but
the cost functions defined are not learned based on the ground-truth matchings. Defining
adequate cost functions is a problem in itself, known as learning cost functions for graph
matching.

There are a lot of works in the literature proposing methods to learn cost functions
to fit specific goals (Moreno-García et al., 2016; Cortés and Serratosa, 2016, 2015; Ser-
ratosa et al., 2011). Despite the fact that solving the GED problem and learning cost
functions are two different problems, they are related. Generally, GED solvers are con-
siderably influenced by cost functions. Choosing carefully cost functions might help GED
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Figure 2.6: GED time line (taken from Gao et al. (2010)

solvers in converging faster towards good solutions with respect to applications. Because
cost functions can help locally to differentiate vertices/edges between each other, which
enables GED solvers finding the right correspondences easily. Otherwise, there will be a
lot of symmetry and resemblance between vertices and edges and of course the problem of
matching them becomes more complicated. In the presence of attributes on vertices and
edges can help distinguishing between them, such that cost functions will use the attributes
to measure a similarity or dissimilarity distance between vertices and edges. If attributes
are numerical, then any representative norm can be used, e.g. norm L2 or the Euclidean
distance. In the case of nominal or symbolic attributes, a distance can be defined by either
transforming them to numerical (if possible) attributes and then as before use any norm
as a distance. Otherwise, a discriminative distance over the symbolic attributes has to be
defined. However, as the GED is NP-hard, then even when having good cost functions, it
might be still very hard and time consuming to solve complex instances. The important
two things to keep in mind are: cost functions affect the performance of GED solvers, but
there is always a need to develop efficient (heuristics and exacts) algorithms to solve the
minimization problem.

2.3.3 The GED problem at a glance

The GED problem was born after several attempts to refine, as much as possible, the
distances or (dis)-similarity measures between graphs. The first attempt was made by
Sanfeliu and Fu (1983), who had proposed a distance between graphs by counting the
number of relabeling of vertices and edges, together with the number of vertices and edges
deletions and insertions. Next, Messmer and Bunke (1994, 1998) extended this first attempt
by computing the minimum cost for all error-correcting subgraph isomorphisms. These
works made the link between the GED problem and error-tolerant subgraph isomorphism
problems. During the same period, Bunke (1997) showed that there is a strong relation
between the GED problem and the maximum common subgraph problem. However, there
was still an ambiguity about the definition of the cost functions for edit operations on one
side, and the sensitivity of the GED problem to cost functions on another side. These
unclear points were addressed by Bunke (1999) by commenting on the uniqueness of the
cost functions.

Figure 2.6 shows the evolution of the GED problem in time. The figure is taken from
the survey by Gao et al. (2010). It points out the methods that were proposed to tackle the
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Figure 2.7: Examples of keypoints that represent an object inside an image. The keypoints
become the vertices in the graph (Lê-Huu and Paragios, 2017; Zhou et al., 2013).

GED problem. As seen, in the early 90’s the methods were dynamic programming-based
and adapted to solve the GED problem, but originally proposed to solve the string edit
distance problem. The work by Zhang and Shasha (1989) refers to a dynamic programming-
based method for the GED problem, and it is based on the dynamic program by Wagner
and Fischer (1974) for the string edit distance. Next, Zhang (1996) had proposed another
dynamic program that only works on trees. Also inspired by string edit distance methods,
there were several methods based on Levenshtein distance to evaluate the similarity of pair-
wise strings, which are derived from graphs (Myers et al., 2000). However, such a method
suffered from the problem of not fully exploiting the statistical dependencies existing in
the local context. To overcome this inconvenience, methods based on Markov random field
were designed. Wei (2004) had developed a probabilistic based method known as Markov
edit distance. Again from the string edit distance, the Hamming distance was involved in a
method to solve the GED problem. It was used to compute the hamming distance between
the structural units of graphs (Wilson and Hancock, 1997). Consequently, the edit distance
problem in general have played an important role into shifting to graphs and being able
to measure distances between them. This have helped in refining the GED problem and
switch the focus on designing and developing efficient methods to solve it.

2.3.4 Applications

The GED problem appears in many application fields and a taxonomy has been pro-
posed by Stauffer et al. (2017). They belong to many research fields such as Pattern
Recognition, Chem-informatics, Bio-informatics, Internet Of Things. In most of the ap-
plications, solving the GED problem has been done to perform either graph retrieval or
classification tasks. In the following, the important applications are reviewed with some
examples.

Image analysis. Graphs are used in images to represent objects and patterns. They are
flexible, so they can represent objects in both 2D- or 3D-images. Vertices model the main
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Figure 2.8: Keypoints are spotted in silhoutes and then used as vertices in graphs (Mateus
et al., 2008).

components that form the object, and each vertex has a list of attributes that characterizes
the component, e.g. (x, y)−coordinates, color intensities around, special features, etc.
Then, the edges are used to link the components, with additional attributes to carry
information describing those links. Figure 2.7 illustrates an example of graphs modeling
objects, e.g. houses, cars, bikes and even human face features. Another usage of graphs
is shown in Figure 2.8, where graphs are modeling silhouettes of objects extracted from
videos. Then, the GED problem can be solved in order to compute dissimilarities between
graphs. Having small distance values reflects high similarties between objects and they
likely belong to the same family. By doing so, it gives the ability to compare objects and
patterns and therefore to perform: object detection and recognition, image segmentation
(Zhang et al., 2016; Madi et al., 2017; Hasegawa and Tabbone, 2012; Seidl et al., 2014;
Robles-Kelly and Hancock, 2005). The GED problem appreas as well in classification tasks
as presented by Raveaux et al. (2011); Riesen et al. (2007b); Bunke and Riesen (2012).

Handwritten document analysis. Graphs are constructed over segmented words in
images, where vertices represent the keypoints or strokes, and the edges link pairs of key-
points or strokes. A graph models the documents words and their relations. Then, GED
can be applied between a query graph and documents graphs to find correspondences. Such
an application is called keyword spotting and there exists many works in the literature that
use GED (Riesen et al., 2014; Wang et al., 2014b,a; Stauffer et al., 2016; Bui et al., 2015;
Riba et al., 2015)

Biometrics. Retina vessels, fingerprints or signatures are considered as biometrical char-
acteristics. There are many applications with the goal of identifying an individual based on
the fingerprint or signature. So, graphs can be used to model a fingerprint, where vertices
represents segmented core areas, and edges relates adjacent areas. Graphs can then be
classified by using GED solutions as a dissimilarity measure between graphs (Choi and
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Figure 2.9: Examples of graphs modeling chemical molecules. The vertices and edges are
drawn in light blue.

Kim, 2010). Similar approaches are used in identification systems based on retina vessels,
where also graphs are classified by means of a GED solver (Lajevardi et al., 2013). Another
application based on signatures can be found in the literature (Wang et al., 2011).

Bio- and Chem-informatics. In the field of Bio-informatics, graphs are used to model
DNA, protein sequences and enzymes. This enables analyzing biological structures. A very
important example is the ability of detecting cancerous tissues. Tissues are modeled by
graphs and then a classifier is built by using GED distances to classify normal, low-grade
and high-grade cancerous tissues (Ozdemir and Gunduz-Demir, 2013). In chemistry field
and precisely when considering chemical molecules, graphs form a natural representation
of the atom-bond structure of molecules. Each vertex of the graph then represents an
atom, while an edge represents a molecular bond (Raymond and Willett, 2002). By using
GED as a distance between graphs, it provides a way to compare molecules between each
other and to detect similar activities and properties, which answers a major question in
this field. Brun et al. (2010) and Gaüzère et al. (2011) have employed graphs and the
GED problem in order to compare chemical molecules. Figure 2.9 illustrates an example
of chemical molecules represented by graphs.

Knowledge and process management. Graphs can be useful in this context. For
instance, process management is composed of various methods, which are connected and
share complex relations. It aligns processes in a way to guarantee a good overcome. The
processes and their relationships can be expressed by graphs and then GED is applied to
extract similarities between bands processes (Niedermann, 2016). Another application is
to estimate the execution time of SPARQL (Sparkle recursive acronym query language)
queries (Hasan and Gandon, 2014).

Malware detection. The efficiency of using graphs to construct relational models for
malicious executables of the same family, makes it suitable to employ GED in the task of
malware detection in Anti-viruses. Graphs are called call graphs and represent a malware
sample with certain variations. Then, based on GED solutions after comparing the graphs,
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Figure 2.10: Examples of matching solution computed by a GED solver between couple of
graphs. Yellow lines show the correct correspondences between vertices. Red lines are for
wrong correspondences computed by the solver.

certain properties can be extracted based on the similarities found (Bourquin et al., 2013;
Elhadi et al., 2012) and (Kostakis et al., 2011). In those examples, the GED problem is
not the main problem, but it is used for graphs comparison and then builds up on it to
achieve the objectives of detecting malicious executables.

Other applications. Among others, more are applications are: stories retrieval (Paul,
2013), sketches retrieval (Florez-Puga et al., 2013) and plagiarism detection (Kammer et al.,
2011; Røkenes et al., 2012).

2.3.5 Key-points and advantages of the GED problem

Most of the applications listed in section 2.3.4, require performing graph searches among
databases of graphs. For instance, an unknown graph that models an object in an image
must be compared with all graphs in a database of known objects in order to find simi-
larities. Zeng et al. (2009) classify graph searches into three categories, for a database of
graphs D = {g1, g2, ..., gn}, and a query graph q:

• Full search: find all graphs gi in D that are the same as q,

• Subgraph search: find all graphs gi in D that contain or are contained by q,

• Similarity search: find all graphs gi in D that are similar to q, based on some defined
similarity measure.

The GED problem can be involved in the three aforementioned categories. Furthermore,
in most of the applications, the graph search mostly used is the similarity search. The
reason is that the graph query may differ from graph models stored in the database, due
to reasons such as the presence of noise inside an image. Therefore, graph and subgraph
isomorphism might not be useful as much as similarity search, which is flexible and tolerates
structures and attributes differences in graphs. In addition, similarity search is effective
in supervised classification by k-nearest neighbors and unsupervised classification by k-
medians clustering. Another important application using the similarity search is graph
retrieval. GED seems to be a good fit to perform similarity search and graph retrieval.

Besides providing a distance/dissimilarity measure, GED also computes the matching
between two graphs. A matching, which also called assignments of vertices, consists of
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the operations selected and applied on vertices. For two sets V = {u1, u2, u3} and V ′ =
{v1, v2}, a matching is expressed with the matrix:

Matching =

u1 u2 u3 ε( )1 0 0 0 v1

0 0 1 0 v2

0 1 0 0 ε

Whenever a vertex u ∈ V (resp. in v ∈ V ′) is matched with ε, it is said to be deleted
(resp. inserted), otherwise u is substituted with v. The same as vertices matching, edges
matching can be represented by a matrix. It is of interest to end-users to evaluate and
understand the matching, by looking at the matched components for a query graph with
similar graphs found in the database. Actually, the matching can help interpreting the
results and detecting relevant spot patterns. GED problem enables having both the dis-
tance and the matching, which is convenient to end-users in helping them observing the
correspondences between graphs. Figure 2.10 shows an example of visualized matching
solutions computed by a GED solver. Unlike, other similarity search approaches such as
graph embedding into vector space, the matching is lost and cannot be reconstructed eas-
ily. Kernel-based methods are an example of graph embedding, and there are plenty of
them in the literature, such as the work by Neuhaus and Bunke (2006b,a). The concept
of kernel-based approach is to use kernel machines to map the classification problem from
the pattern domain to a vector space domain. It embeds the graph into a vector using a
kernel function. Then, some existing techniques can be applied for pattern analysis over
vectors in order to compute a distance between two graphs. One inconvenient of such
methods, only the distance can be computed without the matching, and it is not clear how
to backtrack and re-construct the graphs matching from these vectors.

2.3.6 GED challenges

Taking a look at the literature, there are many heuristics that can be found to solve
the GED problem. Some of them are designed to converge very fast, while others favor the
quality of the solutions over the running time. In all cases, there is a compromise between
the running time of the heuristic and the accuracy of the computed solution. The only way
to overcome this is by checking the application requirements and factors like graph size,
density, type of attributes, which are in general responsible in making the problem hard
to solve. An application like object detection in images is, in most cases, considered as a
real-time application. Therefore, there is a need for having a very fast algorithm, but on
the other hand, the graphs being compared should be of small sizes. In other applications,
such as finding similar graphs of complex chemical molecules, it is affordable to spend extra
running time in order to obtain accurate results.

1. Is it worth spending time to compute accurate solutions?

2. What is the impact of a better solution on the similarity search or on the matching,
with respect to the application?
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These are the main questions and challenges that have to be considered when dealing with
the GED problem. The literature contain several promising attempts and heuristics trying
to address those questions.

2.3.7 Exact methods

This section is dedicated to review the most famous and efficient exact methods found
in the literature to solve the GED problem. These methods are designed to compute
optimal solutions, i.e. solutions having the minimum value of the total dissimilarity cost.
Of course and since the problem is NP-hard, these methods tend to require an exponential
running time as the graph sizes increase. On the hand, they guarantee finding the best
solution possible to the problem.

2.3.7.1 A*-based algorithms

A* is considered as the first algorithm to solve the GED problem. It is an exact
algorithm because it guarantees finding the optimal solution. A* builds a search tree by
enumerating all possible combinations, until reaching the bottom (leaf), that is a feasible
solution to the problem. Algorithm 1 details the steps of the method, and is taken from
the version by Hart et al. (1968). It starts by initializing and ordering the set of vertices V1

and V2 of the two input graphs G1 and G2. At the root node of the tree, it selects a vertex
u from the first graph, and then builds the child nodes corresponding to all possible edit
operations on u. For all vertices w ∈ V2, all substitution edit operations are (u→ w), plus
one delete operation (u → ε). This defines the first level of the search tree (lines 1 − 3).
The added operations are handled in the set OPEN . The next step in the algorithm is to
decide which child node to choose in order to continue building the next level. There are
many strategies that are usually applied in this case such that:

• Depth-first: the first unselected child node at the left side is picked,

• Breadth-first: it explores the neighbor nodes first (nodes at the same level) before
moving to the next level,

• Best-first: it selects the child node with the best (lowest) estimation. This search
strategy requires having a function to compute heuristically an estimation of the cost
of exploring a given node further.

This version of A* uses the best-first search strategy. After creating a new level, a cost
is computed for each node using g(p) + h(p). Where g(p) represents the costs of the edit
operations that are selected so far until node p. The function h(p) computes an estimated
cost from node p to a leaf node. So, the algorithm decides the next node to explore by
selecting the one with the smallest value of g(p) + h(p) (line 5). In order to guarantee the
admissibility of the algorithm, which means it will eventually end up by finding the optimal
solution, the following property must be met: the estimated costs h(p) have to be always
lower than or equal to the real costs. The algorithm carries on by building the next levels,
until reaching a leaf node where it stops and return the operations that were selected all
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Algorithm 1: Minimization of the graph edit distance by A* algorithm
Input : Non-empty graphs g1 = (V1, E1, µ1, ξ1) and g2 = (V2, E2, µ2, ξ2),

where V1 = {u1, ..., u|V1|} and V2 = {v1, ..., v|V2|}
Output: A minimum-cost edit path from g1 to g2,

e.g. pmin = {u1 → v3, u2 → ε, ..., ε→ v6}

1 Initialize OPEN to the empty set
2 For each vertex w ∈ V2, insert the substitution (u1 → w) into OPEN
3 Insert the deletion (u1 → ε) into OPEN
4 loop
5 Remove pmin = argminp∈OPEN{g(p) + h(p)} from OPEN
6 if pmin is a complete edit path then
7 Return pmin as the solution
8 else
9 Let pmin = {u1 → vi1 , ..., uk → vik}

10 if k < |V1| then
11 For each w ∈ V2 \ {vi1 , ...vik}, insert pmin ∪ (uk+1 → w) into OPEN
12 Insert pmin ∪ (uk+1 → ε) into OPEN
13 else
14 Insert pmin ∪

⋃
w∈V2\{vi1 ,...,vik}

(ε→ w) into OPEN
15 end
16 end
17 end loop

the way down from the root node (line 7). In the case where all the vertices of V1 are
processed (substituted or deleted), the remaining vertices of V2 are inserted. Note that
edit operations on edges are implied by edit operations on their adjacent vertices (based
on GED property 1), and the function g(p) takes into account the edges edit operations.

One way to compute the estimation h(p) at a node p is as follows:

• Let ni (resp. nj) be the number of unprocessed vertices for graph G (resp. graph
G′),

• construct the cost matrix of size min(ni, nj) for vertices assignment,

• solve the linear assignment problem to get an minimum assignment cost assigns,

• compute the deletion cost assignd by adding the costs of remaining vertices
max(0, ni − nj),

• compute the insertion cost assigni by adding the costs of remaining vertices
max(0, nj − ni),

• finally h(p) = assigns + assignd + assigni.
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Figure 2.11: An example of the edit grid graph generated for two input graphs G and G′

by JH formulation.

To make the computation faster, edges operations could be ignored, or substitution costs
could be set to null. This may lead to having multiple substitutions of vertices or edges,
which means that the edit path is invalid. But, the cost h(p) is certainly a lower bound of
the exact cost.

A* is a straightforward method and very simple, however it appeared to perform poorly
in practice. The algorithm suffers from high computational complexity and it is exponential
in the number of vertices of the graphs. It could be used until graphs of size 12, beyond
that it explodes in terms of running time and memory. Therefore, there were few attempts
to improve it, like A*-Beamsearch and A*-Pathlength versions by Neuhaus et al. (2006).
They both intend to reduce the number of nodes to be explored by choosing a fixed number
as in the first one, or modifying the estimation function as in the second one. Another
variation to A* which works efficiently was developed by Abu-Aisheh et al. (2015b). It
reduces the computation time by improving lower and upper bounds, which help in pruning
unpromising child nodes.

2.3.7.2 JH MILP formulation

Justice and Hero (JH) have proposed a MILP formulation to optimally solve the GED
problem (Justice and Hero, 2006). It is one of the efficient formulations, however it deals
with a special case of GED. It takes into account the attributes over vertices by using a cost
function to compute a cost (distance), but it requires a fixed cost for operations on edges.
So, for graph instances with attributes on edges, JH does not include these attributes and
instead, it assigns zero as cost for substitution operations and a unitary cost for deletion
and insertion operations.

Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), the main idea consists in
determining the permutation matrix minimizing the L1 norm of the difference between
adjacency matrix of the input graph G and the permuted adjacency matrix of the target
one G′. The authors have introduced a framework for edits, in which both graphs G and
G′ are embedded in bigger graphs denoted as edit grids. Figure 2.11 illustrates an example
of two graphs and their corresponding edit grid. At first, it constructs an edit grid GΩ

of size |V | + |V ′|, that is a complete graph with all vertices and edges having the null
attribute. Next, G is embedded in GΩ by relabeling the null vertices and edges with the
actual attributes. The next step is to determine the series of edit operations needed to
transform the version of G in the edit grid to an isomorphic graph of G′ in the edit grid.
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Figure 2.12: Isomorphisms of graphs G and G′ on the edit grid GΩ. The edit opera-
tions applied are: (ω1, α → φ), (ω2, β → φ), (ω4, φ → γ), ((ω1, ω2), 1 → 0), ((ω1, ω3), 1 →
0), ((ω2, ω3), 1→ 0), ((ω3, ω4), 0→ 1)

The edit operations available on the edit grid are the following:

• (ω1, α → φ), corresponds to a vertex deletion operation such that the vertex ω1 in
the edit grid is labeled by α and is being now relabeled by φ (null), implying deleting
the α vertex,

• (ω1, φ → α), corresponds to a vertex insertion operation. A vertex with label α is
being inserted in the edit grid,

• ((ω1, ω2), 1→ 0), is an edge deletion operation,

• ((ω1, ω2), 0→ 1), is an edge insertion operation.

Note that the substitution operations are selected at a first step, when embedding graph
G in the edit grid. Figure 2.12 depicts an example, following the input graphs in Figure
2.11, of a transformation between graphs, with the selected operations. The goal is to find
the proper set of operations that will give an isomorphism of G′ in the edit grid. The
authors have used the adjacency matrices A and A′ of size |V |+ |V ′|, to represent graphs
G and G′ in the edit grid. Then, the problem is written as follows:

dc(G,G
′) = min

P∈B

N∑
i=1

N∑
k=1

c(µ(i), µ(k))Pik +
1

2
· κ · |A− PA′P T |ik, (2.18)

with N = |V | + |V ′|, B = {X ∈ {0, 1}N×N/
∑

j Xk,j =
∑

iXi,k = 1∀k} the set of all
permutation matrices, and κ ∈ R+ a constant cost for edges insertions and deletions. The
second term in the equation makes it a non-linear (quadratic) function. To linearize it,
the authors have followed the same strategy as in (Almohamad and Duffuaa, 1993). The
details of the linearization are skipped and the linear version is given next, for further
details kindly refer to the full paper Justice and Hero (2006).

Data. Since the cost functions are known and defined. Vertices cost matrix [cv] is com-
puted as in equation 2.7 for every couple (i, k) ∈ V × V ′. The ε column is added to store
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the cost of deleting i vertices, while the ε row stores the costs of inserting k vertices. In this
formulation, there is no need to compute [ce] since edges edit operations have a constant
cost. In this case, κ ∈ R+ is set beforehand. Also, as part of problem data, there are the
two adjacency matrices A and A′ for graphs G and G′.

Variables. After the linearization, JH formulation is left with three sets of binary vari-
ables:

• xi,k ∈ {0, 1}, ∀i ∈ {1, 2, ..., N},∀k ∈ {1, 2, ..., N}: xi,k = 1 when vertices i and k are
matched, and 0 otherwise. Note that, the indices of i and k are bounded by N , which
means that deletions (resp. insertions) occur when i (resp. k) has φ as attribute.

• si,k ∈ {0, 1}, ∀i ∈ {1, 2, ..., N},∀k ∈ {1, 2, ..., N}. It is used to manage edges match-
ing. When si,k = 1, it represents a matching between the first couple of vertices of
edges including i and k.

• ti,k ∈ {0, 1}, ∀i ∈ {1, 2, ..., N},∀k ∈ {1, 2, ..., N}. It is the complementary variables
for edges matching. When ti,k = 1, it means a matching between the second couple
of vertices of edges including i and k. It follows that in order to match edges ((i, j)→
(k, l), si,k = tj,l = 1.

Objective function. The objective function to minimize is the following:

min
x,s,t∈{0,1}N×N

(
f(x, s, t) =

N∑
i=1

N∑
k=1

c
(
µ(i), µ′(k)

)
· xi,k +

(
1

2
· κ · (si,k + ti,k)

))
(2.19)

The first part of the objective function computes the cheapest permutation x for vertices.
The second part is to account for the edges operations costs.

Constraints. JH has 3 sets of constraints:

N∑
j=1

Ai,j · xj,k −
N∑
c=1

xi,c ·A′c,k + si,k − ti,k = 0, ∀i, k ∈ {1, 2, ..., N} (2.20)

N∑
i=1

xi,k = 1, ∀k ∈ {1, 2, ..., N} (2.21)

N∑
j=1

xk,j = 1, ∀k ∈ {1, 2, ..., N} (2.22)

Constraints 2.20 make sure that when matching two couples of vertices, the edges between
them have to be matched as well. Then, constraints 2.21 and 2.22 guarantee the integrity
of matrix x, i.e. one vertex in G can be matched with only one vertex in G′. This model
has a limitation that it does not consider the attributes on edges, so edge substitution cost
is 0 while deletion and insertion have a κ ∈ R+ fixed cost. Another limitation is that JH
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supports only undirected graphs. Nevertheless, JH was proven by Lerouge et al. (2017),
to be the most efficient formulation among other formulations in the exact context, in the
cases of undirected and edge-free attributes graphs.

The number of variables in JH formulation are 3 · (|V |+ |V ′|) · (|V |+ |V ′|) with (|V |+
|V ′|) · (|V |+ |V ′|) + 2 · (|V |+ |V ′|) constraints.

2.3.7.3 F1 MILP formulation

F1 is a formulation designed by Lerouge et al. (2017). It is a direct formulation of
the GED problem for undirected graphs. F1 involves a set of binary variables for each
edit operation possible and then minimizes the total costs. The formulation is defined as
follows.

Data. The cost functions are assumed to be given, therefore [cv] and [ce] are computed
as in equations 2.7 and 2.8.

Variables. F1 formulation has 6 sets of binary variables:

• xi,k ∈ {0, 1}, ∀i ∈ V,∀k ∈ V ′: xi,k = 1 when vertices i and k are matched, and 0
otherwise.

• yij,kl ∈ {0, 1}, ∀(i, j) ∈ E,∀(k, l) ∈ E′: yij,kl = 1 when edge (i, j) is matched with
(k, l), and 0 otherwise.

• ui ∈ {0, 1}, ∀i ∈ V : ui = 1 when vertex i is deleted, and 0 otherwise.

• eij ∈ {0, 1}, ∀(i, j) ∈ E: eij = 1 when edge ij is deleted, and 0 otherwise.

• vk ∈ {0, 1}, ∀k ∈ V ′: vk = 1 when vertex k is inserted, and 0 otherwise.

• fkl ∈ {0, 1}, ∀(k, l) ∈ E′: fkl = 1 when edge kl is inserted, and 0 otherwise.

Objective function. The objective function to be minimized is the following:

min
x,y,u,v,e,f

∑
i∈V

∑
k∈V ′

cv(i, k) · xi,k +
∑

(i,j)∈E

∑
(k,l)∈E′

ce(ij, kl) · yij,kl+∑
i∈V

cv(i, ε) · ui +
∑
k∈V ′

cv(ε, k) · vk +
∑
ij∈E

ce(ij, ε) · eij +
∑
kl∈E′

ce(ε, kl) · fkl
(2.23)

The objective function minimizes the cost of vertices (resp. edges) substitutions, deletions
and insertions.

Constraints. F1 has 6 sets of constraints:

ui +
∑
k∈V ′

xi,k = 1, ∀i ∈ V (2.24)
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vk +
∑
i∈V

xi,k = 1, ∀k ∈ V ′ (2.25)

eij +
∑

(k,l)∈E′
yij,kl = 1, ∀(i, j) ∈ E (2.26)

fkl +
∑

(i,j)∈E

yij,kl = 1, ∀(k, l) ∈ E′ (2.27)

yij,kl ≤ xi,k + xi,l, ∀(i, j) ∈ E and ∀(k, l) ∈ E′ (2.28)

yij,kl ≤ xj,l + xj,k, ∀(i, j) ∈ E and ∀(k, l) ∈ E′ (2.29)

Constraints 2.24 ensures that a vertex i is either matched with one vertex or deleted.
The opposite case is handled by constraints 2.25. Constraints 2.26 and 2.27 make sure
that an edge can be substituted with exactly one edge or deleted/inserted. Regarding the
topological condition given by definition 15, constraints 2.28 and 2.29 guarantee satisfying
it. Note that, since the graphs are undirected, constraints 2.28 (resp. 2.29 allow vertex i
(resp. j) to be matched with k or l.

F1 formulation can be easily modified to cope with directed graphs, by simply replacing
the last two constraints 2.28 and 2.29, with the following constraints:

yij,kl ≤ xi,k, ∀(i, j) ∈ E and ∀(k, l) ∈ E′ (2.30)

yij,kl ≤ xj,l, ∀(i, j) ∈ E and ∀(k, l) ∈ E′ (2.31)

The total number of variables in the formulation is (|V |+ |V ′|+ |E|+ |E′|+ |V | · |V ′|+
|E| · |E′|), with (|V |+ |V ′|+ |E|+ |E′|+2 · |E| · |E′|) constraints. F1 formulation is effective
in general for the GED problem, but a more compact formulation, denoted by F2, was
designed later by the same authors.

2.3.7.4 F2 MILP formulation

F2 is the best MILP formulation for the GED problem - in the general case - in the
literature. It was proposed by Lerouge et al. (2017) and it is an evolution of F1 formulation.
F2 formulation is a more compact and improved version of F1, obtained by reducing the
number of variables and constraints. The compactness of F1 comes from the design of the
objective function to be optimized. At first, it considers all vertices and edges of G as
deleted and vertices and edges of G′ as inserted. Then, it solves the problem of finding the
cheapest assignments/matching between the two sets of vertices and the two sets of edges.
The matching in this context is the substitution edit operations for vertices and edges.
Once, the cheapest matching is computed, by excluding from the substitution cost both
costs of deletions and insertions. Afterwards, the deletion and insertion operations can be
deduced: all the remaining vertices in V (resp. in V ′) that are not matched with any vertex
in V ′ (resp. in V ), are considered as deleted (resp. inserted). The edges are treated in the
same manner. Such design is helpful in reducing the number of variables and constraints
in the formulation. The reduction is done by factorizing the objective function’s terms.
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Data. The cost functions are assumed to be given, therefore [cv] and [ce] are computed
as in equations 2.7 and 2.8.

Variables. As mentioned earlier, F2 formulation focuses on finding the correspondences
between the two sets of vertices and the two sets of edges. That is why the decision
variables are reduced to two sets:

• xi,k ∈ {0, 1}, ∀i ∈ V,∀k ∈ V ′: xi,k = 1 when vertices i and k are matched, and 0
otherwise.

• yij,kl ∈ {0, 1}, ∀(i, j) ∈ E,∀(k, l) ∈ E′: yij,kl = 1 when edge (i, j) is matched with
(k, l), and 0 otherwise.

Objective function. The objective function to be minimized is the following:

min
x,y

∑
i∈V

∑
k∈V ′

(cv(i, k)− cv(i, ε)− cv(ε, k)) · xi,k+∑
(i,j)∈E

∑
(k,l)∈E′

(ce(ij, kl)− ce(ij, ε)− ce(ε, kl)) · yij,kl + γ
(2.32)

The objective function minimizes the cost of assigning vertices and edges with the cost of
substitution subtracting the cost of insertion and deletion. The γ value, which is a constant
and given in equation 2.33, compensates the subtracted costs of the assigned vertices and
edges. This constant does not impact the optimization algorithm and it could be removed.
It is there to obtain the GED value.

γ =
∑
i∈V

cv(i, ε) +
∑
k∈V ′

cv(ε, k) +
∑

(i,j)∈E

ce(ij, ε) +
∑

(k,l)∈E′
ce(ε, kl) (2.33)

Constraints. F2 formulation has 3 sets of constraints:∑
k∈V ′

xi,k ≤ 1 ∀i ∈ V (2.34)

∑
i∈V

xi,k ≤ 1 ∀k ∈ V ′ (2.35)

∑
(k,l)∈E′

yij,kl ≤ xi,k + xj,k ∀k ∈ V ′,∀(i, j) ∈ E (2.36)

Constraints 2.34 and 2.35 impose that a vertex can be matched with at most one vertex. It
is possible that a vertex is not assigned to another: in this case it is considered as deleted
or inserted. Here is the key point of this formulation: F2 is flexible by allowing some
vertices/edges not to be matched. The objective function gets to decide whether a sub-
stitution is cheaper than a deletion/insertion or not. γ value takes care of the unmatched
vertices/edges and includes their deletion or insertion costs to the objective function. Fi-
nally, constraints 2.36 guarantee preserving edges matching between two couple of vertices.
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In other words, to match two edges (i, j)→ (k, l), their vertices must also be matched, i.e.
i → k and j → l OR i → l and j → k (this is the topology condition defined in 15). The
number of variables is (|V | · |V ′|+ |E| · |E′|) and there are (|V |+ |V ′|+ |V | · |E|) constraints.

The presented version of F2 formulation is applied to undirected graphs. For the case
of directed graphs, constraints 2.36 are split into two sets of constraints as follows:∑

(k,l)∈E′
yij,kl ≤ xi,k, ∀k ∈ V ′,∀(i, j) ∈ E (2.37)

∑
(k,l)∈E′

yij,kl ≤ xj,l, ∀l ∈ V ′,∀(i, j) ∈ E (2.38)

2.3.7.5 A QAP formulation

The error-tolerant subgraph isomorphism was modeled as a Quadratic Assignment
Problem (QAP) in many works (Cho et al., 2013; Lyzinski et al., 2016; Caetano et al.,
2009; Simić, 1991). A QAP formulation constitutes of a quadratic function to maximize
the similarities between a pair of graphs. It has been used to perform tasks as learning
graph models to improve GM as in (Cho et al., 2013) and (Caetano et al., 2009). Modeling
the GED problem by a QAP formulation relates to assigning simultaneously two vertices
from G to two vertices from G′, instead of assigning vertices one by one. By doing so,
it is then possible to figure out the edges assignments simultaneously when assigning the
vertices. The general QAP formulation is well studied in the literature in other domains
such as Operation Research (OR) and Optimization. It was proven to be a NP-hard prob-
lem by Sahni and Gonzalez (1976). Therefore, many theoretical works can be found in the
literature that propose convex and concave relaxations, linearization techniques, etc. It
becomes a reflection when bringing up GM problem to think straight away of QAP. It is
not strange then to find GED modeled by a QAP formulation, thanks to Bougleux et al.
(2017).

A framework is designed first to store the costs of assigning edges and vertices in one
big matrix D. The organization of cost values inside the matrix and sub-matrices is very
important to keep track of the indices that represent vertices of the graphs and to consider
all operations (substitution, insertion and deletion of vertices and edges). A sub-matrix
Di,j is divided into 4 quadrants as follows.

Di,j =

1 . . . m ε1 . . . εn



c1,1 . . . c1,m c1,ε1 . . . ∞ 1
...

. . .
...

...
. . .

...
...

cn,1 . . . cn,m ∞ . . . cn,εn n

cε1,1 . . . ∞ 0 . . . 0 ε1
...

. . .
...

...
. . .

...
...

∞ . . . cm,εm 0 . . . 0 εm

(2.39)

with n = |V | and m = |V ′|. Line wise the matrix is extended by m lines, where each line
is an εj . ε vertices are added to model deletion insertion operations, e.g. a vertex in V
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(resp. V ′) is mapped to ε is considered as deleted (resp. inserted). The same for columns,
they are extended by n columns and each one is an εi. So, Di,j is of size (n+m)× (n+m).
The top-left quadrant is of size (n×m) and stands for the costs of substitution operations.
The diagonal values of the quadrant top-right (resp. bottom-left) holds the costs of vertex
deletions (resp. insertions). The non-diagonal values are set to∞ to avoid getting selected.
And the last quadrant bottom-right contains only 0 values and serves only to complete the
symmetry in the matrix. Di,j as in Equation 2.39 stores the costs of all possible operations
for two vertices i and j: it is similar to matrix [cv] given by Equation 2.7 with values
organized in a different manner. Next step is to build the big matrix D, which is given in
Equation 2.40.

D =





D1,1 . . . D1,n D1,ε1 . . . D1,εm

...
. . .

...
...

. . .
...

Dn,1 . . . Dn,n Dn,ε1 . . . Dn,εm

Dε1,1 . . . Dε1,n Dε1,ε1 . . . Dε1,εm

...
. . .

...
...

. . .
...

Dεm,1 . . . Dεm,n Dεm,ε1 . . . Dεm,εm

(2.40)

Matrix D is of size (n + m)2 × (n + m)2, and is constituted of sub-matrices Di,j . Each
value in D represents the cost of assigning two (real or not) edges, i.e. [Di,j ]k,l = ce(ij, kl)
such that i, j ∈ V ∪ {ε1, ..., εm} and k, l ∈ V ′ ∪ {ε1, ..., εn}. Calculating the costs is not a
hard task, it depends on i, j, k and l, e.g. if j = εj and the i is a valid vertex, then the
cost is the insertion of edge (k, l), because (i, j) is not a valid edge. The diagonal values
of the matrix D contains the costs of vertices matching. The functions to compute the
costs inside the matrix D are explained by Bougleux et al. (2017). As a result, D refers to
the cost matrix with all possible combinations of matching two couples of vertices at same
time, which is the goal of a quadratic objective function.

The QAP formulation proposed for the GED problem is a minimization quadratic
objective function w.r.t. two constraints. Given x ∈ {0, 1}(n+m)×(n+m), the objective
function is given by Equation 2.41, with respects to constraints 2.42 and 2.43 that makes
sure a vertex can be matched with only one vertex.

min
x
xTDx (2.41)

such that
n+m∑
i=1

xi,k = 1, ∀k ∈ {1, 2, ..., n+m} (2.42)

n+m∑
k=1

xi,k = 1, ∀i ∈ {1, 2, ..., n+m} (2.43)

QAP formulations in general are known to be less efficient than MILP formulations,
mainly because of the quadratic form of the objective functions. However, there are good
tools and techniques that can be applied in order to compute good solutions. Bougleux
et al. (2017) have developed two heuristics that operate over the QAP formulation, and
based on the experiments they were able to beat good heuristics in the literature.
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2.3.8 Heuristic methods

In contrast to exact methods, heuristic methods are designed to compute a solution in a
reasonable amount of time, typically in polynomial time of the size of the input. Generally,
the obtained solutions are sub-optimal, and even if they are optimal, they cannot be
proved to be so. Such methods are used to overcome the inefficiency of exact approaches
in computing good solutions in reasonable time, especially for hard instances. In most
cases, the heuristics developed to solve the GED problem are based on the analysis and
the extraction of problem-dependent knowledge and characteristics. There are plenty of
these methods in the literature to solve the GED problem, and in this section the most
efficient ones are reviewed.

2.3.8.1 The BeamSearch GM heuristic

This heuristic, also known as A*-Beamsearch, has been presented by Neuhaus et al.
(2006). A beam-search heuristic is an algorithm that explores a truncated search tree to
compute a feasible solution to the problem. This is basically the A* method explained
in section 2.3.7, with one difference that is not all child nodes are explored at each level.
Instead a chosen number of nodes are heuristically picked to continue building the tree.
Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), the heuristic first picks a vertex
u ∈ V at the root node, and builds the child nodes corresponding to all possible edit
operations on u. For all v ∈ V ′, all substitution edit operations are (u → v), plus one
delete operation (u→ ε). This defines the first level of the search tree. Then, only the first
α nodes, starting from the left side of the tree, are selected to continue the construction of
the search tree, with α the beam size, which is an input parameter of the algorithm. For
each of the selected nodes, another vertex u ∈ V is chosen and the process for creating and
selecting child nodes is repeated. Reaching the bottom of the search tree means a complete
edit path is built by the way defining a solution. The best solution found is finally returned.
This method is known to be very fast because, generally, the chosen beam size is small.

2.3.8.2 The bipartite GM heuristic

The bipartite graph matching, referred to as BP in the literature, heuristic is the most
famous heuristic to solve the GED problem and it has been originally presented by Riesen
et al. (2007a). BP transforms the problem from finding the cheapest matching for vertices
and edges simultaneously, into finding only the cheapest matching for vertices by making
use of a special cost matrix. The problem is then reduced to a Linear Sum Assignment
Problem (LSAP), which can be solved by the Hungarian algorithm in polynomial time.
LSAP is the problem of finding the best (cheapest in this case) matching between two sets,
such that an object in one set must be matched to one object in the second set. The LSAP
problem is detailed before explaining the BP heuristic.

Data. Given two sets S1 and S2 of elements, a cost matrix [cij ] can be calculated for
every couple of (i, j) ∈ S1×S2. Line wise, the matrix has all the elements of S1. Similarly,
the elements of S2 are place on the columns of the matrix. The cost can be computed by
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using a defined function that measures a representative distance between the couple i and
j.

Variables. Only one set of decision variables is needed:

• xi,j ∈ {0, 1}, ∀(i, j) ∈ S1 × S2: xi,j = 1 if elements i and j are matched, and 0
otherwise.

Objective function. The objective function to be minimized is the following:

min
x

∑
i∈S1

∑
j∈S2

c(i, j) · xi,j (2.44)

The objective function minimizes the cost of assigning the elements in S1 to the elements
in S2.

Constraints. 2 sets of constraints are required.

∑
j∈S2

xi,j = 1, ∀i ∈ S1 (2.45)

∑
i∈S1

xi,j = 1, ∀k ∈ S2 (2.46)

Constraints 2.45 and 2.46 ensure that the matching is bijective and every object in the
first set is matched to exactly one object in the second set. There exists a polynomial
time algorithm to compute the optimal solution to this problem, which is called the Hun-
garian algorithm and is designed by Munkres (1957). The complexity of the algorithm is
O
(
max(|S1|, |S2|)3

)
.

In BP heuristic, the problem is reduced to a LSAP instance, where the sets of vertices
of the graphs replace the sets S1 and S2. Given two graphs G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′), the cost matrix is of size N × N , with N = |V | + |V ′|, and is divided
into four quadrants, similar to the matrix in Equation 2.39. The first quadrant represents
the substitution of vertices and is of size |V | × |V ′|. The second and third quadrants are
respectively for vertices deletions and insertions and are of size |V | × |V | and |V ′| × |V ′|.
Only diagonal values represent valid assignments, so the rest is set to a high value (∞)
to avoid being selected. Finally, the fourth quadrant is just to complete the matrix and
preserve the symmetric form: it is of size |V ′| × |V | and contains only 0 values. The cost
matrix is then as follows:
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CBP =



c1,1 + θ1,1 c1,2 + θ1,2 . . . c1,m + θ1,m c1,ε + θ1,ε ∞ . . . ∞

c2,1 + θ2,1 c2,2 + θ2,2
... c2,m + θ2,m ∞ c2,ε + θ2,ε

...
...

...
...

. . .
...

...
...

. . . ∞
cn,1 + θn,1 cn,2 + θn,2 . . . cn,m + θn,m ∞ . . . ∞ cn,ε + θn,ε
cε,1 + θε,1 ∞ . . . ∞ 0 0 . . . 0

∞ cε,2 + θε,2
...

... 0 0
...

...
...

...
. . . ∞

...
...

. . . 0
∞ . . . ∞ cε,m + θε,m 0 . . . 0 0


(2.47)

with n = |V | and m = |V ′|. Each value CBPik = cik + θik, where cik is the vertex edit
operation cost induced by matching vertex i with vertex k, and θik is the cost of matching
the set of edges Ei = {(i, w) ∈ E} to Ek = {(k,w) ∈ E′}. θik represents an estimation
cost for incident edges matching, in the case where i is assigned to k. It estimates the
contribution of the edges matching resulted when matching i with k to the total cost.
The small assignment (matching) problem of edges, which is of size max(|Ei|, |Ek|) ×
max(|Ei|, |Ek|), is solved by the Hungarian algorithm as well. This is the key point of
BP method, it considers local structures information around vertices by computing an
estimation cost and embedding it in the cost matrix (Eq. 2.47). Then, the LSAP is solved
leading to the best matching between vertices, including vertices to be deleted (the ones
matched with εi) and vertices to be inserted (the ones matched with εk). From the set
of vertices matching, the full edit path can be reconstructed, by determining the edges
operations induced by vertices matching. Finally, the total cost (distance) is computed
based on the operations selected for vertices and edges, after discarding θik values and
using the base matrices [cv] and [ce] as presented in equations 2.7 and 2.8.

BP heuristic is known to be very fast and can scale up to large instances of graphs. It is
very famous in the literature as a GED solver and it is involved in many GED applications
such as image analysis, handwritten document analysis, biometrics, etc. However, it lacks
generality and ability to compute near-optimal solutions, and this is because it considers
only information about local structures around vertices rather than the global one. There-
fore, there were several attempts to improve BP by using different cost estimations, trying
to include more information about vertices, and neighbor vertices as well (Serratosa and
Cortés, 2015) and (Riesen and Ferrer, 2016). These attempts have led to better results
and accuracy.

2.3.8.3 The fast bipartite GM heuristic

Fast bipartite GM, or FBP as denoted in the literature, is an improved version of BP.
Serratosa (2014) has proposed modifications to reduce the size of the LSAP matrix. The
author assumed that the cost function is a valid distance function, and therefore it satisfies
all cost function conditions (Eq. 2.9 to 2.16, presented in section 2.3.1). Then, the author
proves the following lemma.

66



2.3. GRAPH EDIT DISTANCE

Lemma 1. Given two graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), and if the cost
function is a metric, then:

• If |V | ≥ |V ′|, then the optimal solution does not involve any vertex deletion of G′

• If |V | ≤ |V ′|, then the optimal solution does not involve any vertex insertion of G

The proof to this lemma is easy, because c(u → v) ≤ c(u → ε) + c(ε → v), the cost of
substituting two vertices is less than deleting one and inserting the other. This property is
valid since the cost function is a distance function. Then, the author introduces a new cost
matrix (Eq. 2.48). As in BP’s cost matrix, the first quadrant contains costs of substitution
operations, whilst in FBP each substitution operation subtracts the deletion and insertion
costs from the substitution cost. By doing so, the diagonal values in the second and third
quadrants are set to zero. For the sake of simplicity, θij is omitted in the matrix, but of
course it has to be added to consider local structures around vertices.

CFBP =



c1,1 − (c1,ε + cε,1) . . . c1,m − (cε,1 + cε,m) 0 ∞ . . . ∞
...

. . .
...

...
. . . . . .

...
cn,1 − (cn,ε + cε,1) . . . cn,m − (cn,ε + cε,m) ∞ . . . ∞ 0

0 . . . ∞ 0 0 . . . 0
...

. . .
...

...
. . . . . .

...
∞ . . . 0 0 . . . 0 0


(2.48)

As in BP method, the Hungarian algorithm is used to compute the cheapest substitu-
tion operations over the first quadrant only of CFBP . Of course, this way the algorithm
is faster since the size of the matrix is n×m. Note that, the matrix might not be square
n 6= m, but the Hungarian algorithm can still operate by enlarging the matrix and making
it square (adding the appropriate lines and columns filled with 0). The result will be an
approximation and not the actual cost, because it is only the substitution operations of
vertices and also because of the modifications made to costs in the first quadrant. Next,
the GED distance is computed by recomputing the actual cost of matching (vertices sub-
stitution), plus the cost of deletion and insertion of the rest of vertices, without forgetting
the edges operations inferred from vertices operations. The pseudo-code snippet given in
Algorithm 2 details FBP procedure. The complexity of FBP heuristic is O(max(n,m)3).

FBP is an improved version of the BP heuristic and it is faster because it reduces
the size of the cost matrix. However, it requires special conditions to be met by the cost
function definition, otherwise it does not solve the GED problem.

2.3.8.4 The square fast bipartite GM heuristic

In the same spirit, square fast bipartite GM, known by SFBP in the literature, is a
heuristic that improves the performance of FBP and BP heuristics. It is presented by
Serratosa (2015b). Simply, and relying always on Lemma 1, the idea is to make the cost
matrix a square matrix of size max(n,m)×max(n,m) instead of (n×m) as in FBP. To
this end, SFBP treats each case alone: if n ≤ m it computes CSFBPn≤m (Eq. 2.49), else it
computes CSFBPn≥m (Eq. 2.50).
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Algorithm 2: Fast bipartite GM algorithm
Input : G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′)
Output: dmin

1 CFBP = ComputeMatrix(G,G′)
2 Q1 = FirstQuadrant(CFBP ) // Extract the sub-matrix of size n×m
3 P = Hungarian(Q1) // Find the cheapest permutation for vertices

matching
4 d′min = ComputeCostPermutation(P ) // Calculate the cost based on Q1

5 dmin = DeduceActualCost(P, dmin) // Deduce the complete edit path and
compute its cost

CSFBPn≤m =



c1,1 c1,2 . . . c1,m

c2,1 c2,2 . . . c2,m
...

...
...

cn,1 cn,2 . . . cn,m
cε,1 cε,2 . . . cε,m
cε,1 cε,2 . . . cε,m
...

...
...

cε,1 cε,2 . . . cε,m


m×m

(2.49)

CSFBPn≥m =


c1,1 c1,2 . . . c1,m c1,ε c1,ε . . . c1,ε

c2,1 c2,2 . . . c2,m c2,ε c2,ε . . . c2,ε
...

...
...

...
...

...
cn,1 cn,2 . . . cn,m cn,ε cn,ε . . . cn,ε


n×n

(2.50)

SFBP heuristic is faster than FBP, and it computes a different solution to the GED
problem. But as in FBP, SFBP builds the complete edit path from the permutation found
by the Hungarian method over matrix CSFBPn≤m or CSFBPn≥m , and then compute the actual
GED value.

To sum up, BP, FBP and SFBP heuristics are GED solvers, which rely on solving LSAP
instance with special cost matrices by embedding estimation costs about local structures
around vertices. SFBP is the fastest heuristic, but it is limited, as well as FBP heuristic,
to cost definition conditions, otherwise it does not solve the GED problem. The main
advantage of these three heuristics is the speed-up and ability to scale up to large instances
of graphs. Later, Serratosa has conducted an experimental study on the three methods
and the results are discussed in Serratosa (2015a).

2.3.8.5 The sorted bipartite beam heuristic

The sorted bipartite beam, denoted by SBPBeam, heuristic stands for Sorted BP-
Beam: it is a mix of two local search heuristics and is developed by Ferrer et al. (2015).
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SBPBeam heuristic uses a beam-search approach as a local search to improve the initial
solution obtained by the BP heuristic. A solution S computed by BP heuristic is of the
form: S = {(u1 → v3), (u2 → v1), ..., (u4 → ε), ...}. Then for each operation, a weight is
computed based on different modes. For instance, confident is a mode in which weights
are computed based on considering cik value, which is the cost of substituting ui with vk.
Another mode, called unique, consists in computing a weight for each operation based on
Eq. 2.51. For a given ui, if this weight is negative, this means that the current assignment
ui → vk is sub-optimal and there exists another assignment ui → vl with a smaller cost.

max
∀k∈{1,...,|V ′|}\{l}

cik − cil (2.51)

Many other modes are presented by Ferrer et al. (2015) such as: divergent, leader, interval,
etc. After having the weights computed, SBPBeam heuristic sorts the operations inside S
by ascending or descending order of the weights. Next a search tree is built, by selecting
two operations and swapping them as follows:

1. Assume that after sorting S the operations order becomes Ssorted = {(u1 →
v3), (u2 → v1), ..., (u4 → ε), ...},

2. SBPBeam selects the first two assignments (u1 → v3), (u2 → v1),

3. then it swaps them, so they become (u1 → v1), (u2 → v3).

So, the root node of the search tree is the first operation in Ssorted, and the child nodes are
all the possible swapping with the rest of the operations. Next, at a child node, the total
cost (or distance) is re-computed and evaluated. If it is smaller than the initial/best cost
then the child is marked and second level is constructed by actually applying the swapping
in the solution. Else, another child is evaluated and the current is discarded. However,
to keep the algorithm tractable and compute a good solution in reasonable time, there is
a parameter α, the beam size, which limits the number of child nodes to be evaluated at
each level of the search tree.

SBPBeam heuristic is known to be fast and provide good sub-optimal solutions. How-
ever, it is sensitive to the value of α. Increasing it by much will increase the running time of
the algorithm and setting it to a very small value will degrade the quality of the computed
solution. (Ferrer et al., 2015) suggest that with α = 5 the heuristic provides good results.

2.3.8.6 The Integer Projected Fixed Point Heuristic

Integer Projected Fixed Point (IPFP) is a heuristic that solves the GED problem, which
has been proposed by Bougleux et al. (2017). It is based on a heuristic originally proposed
by Leordeanu et al. (2009), also known as Frank-Wolfe algorithm, to find a solution to the
quadratic assignment problem (QAP). Bougleux et al. (2017) model the GED as a QAP
problem, reviewed in previous section 2.3.7.5, and then propose to apply an adapted IPFP
heuristic to compute a solution. QAP formulation is known to be hard to solve. This
is also the case of its continuous relaxation (by making its variables continuous instead
of binaries). Both are NP-hard problems. Algorithms as IPFP could be very helpful in
computing good solutions to this minimization problem.
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Algorithm 3: IPFP
Input : maxIter
Output: x

1 x0 ← BipartiteHeur(c) // Initialize by calling BP heuristic
2 x← x0

3 while a fixed point is not reached OR nbIter < maxIter do
4 b∗ ← LinearApproximation(x) // Linear approximation by 1st-order

Taylor’s expansion
5 t∗ ← SolveQAPRelaxed(x, b∗) // Compute the objective function by

relaxing the variables
6 x← x+ t∗(b∗ − x)

7 end

Algorithm 3 explains the steps of IPFP heuristic. The idea is to try to linearly ap-
proximate the quadratic objective function by its 1st-order Taylor’s expansion around an
initial solution x0 (line 3 in Algorithm 3). The quadratic function is derived to obtain a
linear function. From this linear function, a new LSAP problem (because QAP hides a
LSAP related to vertices matching) is solved to obtain a solution b (line 5), which gives the
direction of the largest possible decrease in the quadratic function. Then, the quadratic
function consists in minimizing the QAP in the continuous domain along the direction
given by b (line 7). This is repeated and after some iterations the method converges to
a local minimum of the relaxed problem. This is called fixed point in the algorithm code
snippet. To limit the computational time, the method has a maximum number of iterations
(maxIter) before it stops, in case it has not converged.

Generally, IPFP heuristic converges quickly but the solution quality highly depends on
the initial solution x0, which can be computed using fast heuristics such as BeamSearch
or BP heuristics. IPFP is very sensitive to the quality of the initial solution because it
might lead to local optimum in bad regions of the solution space. IPFP has achieved better
results than other heuristics in the literature.

2.3.8.7 The Graduated NonConvexity and Concativity Procedure heuristic

Graduated NonConvexity and Concativity Procedure (GNCCP) heuristic is introduced
by Bougleux et al. (2017). It is a heuristic for the GED problem that works similarly to
IPFP by solving the QAP problem. GNCCP existed in different versions as in Liu and
Qiao (2014) and Zaslavskiy et al. (2009). Bougleux et al. (2017) have followed the existing
works with the proper modifications to make it suitable for the GED problem.

GNCCP heuristic mainly starts by reformulating the quadratic objective function to
a convex-concave function by introducing a parameter ζ that controls the concavity and
convexity of the function. The function is given in equation 2.52, with ζ ∈ [−1, 1]. In
order to get a fully convex function Sζ(x) = xTx, ζ should be set to 1. The contrast, when
ζ = −1, the function is concave and Sζ(x) = −xTx.

Sζ(x) = (1− |ζ|)S(x) + ζxTx (2.52)
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The heuristic decreases iteratively the value of ζ by small positive quantities (e.g.
d = 0.1) in order to smoothly switch between convex and concave relaxations. Each time,
it minimizes the new objective function Sζ using IPFP heuristic. GNCCP converges when
ζ reaches the value of −1 or when a valid vertices assignment (valid permutation) is found
at an iteration. The convergence towards a valid permutation is always guaranteed with
GNCCP: this is an important feature to this method that was proven by Liu and Qiao
(2014). The results of the experiments have shown better results in terms of accuracy
compared to IPFP heuristic but with more running time.

2.3.8.8 The Anytime GM heuristic

This heuristic was proposed by Abu-Aisheh et al. (2016), and it is based on an A*
approach mixed with new strategies to improve its performance. This heuristic first trans-
forms A* (presented in section 2.3.7.1) into a branch-and-bound (B&B) algorithm. So,
instead of keeping all the child nodes in the OPEN list, as in Algorithm 1, only important
and promising nodes are stored. The others are removed (aka pruned): such decision is
done by evaluating g(p) + h(p) at a node p and compare it to a computed upper-bound
(UB). If the current cost is worse than the best known UB (g(p) + h(p) > UB), the child
node is pruned. Other branching and selection strategies are presented as well, such as
sorting the child nodes by ascending order according to a computed lower bound lb(p) and
following a depth-first search strategy. B&B has more advantages than A*:

1. it is not greedy,

2. it selects carefully the children to explore,

3. it keeps tightening up the bounds that helps in pruning bad children.

Of course, letting B&B runs without time limit will reach the optimal solution, but at the
price of an exponential running time and memory consumption.

The concept of anytime GM heuristic is the ability to stop the B&B algorithm at any
point and return the best solution computed so far. By varying the time, the quality of
the solution may vary as well: allowing more time will lead to better solutions. This gives
an advantage over A* methods, by overcoming memory and execution time bottlenecks.
Based on the results published in (Abu-Aisheh et al., 2017), the unparallelized version of
the heuristic was outperformed by the IPFP heuristic.

2.3.9 Other approaches to solve the GED problem

The list of methods and in particular heuristics presented, does not cover all the existing
ones in the literature. It lists the most famous or newest methods that solve the GED
problem. Nonetheless, other heuristic approaches can be found in the literature. A recent
work, by Chang et al. (2017), proposes an efficient way to compute a tight lower bound for
partial mappings along the search. This lower bound can be used in A* and tree-search
based algorithms to improve the pruning and selection strategies.
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With the same intention, Chen et al. (2017) have designed a method for generating suc-
cessors of nodes in the search tree in A* algorithm. They eliminate invalid and redundant
mappings along the search. Also, they improve the memory consumption of A* by storing
visited nodes in beam-stack, which helps in backtracking phases. Beam-stack search is a
combination of a depth-first search and beam search strategies, with the ability of storing
partial solutions and backtracking technique.

Gouda and Hassaan (2016) have proposed a A* algorithm based on depth-first search
strategy to solve the GED problem, but instead of carrying it out over vertices, the search
tree is constructed based on edges edit operations. In fact, matching two edges underlies
two substitution operations on their incident vertices. The vertices matching are deduced
after determining the edges matching.

2.4 Summary and prospects for moving forward

This chapter has given an insight about GM problems and the GED problem in par-
ticular, and their importance in many research domains with numerous applications. The
outline of the chapter started by presenting the graphs as powerful tools in representing
structural information such as objects and patterns. Then, the chapter carried on with the
emergence of graphs in many research domains and the need of designing common frame-
works to perform graph comparison. This has led to the birth of graph matching problems,
which have been studied carefully, resulting in two classes of matching: exact (EGM) and
error-tolerant (ETGM). Moreover, many problems have been defined for each class. It is
argued earlier (section 2.2.3) the importance of ETGM over EGM. Afterwards, the chap-
ter provides a listing of ETGM problems such as substitution-tolerant graph isomorphism,
error-tolerant graph isomorphism, graph edit distance, etc. Among those problems and
after a fair comparison (in section 2.2.4), the GED problem was selected as the ETGM
problem for which this thesis will be focusing on. Few important factors have put the GED
problem before other ETGM problems, which are:

• The diversity of the applications where the GED problem is involved that touch many
application fields, such as: Pattern Recognition, Chem- and Bio-informatics, etc.

• The flexibility of the problem that can be adapted to solve other GM problems such
as maximum common subgraph, graph and subgraph isomorphism.

• The generality of the problem, since the GED problem has been considered widely
as dissimilarity measure for graphs.

That is why there is a section dedicated to the GED problem: it starts by the problem
statement and definition, applications, challenges and existing methods to solve it. When
discussing GED challenges, two questions have arisen:

1. Regarding the final application, is it worth spending time to compute accurate solu-
tions?

2. What is the impact of a better solution on the similarity search or on the matching,
with respect to the application?
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Table 2.2: Summary of GED (exact and heuristic) methods with two criteria speed and
accuracy.

Method Speed Accuracy

Exact

A* x
JH-MILP xxxx
F1-MILP xx
F2-MILP xxx
QAP x

Heuristic

BeamSearch +++ ++
BP +++ ++
FBP ++++ ++
SFBP ++++ ++
SBPBeam +++ ++
IPFP +++ ++
GNCCP + +++
Anytime GM ++ ++

The first question is in the context of the dilemma between fast GED solvers and their
accuracy. There are many heuristics designed to converge fast and return good solutions.
Knowing that the GED problem is NP-hard, those heuristics will not be able to explore
the solution space of the problem efficiently in order to find optimal solutions. Often, those
heuristics get stuck with local optima. The second question is to engage the importance
of studying the impact of the solution on the similarity search. To verify if reaching near-
optimal solutions is as good as the optimal ones.

Many GED methods are reviewed and discussed, some of them are exact and others are
heuristic algorithms. A summary of all those methods is found in Table 2.2, commenting
on two factors the speed and the accuracy. Note that the scores given to each method are
deduced after reviewing the papers that presented it and relying on the experimentation
results reported. All exact methods are accurate because they always compute the optimal
solutions, however the variant is the speed of the method in finding the optimal solution.
Considering the exact methods, JH formulation seems to be the fastest, but it does not
solve the general case of the GED problem. This leaves us with two formulations F1 and
F2 that are definitely faster than A* and QAP. Talking about the exact methods, which
are limited, there is clearly a room for having new and competitive MILP formulations
that model the problem efficiently and solve it at least as fast as JH but for the general
problem, or even faster.

Regarding the heuristic methods, the comparison shows that most of them are focused
on the speed and thus having almost the same accuracy. Nevertheless, most of the heuristics
are considered as good GED solvers with good accuracy (to a certain limit) for many
applications. It is challenging to provide a new heuristic that can make a better trade-off
between speed and accuracy. Such a contribution is always appreciated, because generally,
heuristic approaches are more suitable for final GED applications.

To sum up, and based on the methods mentioned in Table 2.2, it is interesting to
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investigate new techniques, which have not yet been applied to the GED problem, that
lead to designing new and efficient exact and heuristic methods. Providing such methods
is a good contribution to the GED problem and GM problems in general. The focus of
this thesis is going, then, to be:

• Develop an exact method that solves the general GED problem, which is efficient in
terms of speed and can solve harder instances to optimality than existing ones. It,
then, can be considered as a basis method for heuristics evaluation, by comparing
the performance and the solutions computed by the heuristics to the optimal and
best known solutions.

• Design a heuristic method that solves the GED problem and that offers a good
compromise between speed and accuracy and outperform the existing heuristic algo-
rithms.
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Chapter 3

Optimization and complexity
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3.1 Operations Research (OR)

Based on the Operational Research Society of Great Britain, OR is defined by (Oper-
ational Research Society, 1962):

"Operational research is the application of the methods of science to complex problems
arising in the direction and management of large systems of men, machines, materials
and money in industry, business, government, and defense. The distinctive approach is to
develop a scientific model of the system, incorporating measurements of factors such as
chance and risk, with which to predict and compare the outcomes of alternative decisions,
strategies or controls. The purpose is to help management determine its policy and actions
scientifically."

OR is an essential scientific research field that touches numerous disciplines such as
applied mathematics, combinatorial optimization, computer science and economics. It is
basically concerned by problems that involve making a decision, and to be more precise,
making the best decision among a possibly large set of decisions. Usually, such problems are
called complex decision-making problems. OR problems are crucial because they answer to
practical problems in important disciplines, notably industrial engineering and operations
management, and computer science among others. Often, the goal of a decision problem
is to, for example, determine the most effective decision regarding an objective (increasing
a profit, decreasing a loss, etc.), that is going to be based on given complex data, along
with satisfying some defined constraints. This decision is, then, called a solution to the
problem and more, it is said to be optimal if it is the best decision taking into account the
present circumstances. Then, it is not possible to come up with a better one. Depending
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Figure 3.1: The classical process in decision making: formulate, model, solve, and imple-
ment Talbi (2009)

on the nature of the problem and the application field, seeking such high quality solutions
leads to important operational improvements, e.g. greater productivity, lesser risk, better
performance and efficiency. A real-world example where OR based-decisions are really
effective, is when considering the Travelling Salesman Problem (TSP) (Hoffman et al.,
2013), that has a wide range of real applications. Given a list of cities and distances
between them, the TSP is the problem of finding the shortest route, such that each city
is visited once and then return to the starting city. A real-world problem, relates to the
TSP, is companies that offer delivery products to customers, where they have to answer the
demands of all customers at the minimum cost to increase their profits. So, finding the best
(optimal) route, hereby the best decision, is necessary and of interest to those companies,
because it allows them reducing the expenses and increasing the profits. However, the TSP
is a pure combinatorial optimization problem that is known to be very hard to solve to
optimality.

OR offers a collection of mathematical techniques and tools to model practical decision
problems. The idea is to come up with a rigorous system model that takes, as an input,
the quantitative data available to the problem, and returns a decision as an output. Figure
3.1 depicts the possible steps of a decision making process. So, after filtering the important
factors and objectives of the problem by degrees of importance, a system can be designed
incorporating those factors. This step is called problem formulation. The next step is the
modeling, which provides a scientific model to the problem based on the formulation. The
model becomes, then, a way for analyzing the behavior of the system. The art of modeling
problems, despite its importance, is very complex and there are plenty of modeling classes,
such as mathematical models, probabilistic models, prediction models, heuristic models,
etc. The online book by Mishra (2009) gives more insights and details about modeling
classes and techniques. Few important rules must be taken into accounts, which are:

• the model must be as simple as possible,

• the model must cope with all importance aspects of the problem,

• the model must be validated through an evaluation procedure,

• the model’s solution must fit the needs and the purpose of the problem.

Those rules, among others not fully detailed here, are compulsory to design coherent and
representative models.
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Mathematical models, which are also called symbolic models, are very important and
well established in OR field. They represent the decision variables of the system using num-
bers or letters. The variables are, then, employed in mathematical equations that describe
properties and constraints of the system. The main advantage of these models is that there
are numerous solution techniques to manipulate and extract solutions from mathematical
equations and functions, especially in the case of linear functions. Furthermore, the ability
to design a model with a function relating the decision variables, plus mathematical equa-
tions to force conditions on decision variables, turns out to be very suitable to optimization
problems. Optimizing such a function aims at minimizing or maximizing a cost, depending
on the system, while satisfying a certain number of constraints. Mathematical optimiza-
tion models have proven efficiency dealing with a wide range of practical combinatorial
problems in many sectors such as transportation, health-care, economics, finance, etc.

Besides the modeling techniques, and throughout the years, OR has developed many
solution techniques and methods to solve mathematical models. The solution techniques
are usually expressed by algorithms, referred to as implementation step in Fig. 3.1, that
are composed of strict iterative instructions to find a solution to the problem. Notice
that, if the process is repeated to improve the model and the solution, it is, then, called
the optimization model. Basically, the algorithm starts with either finding partial solutions
and then keep iterating until reaching the optimal solutions, or computing an initial solution
and keep trying to improve it by getting closer to the optimum. Of course, one may wonder
if an algorithm can solve the problem regardless of the size of the instance or the input data.
To answer this question, OR gives the ability of measuring the difficulty of the problem,
which reflects the complexity of the algorithm to solve it. This is known as complexity
theory. A difficult problem is most likely to have a huge number of decisions, therefore an
algorithm to solve it will have, typically, to lookup all the decisions and select the best one.
For certain problems, this might require exponential running time and/or space. In such
case, the problem is distinguished from other problems, called polynomial problems, where
it is possible to design an algorithm to find the optimal decision in polynomial running
time and space. It is imperative in most of the cases, if possible, to know the difficulty of
the problem, which will help in designing efficient algorithms to solve it. OR takes care of
this by providing means to study the complexity of algorithms and problems, and classify
them. In the next section, complexity theory of algorithms and some important notions
are discussed, followed by an overview of the most used solution techniques in solving
combinatorial optimization problems.

3.2 Combinatorial optimization and notion of complexity

It is quite common and natural to ask the question about the complexity of a decision
or an optimization problem. Analyzing the complexity enables determining whether the
problem can have a polynomial time algorithm to solve it, or the problem is very hard
and thus, finding the optimal solution is intractable. This is crucial because it notably
impacts the decision of which kind of algorithms to design to solve the problem. Of course,
there is more to know about complexity, but the main idea is to study and evaluate the
difficulty of a given problem. The journey all started with the works of Cook (1971) and
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Karp (1972) about problem reduction and that the class NP-complete is not empty (under
certain assumptions). Then, the book by Garey and Johnson (1979), entitled "Computers
and intractability: A Guide to the Theory of NP-Completeness", summarized all previous
works and was exclusively the first on the theory of NP-completeness. The authors, in
the book, have changed the following sentence "I can’t find an efficient algorithm. I guess
I am dumb" to "I can’t find an efficient algorithm, because there is no such algorithm
possible!". Also, they discuss the intractability of difficult decision problems and they class
them in the NP-complete class of problems. Those are the problems for which finding the
optimal solutions is not possible in polynomial time and space. In contrast, problems that
can be solved in polynomial time and space are in class P (polynomial). This section is
organized as follows: it gives a general definition of optimization models, then discusses
the complexity of problems and finally introduces some classic optimization algorithms to
solve them.

3.2.1 Optimization models

An optimization problem is defined by 4-tuples (I, S,m, g), where:

• I is the set of instances;

• S(i) is the set of feasible solutions, for an instance i ∈ I. It is called also the search
space or solution space;

• m(i, s) is the measure of solution s ∈ S(i), for an instance i ∈ I;

• g ∈ {min,max} is the objective function.

For a given instance i ∈ I, the optimization model can be expressed as follows:

O(i) = gs∈S(i){m(i, s)} (3.1)

Definition 19 (Global optimum). s∗(i) is said to be a global optimum if and only if it has
the smallest (resp. largest) objective function in the case g is min (resp. max), among all
the other solutions s(i) ∈ S(i).

Therefore, the main objective when solving an optimization problem is to find the
optimal solution s∗(i) for an instance i ∈ I. The difference between a decision problem
and an optimization problem is: the former’s goal is to find a feasible solution s(i) ∈ S(i),
while the latter aims at finding the optimal solution s∗(i) ∈ S(i). In addition, there
exist many ways to formulate optimization models, but a very common one is by using
mathematical programming, and in particular linear programming models. It is not the
case of all optimization models, especially the case of complex models, where it is not
easy to linearly express the problem. Linear programs are composed of: a set of decision
variables, a linear objective function and a set of linear constraints. A Linear Program
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(LP) can be formulated as follows:

minx{cTx}
Ax ≤ b
x ∈ Rn
x ≥ 0

(3.2)

where c ∈ Rn and b ∈ Rm are vectors of coefficients, A ∈ Rm×n is a matrix of coefficients,
and x is a vector of continuous variables to be computed. Vectors c, b and matrix A are
known, and solving the LP will result in computing the optimal solution s∗(x∗), with x∗ the
vector of variables associated to an optimal solution. The reason behind the popularity
of LP models is that there exists an exact algorithm to solve them to optimality. The
algorithm is the well known Simplex algorithm, that was designed by Dantzig (1951).
Both, the objective function and the feasible region of LP problems, are convex, which
makes it easy to find any local optima that is also a global optimum. Consequently, being
able of modeling an optimization problem with a LP model, means solving the problem
to optimality is guaranteed, which is very convenient to the decision maker. Note that,
without lose of generality, Eq. 3.2 uses min, because if the function is being maximized, it
is equivalent to minimizing its negative, i.e. max{f} ⇐⇒ min{−f}. LP is an example of
mathematical programming techniques for problems modeling and, of course other models
exist under this category. The important ones are discussed later in this section.

3.2.2 Complexity theory

An algorithm to solve an optimization problem is characterized by two factors: the time
and space it requires. The complexity of the algorithm relates to how much time it needs
in order to compute an optimal solution. Given an instance of size n to a problem, the
time complexity is the number of steps required during the solution process of the problem.
Since the complexity is based on the worst-case analysis, then it is not mandatory to obtain
the exact number of steps, but instead an asymptotic bound of the total number of steps.
This is represented by the notation O, which is defined as follows.

Definition 20 (O notation). The complexity of an algorithm is f(n) = O(g(n)) if there
exist positive constants n0 and c such that, ∀n > n0, f(n) ≤ c.g(n).

Definition 20 introduces the notion of upper bound on the complexity and Definition
21 introduces the notion of lower bound.

Definition 21 (Ω notation). The complexity of an algorithm is f(n) = Ω(g(n)) if there
exist positive constants n0 and c such that, ∀n > n0, f(n) ≥ c.g(n).

Definition 22 (Θ notation). The complexity of an algorithm is f(n) = Ω(g(n)) if there
exist positive constants n0, c1 and c2 such that, ∀n > n0, c1.g(n) ≤ f(n) ≥ c2.g(n).

Based Definition 22, the complexity f(n) can be bounded by the function g(n).
Generally, Ω and Θ are not easy to find, and can be derived after defining the O com-

plexity of the algorithm. Finding these complexities enables comparing different algorithms
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Table 3.1: Comparison of polynomial and exponential time complexities depending on the
size of the problem (Garey and Johnson, 1979)

Complexity n = 10 n = 20 n = 30 n = 40 n = 50

Polynomial
O(n) 0.00001 s 0.00002 s 0.00003 s 0.00004 s 0.00005 s
O(n2) 0.0001 s 0.0004 s 0.0009 s 0.0016 s 0.0025 s
O(n5) 0.1 s 0.32 s 24.3 s 1.7 min 5.2 min

Exponential O(2n) 0.001 s 1.0 s 17.9 min 12.7 days 35.7 years
O(3n) 0.059 s 58.0 min 6.5 years 3855 centuries 2× 108 centuries

in terms of the worst-case complexity. This is achievable because the complexity gives an
estimation of the growth rate of the algorithm running time as a function of the problem
size. It follows next the definitions of polynomial and exponential algorithms, which are
strongly related to the complexity of the algorithm.

Definition 23 (Polynomial algorithm). A polynomial time algorithm is of complexity
O(p(n)), where p(n) is a polynomial function of n.

Definition 24 (Exponential algorithm). An exponential time algorithm is of complexity
O(cn), with c > 1.

An algorithm with an O(nk) complexity is said polynomial, with k the degree of the
polynomial function. An algorithm with an O(3n) complexity is said exponential. To give
a clearer picture about the big difference between exponential and polynomial complexities,
Table 3.1 shows different complexities running times for algorithms and how they grow with
the size of the problem. The exponential complexity is very sensitive and explodes with
the growth of the problem size to reach centuries, which makes the algorithms inefficient
in solving the problems.

Generally, a problem can have several algorithms to solve it, so the complexity of the
problem is determined by selecting the fastest algorithm to solve it in the worst-case. A
problem is said to be polynomial, if there exists an algorithm to solve it in polynomial
time. Otherwise, the problem is said intractable. In complexity theory, there are different
complexity classes for problems. Basically, the classification is done over decision problems,
but there are also classes for optimization problem derived from the decision problem
classes. In the following, a short review of the main complexity classes is given.

Definition 25 (P class). A decision problem belongs to class P, if there exists a deter-
ministic algorithm to solve it that has a polynomial complexity.

The decision problems belonging to this class are known to be relatively easy to solve.
Problems like finding the shortest path or the minimum spanning tree in a graph, are in
the class P and there exist polynomial time algorithms to solve them to optimality. The
next class that comes after P class is called Non-Deterministic Polynomial (NP).

Definition 26 (NP class). A decision problem belongs to class NP, if it can be solved by
a non-deterministic algorithm in polynomial time.

The above definition relates to the notion of Turing machine, which can be seen as
an algorithm. An algorithm has usually a series of inputs, and it reads each input and
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Figure 3.2: Classes P, NP, NP-complete and NP-hard relations in case where P 6= NP
(Commons, 2018)

infers the next step. In a deterministic algorithm, at each new input, only one new state
is possible based on the current state and the read input. This is not the case for non-
deterministic algorithms, in which it can occur that when reading a new input, multiple
alternative states are possible. In this case, it assumes that there is an "oracle", which
can tell which new state to consider in order to reach the final solution. The ability of
guessing the next correct step is the particularity of a non-deterministic algorithm. If the
algorithm is capable of finding a positive answer at the end, by using some oracle, then the
computing complexity is polynomial and such a problem is then classified in the class NP.
The graph isomorphism problem explained in the first chapter (section 2.2.2) belongs to
class NP. Obviously, every problem in class P can have a non-deterministic algorithm to
solve it, but is the opposite valid? Is it possible to find a deterministic algorithm to solve
NP problems? This is a fundamental question in complexity theory, and it is admitted
that if the answer is yes, then P = NP. It is still an open question and it is listed on
the millennium prize problems by the Clay Mathematics Institute for a prize of 1 million
USD for a first theoretical proof. So far, it is assumed that P ⊆ NP and other classes are
derived based on this assumption. A more specific class of problems that is included in
NP but not in P, is the class NP-complete (NPC).

Definition 27 (NPC class). A decision problem A is NP-complete, if A is in NP and
every problem in NP is reducible to A in polynomial time.

If the decision problem can have all its solutions verified in polynomial time (NP), and
if there exists a polynomial time algorithm to solve it, then this algorithm can be used to
solve all problems in NP. This is the concept of reduction. So, NPC problems are the
hardest ones in NP. The notion of reduction and in particular polynomial time reduction
is defined as follows.

Definition 28 (Polynomial reduction). Given two decision problems A and B, A is reduced
polynomially to the problem B if:

1. for all IA instance of A, there exists a function that transforms IA into an instance
IB of B in polynomial time to the size of IA,
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2. the answer to instance IA is yes if and only if the answer is yes to instance IB.

Another important class is the NP-hard class, which handles optimization problems.

Definition 29 (NP-hard class). An optimization problem is NP-hard, if its associated
decision problem is NP-complete, or if another NP-hard optimization problem is reducible
to it, and it does not belong to NP.

Figure 3.2 shows the relationships between the four presented classes, under the general
assumption that P 6= NP. In fact, complexity theory has been studied further and other
classes and sub-classes are introduced, especially the ones that consider the space complex-
ity beside the time. For example, the class NL ⊆ P, which contains decision problems
that can be solved in polynomial time using a logarithmic amount of space. Other classes
exist such as PSPACE (polynomial-space), EXPTIME (exponential-time), EXPSPACE
(exponential-space), etc.

This section covers the basic notions of algorithms and problems complexities. It is
a major factor to consider when dealing with optimization problem, because knowing the
complexity of the problem helps in the design of the best algorithm to solve it. If, for
instance, an optimization problem is NP-hard, then it is clear that designing a polynomial
time optimal algorithm is not possible (unless P = NP). In such case, it is preferable to
consider heuristic and approximation approaches, which can provide sub-optimal solutions
in polynomial time. Later in this chapter, most common solution techniques that OR
provides to tackle optimization problems, will be discussed.

3.2.3 Mathematical programming

Mathematical programming is often considered when dealing with optimization prob-
lems. It comprises a set of modeling techniques that can be used to express decision and
optimization problems mathematically. The definition of an optimization model is given in
Eq. 3.1, which consists of an objective function to be minimized or maximized depending
on the problem, and a solution space that is defined based on the constraints and properties
of the problem. Then, mathematical programming gives a mathematical representation by
formulating optimization models by the means of linear or non-linear functions and equa-
tions. Mathematical programming can result in multiple mathematical models depending
on the problem, which are classified under different categories. This section is dedicated
to review the most common optimization models in OR. Of course the list is not exclusive
and other modeling techniques exist in the literature.

3.2.3.1 Linear programming

This form of mathematical programs is the most common one. They are used to
model any problem, whose objective function and constraints can be modeled using linear
equations. An example of a linear model is given in Section 3.2.1. The model has a set of
decision variables, an objective function, and a set of constraints. They are all put together
in Eq. 3.2. The main characteristics of this model are:

• decision variables are continuous,
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• the objective function is linear,

• all model’s constraints are linear as well.

The importance of such models comes from the fact that they can be solved to optimality in
polynomial time by using, for example, the Simplex method designed by Dantzig (1951).
These models are very easy to solve and considered as the foundation of mathematical
programming, because they are heavily used when solving other mathematical programs.

3.2.3.2 Integer linear programming

Integer linear programming, denoted as ILP, is another form of mathematical pro-
gramming. One difference between linear and integer linear programs is that the decision
variables in the model are integers instead of continuous. The objective function and
constraints are still linear.

minx{cTx}
Ax ≤ b
x ∈ Nn

(3.3)

where c ∈ Rn and b ∈ Rm are vectors of coefficients, A ∈ Rm×n is a matrix of coefficients,
and x is a vector of integer variables to be determined. ILP models are very useful in
modeling a wide range of optimization problems in many operation fields. However, the
fact that the model’s variables are integer, which reflects the physical indivisibility of the
objects represented by the variables, makes the model very hard to solve. Solving an
ILP model by an exact method, which enumerate all the feasible solutions (e.g. branch-
and-bound algorithm), is very costly and requires an exponential amount of time with
the growth of the number of variables. In its general form, an ILP model is a NP-hard
problem (Floudas and Pardalos, 2001). ILP models are, instead, solved by techniques
that aim at reducing the solution space, such as: cutting planes, dynamic programming,
relaxation-based method, etc. Another particular form of ILP models are 0-1 integer
linear programming (0-1ILP) or binary linear programming (BLP). Those models have
only binary decision variables, and they are also very hard to solve.

minx{cTx}
Ax ≤ b

x ∈ {0, 1}n
(3.4)
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3.2.3.3 Mixed integer linear programming

Mixed Integer Linear Programming, denoted by MILP, is quite similar to ILP models,
except a partial set of the variables are continuous. So, it is a mix of LP and ILP models.

minx{cTx}
Ax ≤ b

xi ∈ {0, 1}|B|,∀i ∈ B
xj ∈ N|I|,∀j ∈ I
xk ∈ R|C|, ∀k ∈ C

(3.5)

where c ∈ Rn and b ∈ Rm are vectors of coefficients, A ∈ Rm×n is a matrix of coefficients,
and x is a vector of variables to be determined. The variable index set is split into three sets
(B, I, C), respectively, stand for binary, integer and continuous variables. These models are
known to be hard to solve and several works have tried to analyze the source of complexity
of MILP models such as the work by Till et al. (2003). MILP (as well ILP, BIP) models
can be solved efficiently with existing black-box solvers such as CPLEX, Gurobi or Xpress.

3.2.3.4 Discrete optimization

Discrete optimization models are a more general form of, without loss of generality,
MILP models. In discrete optimization models, some or all the variables are defined over a
set of discrete sets. For instance, the integer variables in an ILP model belong to a subset
of integers. In contrast, LP models have variables defined over continuous intervals, and
then can have any value within a range of values. The discrete set can be composed of a
set of objects, assignments, combinations, schedules, etc.

3.2.3.5 Optimization Under Uncertainty

All the aforementioned models are considered as deterministic: the input data (vectors
c, b and matrix A) are known and fixed beforehand for a given instance. However, this
assumption of data availability is not valid for many real-life problems and for many reasons.
Sometimes, the data is subject to measurement errors or noise, which is the case, for
instance, of data collected from sensors. Other times, the data is not all/partially known
at the present time and may represent information about the future (e.g. product demand).
The above models will fail in providing realistic and applicable solutions, even if they were
able to find the optimal solutions. An alternative and efficient way to model such problems
is by using optimization under uncertainty. This kind of optimization alters the objective
function by introducing an additive noise, which is represented by a probability distribution.
The noise, for instance, can be assumed to be normally distributed N(0, σ), with mean
equal to 0 and a variance equal to σ (Jin and Branke, 2005). Another distribution can
be used, such as Non-Gaussian Cauchy. The model will have an objective function of this
form:

fnoise =

∫ +∞

−∞
[f(x) + z]p(z)dz (3.6)
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with p(z) the probability distribution of the noise. Each solution may have multiple values
of fnoise, and a simple solution to overcome this is to take the mean of the possible solutions.

3.2.3.6 Dynamic Optimization

Another variant of optimization problems, which is also non-deterministic, involves
input data that may be affected over time. Dynamic optimization takes good care of such
a case, by introducing a time factor in the objective function. Unlike optimization under
uncertainty, the objective function is deterministic at a time t, but may varies over time,
i.e. multiple evaluations at time t always return the same solution.

fdynamic(x) = ft(x) (3.7)

with t the time at which the objective function is evaluated. The main concern in dynamic
optimization is how to detect the changes in the system and the ability to adapt the current
state and adjust it to the change, without resetting the solution of the problem. Doing so
may require involving forecasting and prediction strategies to accommodate for possible
future changes while staying near optimal solutions.

3.2.3.7 Robust Optimization

Robust optimization can be considered relatively as another way of modeling uncer-
tainty in an optimization problem. In this modeling approach, the decision variables are
subject to perturbations after a final solution has been computed. The robustness, then,
is the ability of computing solutions that are acceptable with respect to minor changes
in some decision variables. Similarly as in optimization under uncertainty, a probabilistic
distribution of the variations is injected into the objective function.

frobust(x) =

∫ +∞

−∞
f(x+ δ)p(δ)dδ (3.8)

with p(δ) the probability distribution of the variables perturbations. The objective func-
tion in robust optimization is considered as deterministic. In addition, it seeks the best
compromise between the quality of the solutions and their robustness with regards to the
perturbations in the decision variables. Jin and Sendhoff (2003) have shown that such
model can be reformulated as multi-objective optimization problem.

3.3 Optimization methods

OR researches have developed throughout the years many solution methods to solve
optimization problems. As discussed earlier, the solution method choice is directly related
to the complexity of the problem. A NP-hard optimization problem cannot be solved
to optimality, or in other words, it is not possible to develop an exact algorithm to solve
it in polynomial time. The notion of exact algorithm stands for algorithms that seek
optimal solutions for a decision/optimization problem. There are some exact algorithms
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Figure 3.3: Hierarchy of optimization methods

that are general enough to be used for solving any optimization problem, even the NP-
hard ones. However, there is the risk of facing exponential running time before finding the
optimal solution. In this case, researchers tend to design heuristic methods that aim at
computing sub-optimal solutions in polynomial time. Then, the art of heuristics design
relies on their capabilities in finding solutions that are close as much as possible to the
optimal ones. Therefore, they are suitable for hard optimization problems. The hierarchy
of optimization methods is depicted in Fig. 3.3, with more sub-levels details about different
methods belonging to exact and heuristic families of methods. In the rest of this section,
a general review of the important methods is given.

3.3.1 Exact methods

For problems in class P, exact polynomial algorithms are usually specific for these prob-
lems. However for NP-hard problems, three main classes of exact exponential algorithms,
can be found in the literature: Branch and X, Constraint programming and Dynamic
programming.

3.3.1.1 Branch and X

Branch-and-bound. The most common method to solve optimization problems, espe-
cially those modeled by ILP and MILP, is branch-and-bound (B&B). Later, it was modified
and improved resulting in methods, like branch-and-cut and branch-and-price. A B&B
method proceeds by exploring all the solution space of the problem, by means of a search
tree. The root node of the tree represents the problem being solved, and then children
nodes are created by selecting a variable to branch on and assigning to it all possible val-
ues: a child node represents an assignment. Next, it picks a node according to a search
strategy: this one controls the way the search tree is explored. Many search strategies exist
like depth-first, breadth-first or best-first. Building the tree is continued until reaching a
leaf node, which in this case represents a feasible solution to the problem. The children
nodes represent partial solutions, which are not feasible. In the basic form of B&B, the
tree is fully constructed and among all the feasible solutions found, the optimal (best)
one is retained. However, it turns out that employing techniques, such as pruning, help
in discarding some partial solutions that will not lead to the optimal one. This is a very
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important technique in order to reduce the size of the tree in memory and the construc-
tion time. To perform pruning, a lower bound can be computed at each node that is an
estimation of the solution value in case the exploration continues that way. This lower
bound can be compared to an upper bound, which is the best solution known so far. If
this lower bound is greater (in the case of a minimization problem) than the upper bound,
then continuing down that road is useless and the node can be ignored. The process in
itself is simple, but the time and memory complexities can quickly grow and become expo-
nential, when building the search tree. The performance of the method is very sensitive to
the variable selection when branching (also called branching scheme), search strategy and
lower bound computation for child nodes. There have been many works to improve those
strategies, and lately it is shifting towards techniques based on prediction and forecasting
to guarantee good decisions. A survey was conducted by Lodi and Zarpellon (2017) about
the existing strategies for variable selections and search strategies in the context of Machine
Learning.

Branch-and-cut. It is based on cutting plane approaches, which were proposed by Go-
mory et al. (1958). The idea is to generate cuts that are constraints determined by ana-
lyzing the structure of the problem. The constraints are added to the LP relaxation (all
variables become continuous) of the MILP model of the problem. The intent is to improve
and tighten the lower bound. Note, that these constraints must be valid and must not
chop regions of the solution space containing optimal solutions. To fulfill their purpose,
the cuts must be efficient in improving the lower bound and reducing the gap with the
upper bound. The cuts have been shown to be very effective in solving some problems
that have particular structures, however they perform poorly on some other problems. A
survey about cuts generation techniques and embedding them in B&B, which results in
branch-and-cut, can be found in (Jiinger et al., 1995) and (Nemhauser and Wolsey, 1988).

Branch-and-price. This method is based on column generation techniques. Column
generation was proposed by Gilmore and Gomory (1961), and it intends at decomposing the
main (master) problem into smaller sub-problems, to reduce the complexity and memory
requirement to solve it. The decomposition produces problem formulations easier to solve,
which gives better bounds than solving the LP relaxation. The decomposition is based
on selecting a group of variables among the whole set of decision variables in the master
problem, such that these variables are most likely to be part of optimal solutions (being
set to 1 in the case of binary variables). The belief is that, in large problems with many
columns (variables), the majority of the columns are useless for finding the optimal solution.
The new problem (with the selected variables) is called the restricted master problem. To
guarantee the optimality, another sub-problem is solved to determine the new columns that
can be added at the next iteration, (pricing problem) to improve the solution of the master
problem. In case where the pricing problem is hard to solve, heuristic approaches can be
employed to find those variables. Next, reoptimizing the relaxed version of the restricted
master problem with the newly added variables, normally, improves the lower bound. The
process is repeated until no more variables can be added or an optimal solution is found.
This is the branch-and-price method, which may be problem dependent because it requires
the problem to be formulated in a way such that branching rules can be extracted and so
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the pricing problem is not very hard to solve. Finally, it is possible to implement cutting
planes to tighten the LP relaxation of the problem, in this case the method is called branch-
price-and-cut. The paper by Barnhart et al. (1998) presents a detailed survey about column
generation techniques.

Note that while presenting these methods, the optimization problem assumed to be
solved is a minimization one, without loss of generality (because a maximization problem
can be rewritten as a minimization one). It is worth mentioning that branch-and-bound
method is the main algorithm implemented in MILP solvers.

3.3.1.2 Constraint programming

Constraint programming (CP) introduces a unique and general method for solving opti-
mization problems, as well as, modeling them. It models the problem by means of variables
and constraints to link the variables. In addition, CP is based on logic programming. For
instance, to force variables in a given set to be different/distinct, a global constraint can be
added, e.g. all_different(x1, x2, ..., xn). CP is known to be efficient in solving feasibility
problems (finding a feasible solution) rather than optimization problems (finding an opti-
mal solution). The goal is to narrow down a vary large set of possible solutions to a subset
by, incrementally, adding constraints to the problem (this is similar to cuts in cutting plane
technique). There are two approaches to solve a CP model (Mayoh et al., 2013). The first
one is called refinement, and it assumes that all variables in the model are free and can
have any value between their bounds. Then, the solution procedure performs analysis over
the model’s constraints to infer some properties that help in reducing the variables bounds
until reaching the point where it is possible to assign a specific value to some variables.
The inference is continued over the rest of the variables as much as possible. The second
approach is solving by perturbation. Unlike refinement, this approach presumes initial
values to certain variables, then each constraint is checked for feasibility. When a con-
straint is not satisfied, a step back is taken to change the initial value of a variable and
this change is propagated to test constraint feasibility and to try to fix new variables. The
perturbation carries on until no more possible variables can be fixed without affecting the
feasibility of the partial solution. Note that an advantage of the refinement approach is
that the variables are not assigned and therefore multiple solutions can be found at the
end. However, both approaches may stop without finding all the values of the variables, if
this is the case, a search algorithm is executed. The search algorithm can be a tree based
approach, such as B&B, that will compute the rest of the partial solutions to get finally
feasible ones. However, the branching here might be slightly different, by either assigning
a feasible value to a variable or by adding a new constraint on that variable.

The interest in CP models has been growing lately, because CP has succeeded in proving
efficiency in solving famous planning and scheduling optimization problems. The book by
Apt (2003) discusses in details the principles of constraint programming.

3.3.1.3 Dynamic programming

The fundamental idea of dynamic programming relies on decomposing recursively the
problem. Basically, the general optimization problem is broken down to easier sub-problems

88



3.3. OPTIMIZATION METHODS

in a recursive fashion. Then, by solving apart each sub-problem and finding their optimal
solutions, the optimal solution to the main problem can be constructed from those solutions.
To decompose the problem, it should be possible to define N stages and for each stage a
finite number of states. The initial solution for the first stage is computed over its states.
Next, a function should be defined to express the recursive relation between a stage k
and earlier stages. Consequently, at stage k + 1, the function can be used to compute
the solution up to stage (k + 1) based on the solution of the previous stage k. The final
solution is obtained when reaching the final stage N . Dynamic programming has been
used to solve problems such as, knapsack (Martello et al., 1999), planning (Sutton, 1990),
routing (Novoa and Storer, 2009), and the results obtained were interesting. However, if
the problem cannot be decomposed recursively into relatively easy sub-problems, dynamic
programming cannot be applicable.

3.3.2 Heuristic methods

Unlike exact methods, the optimality requirement is dropped in heuristic methods.
These methods are focused on solving NP-hard problems, where exact methods fail, in a
very fast manner and by computing good quality solutions. In general, heuristics do not
provide theoretical guarantee on the quality of solutions, but experimentally it is possible
to evaluate the quality of the solutions. Since, most of the practical optimization problems
are NP-hard, heuristics are well established in OR field. Heuristic methods are numerous,
therefore a classification of the heuristics based on their solution mechanisms is given in
Fig. 3.3. The classification is inspired from the one proposed in (Gotha, 1993). In the rest
of this section, the most important heuristics, under each class, are reviewed providing a
general overview about the most common techniques involved in heuristic methods. Of
course, the list is not exclusive and other heuristics can be found in the literature.

3.3.2.1 Progressive construction-based heuristics

The main objective of progressive construction-based heuristics is to compute a feasible
solution to the optimization problem in polynomial time. They construct a solution by
making random or predefined decisions, in a sequential or parallel scheme, until reaching
a feasible solution. Generally, the decisions are very intuitive and simple, so the method
converges fast towards a solution. A first example of such heuristics is the heuristics
based on brute-force strategies, where the solution construction is based on priority rules.
Iteratively, priority rules are consulted to make the next decision, until building a feasible
solution. Another example is the heuristics based on search trees, like BeamSearch GM
heuristic explained in chapter 2, section 2.3.8, which constructs a search tree and selects α
number of nodes to explore, until reaching a leaf (feasible solution). The fact that multiple
(α) nodes are selected in BeamSearch, makes it a parallel progressive construction-based
heuristic. A* heuristic also fits into this class of heuristics. An important advantage for
this heuristics is the speed up, however the quality of the solutions is questionable, but
expected not to be very good because they are too simple and naive.
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3.3.2.2 Neighborhood-based heuristics

The main idea of neighborhood-based heuristics is to improve a given solution by explor-
ing its neighborhood. From an initial solution, they proceed by exploring a neighborhood
defined around the initial solution. A neighborhood referred to all the solutions that are
attainable from the current solution by performing simple moves. The best solution found
in the neighborhood is retained and forms the basis of the next neighborhood. These meth-
ods tend to improve the solutions iteratively by checking neighbor solutions. Many simple
and complex local search heuristics have been proposed to solve optimization problems.

Local search. Local search (LS) is a heuristic that appeared in the late 1950s in algo-
rithms to solve the TSP problem (Bock, 1958; Croes, 1958). The idea is that starting from
an initial solution S0, LS, iteratively, performs a move step, which consists in selecting a
close solution (neighbor) S1. The objective function value of S1 has to be better than S0 in
order to be selected for the next iteration. The move step is generally not complicated, e.g.
if S0 is composed of binary variables, it may be just changing the value of one variable from
1 to 0 or the way around. Moves can be performed as long as new improved neighboring
solutions are being found. When no new better solution is found, then a local optimum
is reached and the algorithm stops. LS suffers from two problems: it gets stuck in local
optima and it is sensitive to the quality of the initial solution. However, LS has one im-
portant advantage that is the speed, because it does not involve sophisticated mechanisms.
Some improvements were suggested later, mainly concerning the definition of neighboring
solutions (deterministic/stochastic, small/large neighborhoods) and the selection strategy
of a neighbor solution. To overcome the problem of getting stuck in local optima, some
strategies were proposed, such as:

• Initiating the search from multiple initial solutions. This strategy is implemented in
iterated local search, greedy randomized adaptive search procedure (GRASP), and
many other heuristics.

• Selecting neighboring solutions with worse objective function value. This strategy is
adopted from simulated annealing heuristic.

LS remains one of the simplest and most common heuristic and it is incorporated in many
complex heuristics. The book by Aarts et al. (2003) gives more insights and details about
local search-based heuristics.

Simulated annealing. This heuristic is inspired from the field of statistical physics, it
is based on an observation of a transformation reaction of a metal (Kirkpatrick et al.,
1983). It imitates the annealing process that requires fast heating a substance and then
slowly cooling it to obtain a crystalline structure. The process is very sensitive, because
insufficient high temperature or fast cooling may result in a deformed structure. To control
the output, a condition is simulated over the temperature changes (high to low) that must
be met to guarantee a good output. This is called equilibrium state, which is the point of
convergence of the reaction. Back to optimization models, the objective function can be

90



3.3. OPTIMIZATION METHODS

considered as the energy state of the system. The global optimum corresponds to the best
stable state of the system, whereas local optima correspond to metastable states.

Simulated annealing underlies an iterative local search mechanism, but with the main
objective to escape local optima. Every iteration, simulated annealing generates randomly
a neighbor. If the neighbor is better than the current solution, the move is accepted and
then it carries on with the next iteration. Otherwise, the neighbor may be selected, even if
it is worse, depending on a probability computed over two factors: the current temperature
and ∆E. ∆E is the amount of energy degradation that occurs to the objective function in
the case of selecting the neighbor, i.e. it is the difference between the current and the new
solutions. The probability will decrease over time: at the beginning the system tolerates
degradation in the energy (objective function), until reaching a point where it becomes
more strict. The probability is computed using this equation:

P (∆E, T ) = e−
f(S′)−f(S)

T (3.9)

with T the temperature that controls the tolerance and strictness in accepting non-
improving solutions, S (resp. S′) the current (resp. new) solution, and f(.) the value
of the objective function. T will be decreased gradually over time and when an equilibrium
state is reached based on a cooling schedule (time intervals to reduce T ), which makes
the system more strict. Simulated annealing stops when temperature parameter reaches a
predefined value, or if there is a maximum number of iterations imposed. Finally, the best
solution found throughout the process is returned.

Simulated annealing has achieved very interesting results in solving optimization prob-
lems. However, few problematics appear in this heuristic that require attention:

• as in other heuristic, the sensitivity to initial solutions,

• the tolerance probability of non-improving solutions,

• and the definition of the cooling schedule, i.e. how to decrease the temperature?

Yet, this heuristic is widely used, so taking a look to the literature, there are many good
(to a certain point) ways to solve those problematics. For more details, please refer to the
book of Talbi (2009).

Tabu search. Tabu search is a local search based heuristic, originally proposed by Glover
(1989), that is considered an improvement to LS heuristic. It performs some moves to define
a neighborhood around an initial solution. Then, it explores the neighborhood looking for
better solutions. The process is repeated until reaching a local optimum. Tabu search
deals with local optima, by selecting a worse solution than the current and carries on the
local search around it. Of course, visiting a previous solution may occur, which is referred
to as cycles. Tabu search enhances the local search by avoiding cycles, i.e. by memorizing
the search trajectory. It stores information about the solutions visited in a short-term
memory, called the tabu list. So, every time a new solution is found, the algorithm will
verify the tabu list to make sure this solution is new before selecting it (it updates the
list if the new solution is selected). Note that, the information stored in the list represent
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solution features or moves features. This causes discarding non-generated solutions, by
relying on the quality of the features and not the whole solution, even though they may
be attractive. This drawback can be corrected by introducing an aspiration criteria that
(if satisfied) enables selecting tabu solutions, even if they were not generated.

In addition to problems raised in LS method, Tabu search may become slow, because
the tabu list increases with time and at each iteration the list must be consulted. The
definition of the aspiration criteria affects the performance of the heuristic; e.g. one good
criteria is to select, under some conditions, a tabu move if it leads to a better solution. The
interested readers are kindly referred to the book of Glover and Laguna (1998) for more
details.

Iterated local search. In the spirit of improving LS heuristic, and in particularly dealing
with the problem of bad initial solutions, Iterated Local Search (ILS) proposes a simple
strategy to solve it (Lourenço et al., 2003). ILS goes like this:

1. A local search is performed around an initial solution, until getting a local optimum.

2. The solution is perturbed to generate a new solution (may be worse).

3. Local search is applied on the perturbed solution.

4. The best solution is accepted based on some defined criteria.

This process is repeated until reaching a stopping criteria. Two key points need to be chosen
carefully, because they affect the performance of the algorithm, that are: the perturbation
mechanism and the acceptance criteria. Talbi (2009) discusses different implementations
of perturbation and acceptance criterion.

Variable neighborhood search. It is denoted by VNS, and was proposed by Mlade-
nović and Hansen (1997). Unlike other heuristics, VNS tends to take a better care
of the neighborhood structure. Therefore it defines Nk different neighborhoods, with
k = {1, 2, ..., n}. It starts from an initial solution x, and the first step is called shak-
ing that refers to selecting randomly a new solution x′ from the first neighborhood N1.
The next step is to perform a local search around x′, until reaching a local optimum x′′.
Then, it distinguishes between two cases:

1. If the new solution x′′ is better than x, then x′′ is chosen to be the current solution
for the next iteration, and k is reset to 1.

2. Else, it goes to the shake phase with k = k+ 1, i.e. the next shake step will compute
a new x′ in a different neighborhood.

The process is iterated until a stopping criterion is met. Of course, VNS in this implemen-
tation is stochastic, because of picking randomly x′ solutions in the neighborhoods. There
is deterministic version, which is called Variable Neighborhood Descent.

The intuition behind VNS is that a LS heuristic is known to generate local optimum in a
neighborhood, and it is also known that the global optimum is also a local optimum in some
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neighborhood. So, VNS kicks off the solution space exploration in different neighborhoods
that may be of different sizes and structures, hoping at getting the neighborhood where
a global optimum resides. By the way, defining small neighborhoods in VNS results in
a simple local search algorithm. However, defining very large neighborhoods imitates a
multi-start local search.

3.3.2.3 Bio-inspired heuristics

These heuristics are based on natural or biological observations. Evolution theory and
species mutation have inspired computer scientist researches into imitating some interesting
natural processes to come up with heuristics and solve optimization problems. Another
inspiration observation is swarm intelligence, which stands for the study of species behaviors
such as ants, bees, etc. Researchers have tried to replicate the collective behavior of very
small particles, like the communication between particles, movements and decisions. These
are interesting ideas to develop heuristics that has turned out to be good in solving many
optimization problems.

Genetic algorithms. Genetic algorithms, also denoted by GA, are population-based
algorithms and belong to Evolutionary Algorithms (EA) school (Goldberg and Holland,
1988). They are inspired from the theories of creation of new species and their evolution.
The main idea is to simulate the concept of evolution. It starts by selecting randomly a
population of individuals, which are initial solutions to the optimization problem. The
value of the objective function for a given individual is called fitness, and represents its
relevance to the problem. GA algorithm carries on as follows:

1. Individuals are selected, to form the parents, from the population based on a selection
strategy taking into account the fitness as factor.

2. Operators (e.g. crossover, mutation) are applied to selected individuals to reproduce
new offsprings.

3. Based on a so called replacement scheme, some individuals will be picked to survive
from the offsprings and parents.

4. The process is repeated until a stopping criteria is met.

So, GA generates solutions and employs crossover and mutation operations to mix them and
generate new solutions. This requires a coding paradigm for the solutions. The new and
old solutions are then evaluated, and only important ones are kept for the next iteration.
The "important" criteria considers many factors like the value of objective function and a
probabilistic selection, which makes GA a stochastic method. This is different from local
search approaches, because the solutions might not be close in the solution space and the
notion of neighbors is not used.

Genetic algorithms are suitable for solving complex problems such as multimodal, mul-
tiobjective and highly constrained problems. Kindly refer to the book of Man et al. (2012)
for more details about genetic algorithms.
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Ant colony optimization. This is a stochastic method that belongs to the family of
swarm intelligence methods (Dorigo and Stützle, 2003). It is inspired from the behavior of
real ants. Ants are known to be smart in performing hard tasks and, especially, finding the
shortest paths. They count on the collectivity, so once an ant has discovered the shortest
path, it leaves a trail (pheromone), so the other ants can follow. When other ants uses the
same path, the trail becomes stronger indicating that the path is very important.

Replicating this behavior on optimization problem gives these iterative steps:

1. Constructing solutions based probabilistic state transition rule. In somehow, a final
feasible solution is constructed from partial solutions, generated using stochastic
greedy procedures (but they follow a probabilistic distribution).

2. Pheromone trail is modeled in the memory by storing the characteristics that have
led to generating good solutions.

3. Evaporate pheromone trail, which is very important and automatically occurs to all
values. They will disappear if they never gets reinforced, which also means that they
are not interesting.

4. Reinforcement pheromone is related to important trails detected when generating the
solutions. It increases the values of pheromones stored in the memory to keep them
active.

However, implementing this heuristic may require including problem-dependent infor-
mation to improve its performance, which was done for several optimization problems, e.g.
scheduling, routing or assignment problems. For more details about ant colony optimiza-
tion, please refer to the book of Dorigo et al. (2004).

Other heuristics exist in the literature, which are not detailed here. Basically, they
share certain characteristics with the above ones. For instance, heuristics that are based on
swarm intelligence are Scatter search and Particle swarm optimization. For an exhaustive
list of these heuristics, and more details about the ones reviewed in this section, please
refer to the book of (Talbi, 2009).

3.3.2.4 MILP-based heuristics

This kind of heuristics, called also matheuristics, aims at making use of the power of
MILP solvers in solving MILP formulations. And at the same time including heuristic
techniques (e.g. intensification, diversification, etc.) to guide the solvers into computing
efficient sub-optimal solutions. By default, the solvers are intended to solve MILP formu-
lations and find optimal solutions. Nowadays, these solvers are very good at doing so, but
still not enough to cope up with real-life instances. The principle of matheuristics relies on
exploring the neighborhood of a current solution by solving MILP formulations. Heuristics
based on MILP formulations are gaining more reputation after reaching good results in
solving optimization problems.
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Local branching. Local branching is a heuristic that was proposed by Fischetti and Lodi
(2003). Typically, a local branching heuristic is a local search algorithm, which improves an
initial solution by exploring a series of defined neighborhoods via the solution of restricted
MILP formulations. Local branching consists of three main ingredients:

1. Neighborhood definition: given a solution s to the problem, the neighborhood N(s) is
defined by adding a local branching constraint to the MILP model. The neighborhood
size is controlled by a parameter π, that is the distance between the solutions in
the neighborhood from s. For instance, the Hamming distance can be used in the
neighborhood definition.

2. Intensification: once the neighborhood is defined, the restricted MILP formulation
(with the local branching constraint) is given to the solver to find the best solution
in that neighborhood. The new solution is accepted and the heuristic will define the
neighborhood around this one and again intensify the search.

3. Diversification: what would happen if the intensification is not able to find a new
solution? As in other heuristics, this means a local optimum is hit and to escape
it, a diversification step must be done to change the explored region of the solution
space. The diversification is also done by adding a branching constraint to the MILP
formulation that tells the solver to look for solutions that are far from the current
one by some defined parameter value.

There is more to local branching on how to employ the three ingredients together, how to
skip previously visited solutions and how to guarantee good diversification. This heuristic
has many parameters as well. Further details can be found in the paper of Fischetti and
Lodi (2003).

Variable partitioning local search. Denoted shortly by VPLS, it is also a heuristic
based on local search (Della Croce et al., 2013). As in local branching, the neighborhood
definition is based on adding new constraints to the original MILP formulation. In VPLS,
and given a solution s with its corresponding x vector for integer variables, the neighbor-
hood is defined by splitting x into two sets x1 and x2 such that, variables in x1 will be
released and variables in x2 will remain to their values in x. Therefore, the new MILP
formulation has variables already fixed (a partial solution), and it will be solved by the
solver, which will assign better values to variables in x1, so compute a new solution s′ < s.
The process is iterated until a stopping criteria is met. The question to be asked is how
to define the set of variables to be freed in the neighborhood definition? Well, interesting
ideas comes up to answer this question, such as selecting the variables based on problem-
dependent information. For example, determining a set of important variables (because
they have high costs), which freeing them leads the solver to improve the current solution.

Other MILP-based matheuristics can be found in the literature that strongly rely on the
continuous relaxation of the MILP formulations of the optimization problem, e.g. feasibility
pump for general MILPs. Note that, for this heuristic to perform good, the continuous
relaxation of the problem must provide tight bounds, otherwise it might be inefficient. For
more details about matheuristics, please refer to the paper of Della Croce et al. (2013).
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3.3.2.5 Problem-specific heuristics

From the name of this class, one can evinced that those heuristics are related to the
problem at hand. They only solve a particular optimization problem and most of the
time they are hard to be generalized. Problem-specific heuristics make use of the problem
data, structure and particularity and they come up with techniques that help exploring the
solution space in reasonable time and compute good solutions. They tend to be greedy in
most of the cases, but they are still good at solving problems. Examples of problem-specific
heuristics can be found in Section 2.3.8, where heuristics such as bipartite graph matching
and square bipartite graph matching can be seen as problem-specific heuristics. Because
they are designed to solve the GED problem in particular and cannot be applied to other
problems in the way they are defined.

3.3.2.6 Heuristics and more

In the literature, there is a distinction between heuristics, which is based on the purpose
and portability of the heuristic. Basically, there is:

• Metaheuristics: they are the general form of heuristic approaches that are by def-
inition applicable to any optimization problem. The general paradigm of a meta-
heuristic consists of two main criteria: exploration of the solution space (known as
diversification), exploitation of the best solutions (known as intensification). So, a
metaheuristic, first, defines some interesting regions in the solution space, which then
are explored by an intensification technique looking for good feasible solutions. Any
heuristic following this paradigm, and does not include problem-dependent informa-
tion, can be considered as a metaheuristic. For example and from the aforementioned
heuristics, all local search-based and MILP-based heuristics are considered as meta-
heuristics.

• Matheuristics: they are alsoe metaheuristics, but they embed MILP solvers into
heuristic algorithms, e.g. local branching and VPLS are considered as matheuristics.

Approximation heuristic. Some particular heuristic algorithms are called approxima-
tion algorithms. The major difference between them is that the latter have to provide
theoretically a guarantee on the bound of the computed solution from the optimal one
(Hochbaum, 1996). They are denoted by ε−approximation algorithm, where ε is an ap-
proximation factor to represent the gap factor between the found solution and the optimal
one. Of course, the smaller the ε, the better the solution quality. The property to be
proven in an ε−approximation algorithm is the following:

(s∗ − ε) ≤ s ≤ (s∗ + ε) (3.10)

with s∗ the optimal solution and s the solution computed by the algorithm. If this property
is assured, the algorithm generates an absolute performance guarantee. In practical, the
absolute guarantee is unlikely to be obtained, therefore a less rigid property can be proved,
which is:

S

S∗
< ε (3.11)
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The algorithms, then, generates a relative performance guarantee. Please note, for the
equation is given for a minimization problem. If it is a maximization problem, the terms
in the division are reversed. Then, ε−approximation provides tight worst-case bounds and
they are problem dependent. There two well-known classes for approximation algorithms:

• Polynomial-time approximation scheme (PTAS): A minimization (resp. maximiza-
tion) problem belongs to this class if it has a polynomial-time (1 + ε)-approximation
(resp. (1− ε)-approximation) algorithm for any fixed ε.

• Fully polynomial-time approximation scheme (FPTAS): A minimization (resp. max-
imization) problem belongs to this class if it has a polynomial-time (1 + ε)-
approximation (resp. (1 − ε)-approximation) algorithm for any fixed ε, such that
the running time is polynomial in the size of the instance and 1/ε.

For many complex optimization problems, it is not easy to design an ε−approximation
algorithm, which limits their applicability.

3.4 Summary and prospects for moving forward

This chapter has introduced briefly OR basics. The review is not totally fair because
it is too short and does not cover all the aspects of OR field. Often, decision problems
that come from real-life problems are quite hard, and in some cases taking a good decision
is required to optimize the productivity and efficiency. OR offers a process to deal with
such decision problems, by formulating and modeling them, i.e. translating them into
quantitative mathematical models. These models can be solved using algorithms to make
good decisions.

A very important and widely used modeling technique is mathematical programming,
that deals with decision and optimization problems. Mathematical programming comes
with different forms of modeling that cope with problems needs and requirements: linear
programs, integer linear programs, mixed integer linear programs, optimization under un-
certainty, etc. Each one has its own characteristics and level of flexibility in representing
the problem, its objective and constraints. Another aspect to consider is the problem com-
plexity, which tells whether a problem is tractable and thus can be solved in polynomial
time or simply intractable and it will require exponential time to find the optimal solution.

Not only modeling and determining complexities of problems, but also OR intervenes in
solving those models by offering a vast panel of methods. They are divided into two main
families: exact and heuristic methods. The exact family contains methods that seek the
optimal solution of a problem, e.g. branch-and-bound, dynamic programming. However
solving problems to optimality has a major drawback, especially when dealing with NP-
hard problems, because of the exponential time required. While, heuristic methods are
more suitable for this kind of problems. They aim at finding sub-optimal solutions in
polynomial time. Heuristic methods are classified based on their solution mechanisms,
resulting in:

1. Progressive construction-based heuristics: a solution is constructed incrementally
based on random or defined steps.

97



3.4. SUMMARY AND PROSPECTS FOR MOVING FORWARD

2. Local search-based heuristics: they perform local searches in neighborhoods around
solutions, hoping to find improving solutions.

3. Bio-inspired heuristics: these heuristics are inspired from natural observation and
they imitate natural behaviors. Most of those heuristics are stochastic.

4. MILP-based heuristics: they embeds MILP solvers into solving MILP formulations
by applying heuristic techniques (e.g. intensification, diversification)

5. Problem-specific heuristics: they are designed to solve particular problems, and most
of the time they rely on specific information extracted from the problem.

The evaluation of a heuristic accuracy, in computing very good solutions, is done experi-
mentally. While for approximation heuristics, it requires an additional theoretical proof on
the quality, that guarantee worst-case bounds on the computed solution from the optimal
one.

Going back to GM problems and in particular to the GED problem, which was discussed
in Chapter 2. It is a NP-hard optimization problem. The link between the GED problem
and OR techniques has not yet been clearly realized. The main focus of this thesis is
on solving the GED problem, and more precisely by employing OR techniques to model
and solve it efficiently. The GED problem, which comes from PR field, and optimization
techniques, which come from OR field, can be brought together bridging the two fields and
making a good contribution to both fields. Based on GED methods reviewed in Chapter
2, there are certain methods (exact and heuristics) inspired from OR field, but yet not
very common and they are very specific. To realize the objectives of this thesis, new
and interesting techniques may be adopted and adapted from OR field to solve the GED
problem. The chosen techniques must remain unique, novel and promising. The choice of
the methods is based on two main factors that are invoked in the conclusion of Chapter 2:

• Solving the GED problem in the exact context: reviewing the state-of-the-art exact
methods for the GED problem has revealed a lack in such methods. The argument
is based on the fact that only two MILP formulations (JH and F2) have proven to
be the most efficient methods in solving the problem to optimality. They perform
better than other mathematical formulations (F1 and QAP) and even better than
a B&B method (Lerouge et al., 2017). Yet, JH formulation tackles a sub-problem
of GED and cannot be used to solve the general problem. This leaves only one
formulation (F2) to solve the GED problem. An interesting contribution, yet not
easy, may be developing new MILP models to solve the GED problem. Why MILP
formulations? The answer is simply because MILP solvers capability in solving those
formulations is increasing quickly. The solvers nowadays are able to solve bigger and
harder instances. Hence, if designing a good MILP formulation and solving it today
with MILP solvers, yield good results, then better results are expected in the next
coming years without the need to modify the formulation because the solvers are
going to be improved.

• Solving the GED problem heuristically: this may seem very tricky and risky, but
at the same time interesting. Many good and fast heuristics already exist in the
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literature (e.g. BP, SBPBeam, IPFP, etc.). In addition, some of these heuristics
are based on metaheuristic approaches, such as beam-search based methods (Beam-
Search and SBPBeam). However, one thing which has not yet been investigated is
the application of MILP-based heuristics (matheuristics) to solve the GED problem.
This kind of heuristic approaches is discussed earlier and has shown great capability
in solving hard optimization problems. Since the first part is to design MILP formu-
lations to solve the GED problem to optimality, it might be interesting to use these
formulations in heuristic approaches. This is at the same time promising and has not
yet been tested on the GED problem. So, questions to answer at the end are: how
matheuristics methods will perform when solving the GED problem? Could they be
efficient and live up to the performance of existing heuristics?

To sum up, based on the reviews of GED methods and the best OR methods in solving
optimization problems, the lines that this thesis will follow to achieve its objectives, are
based on:

1. The use of modeling techniques to design efficient MILP formulations to solve the
GED problem.

2. The use of matheuristic methods (e.g. Local branching, VPLS) on the basis of exist-
ing or newly designed MILP formulations, to solve heuristically the GED problem.

The contributions of this thesis, if good results are achieved, may be very important because
they will benefit two research communities: PR community in introducing new solution
methods like matheuristics, which has not yet been done. As well, OR community in
bringing attention of researchers to GM and GED problems that have a wide range of
applications in machine learning and patter recognition fields.
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Chapter 4

A matheuristic to solve the GED
problem without attributes on the
edges
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4.1 Introduction to the problem

In Chapter 2, when presenting the GED problem, it was pointed out that JH MILP
formulation, proposed by Justice and Hero (2006), solves the special case where the edges
do not carry attributes. JH formulation is designed to operate over unitary costs for edges
edit operations, which means it does not include the attributes associated with edges. This
differs from other exact methods and MILP formulations, which are designed to solve the
general GED problem. Due to this difference, and to conduct a study over exact methods,
this chapter will deal with this special case and in Chapter 5 the GED problem is considered
in its more general definition. To this end, a sub-problem of GED, denoted by GEDEnA

(Edges no Attributes), is introduced in the next sub-sections.

4.1.1 Definition of the GEDEnA problem

The Graph Edit Distance - Edges no Attributes (GEDEnA) problem shares the same
definition as the general GED problem (Definition 18, Section 2.3.1), with one difference,
that is the edges of the graphs do not carry attributes. As well, even if the graphs do have
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attributes, those attributes will be ignored. Therefore, the function ξ : E → LE , which
assigns attributes to edges, has LE = {φ} in the GEDEnA problem. This implies that the
costs of edges edit operations become:

• c(e→ f) = 0, ∀e ∈ E,∀f ∈ E′,

• c(e→ ε) = κ, ∀e ∈ E,

• c(ε→ f) = κ, ∀f ∈ E′,

with κ ∈ R+. This is similar to the costs defined in the case of unattributed graphs in
Section 2.3, but without modifying the vertices costs. Having the edges costs defined like
this, is also called unitary costs. In terms of costs matrices, [cv] remains the same, however
[ce] values change and become as shown in Eq. 4.1.

ce =

e1 e2 . . . e|E| ε


0 0 . . . 0 κ f1

0 0 . . . 0 κ f2
...

...
. . .

...
...

...
0 0 . . . 0 0 f|E′|
κ κ . . . κ κ ε

(4.1)

In the literature, the GEDEnA problem is treated as a special case of the GED problem,
but no clear definition is given. This differentiation is important because a method that
solves the special case cannot be used to solve the general problem. As an example, JH
formulation, presented in Section 2.3.7.2, is designed to solve instances of GEDEnA, but
not GED. It is better and more precise to call JH formulation an exact method to solve the
GEDEnA problem. The sub-problem can be considered as a lighter version, since edges
substitutions cost nothing and only deletion/insertion edit operations have fixed costs.
This somehow reduces the difficulty of determining edges operations, but does not make
the problem any easier. A reason why JH formulation is the best exact method in the
literature to solve the GEDEnA problem, is possibly related to the fact that other exact
methods are designed to solve the GED problem, which is more general. With respect to
the complexity theory, the GEDEnA is as well aNP-hard problem. It can be demonstrated
by following the same proof done for the GED problem, by reducing an induced subgraph
isomorphism instance to a GEDEnA instance. This is possible and valid because the
induced subgraph isomorphism is independent from the attributes of the graphs.

In the rest of this chapter, the focus is on the solution of the GEDEnA problem, while
the next chapter is dedicated to the general GED problem.

4.1.2 Considerations on the GEDEnA problem

For two given graphs G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′), solving the GEDEnA

problem consists in finding the complete edit path with the least cost to transform G into
G′. The edit path is composed of multiple edit operations, which can be: substitution,

104



4.1. INTRODUCTION TO THE PROBLEM

Figure 4.1: Two graphs G and G′ with the ε node and dummy edges.

deletion and insertion. Deletion (resp. insertion) operations are represented by matching
a vertex or edge from G (resp. G′) to the ε (null) node. Therefore, applying the operations
of a complete edit path to G will result in a graph isomorphic to G′

Proposition 1. The insertion operations of vertices (resp. edges) into G can be replaced
by deletion operations from G′.

Proof. The aim is to obtain isomorphic graphs G and G′, which is also possible to be
obtained by modifying G′ and not only G. Let λ(G,G′) = {o1, ..., ok} a complete edit path.
The operations can be split into three sets as follows: R contains deletion operations, S
is the set of substitution operations and I is the set of insertion operations (λ(G,G′) =
{R,S, I}). Applying first the operations in R to G results in a new graph Ĝ. Next, applying
operations in S to Ĝ does not affect the topology of the graph but only modifies the label
functions, since the operations are only substitutions. Finally, applying operations in I
to Ĝ gives G′ (by definition). Trivially, Ĝ is a subgraph of G′, because V̂ ⊂ V ′ and
Ê ⊂ E′ ∩ V̂ × V̂ . So, instead of inserting vertices and edges that are part of I, they can
be deleted from G′, which will result in the same graph Ĝ.

In the rest of this thesis, the edit operations considered are reduced to only substitutions
and deletions. The latter could be from G or G′ and the same notations, as defined in
Section 2.3, are used: operation i → ε refers to deleting i from G, and ε → k is deleting
k from G′. The same for edges: deleting edge (i, j) from G is denoted by (i, j) → ε, and
instead of inserting edge (k, l) into G, it is deleted from G′ (ε→ (k, l)).

In addition, for the sake of generality and clarity, ε node is considered and, actually,
added to the sets of vertices. Therefore, the new sets of vertices are denoted by:

• V = V ∪ {ε}

• V ′ = V ′ ∪ {ε}

In order to represent the deletion operations of edges, a dummy edge is created linking
every vertex to ε node. Hence, the edges sets are extended as follows:

• E = E ∪ {(i, ε),∀i ∈ V }
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• E′ = E′ ∪ {(k, ε),∀k ∈ V ′}

Finally, G and G′ become G = (V ,E, µ, ξ) and G′ = (V
′
, E
′
, µ′, ξ′). Figure 4.1 shows an

example of graphs G and G′.
These considerations can be applied to the GED problem as well.

4.2 Graph databases

Here is a review of the most famous graph databases frequently used by researchers
working with GM problems. The databases are collected from different sources and rep-
resent different objects and patterns. Each graph database has special settings (sets of
attributes, density, etc.) and it may/may not have the cost functions of edit operations de-
fined. The most common databases are used in the experiments conducted on the proposed
methods in this thesis. Such review was helpful in carefully selecting the appropriate and
more representative graph databases to run the evaluation experiments on the methods.

Mutagenicity (MUTA). This graph database is very common and contains 4337 graphs
modeling chemical molecules. The graphs are undirected and attributed (both vertices and
edges). To reduce the number of graph comparisons to be done, few sample graphs are
selected and grouped into 8 subsets (Abu-Aisheh et al., 2015a). The first 7 subsets contain
10 graphs each of the same size (same number of vertices), starting from 10 until 70 vertices.
The last subset has also 10 graphs but of mixed sizes. This database is interesting because
it has large graphs (sizes 50; 60; 70), which they are known to be difficult for matching
algorithms. The total number of instances is 800 (100 instances per subset). The cost
functions are defined as in Eq. 4.2.

Subv(µ(i), µ′(k)) =

{
0 ifµ(i) = µ(k)

5500 otherwise
,

Delv(µ(i)) = 5500,
Insv(µ

′(k)) = 5500,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 0,

Dele(ξ(e)) = 825,
Inse(ξ

′(f)) = 825,
∀e ∈ E,∀f ∈ E′.

(4.2)

PAH. This database contains 94 graphs modeling chemical molecules. The graphs are
undirected and unattributed. Each pair of graphs is considered as an instance, which
gives a total of 8846 instances. The cost functions are given in Eq. 4.3, as published by
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Abu-Aisheh et al. (2015a).

Subv(µ(i), µ′(k)) = 0,
Delv(µ(i)) = 3,
Insv(µ

′(k)) = 3,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 0,

Dele(ξ(e)) = 3,
Inse(ξ

′(f)) = 3,
∀e ∈ E,∀f ∈ E′.

(4.3)

CMU-HOUSE. This database contains 111 graphs corresponding to 3D-images of
houses, and each graph consists of 30 vertices with attributes described using Shape Con-
text feature vector. Every edege has one attribute that is the distance between its in-
cident vertices. So, the graphs are undirected and attributed. The particularity of this
database is that graphs are extracted from 3D-images of houses, where the houses are
rotated with different angles. This is interesting because it enables testing and compar-
ing graphs representing the same house but positioned differently inside the images. The
database also comes with the ground-truth matchings for all pairs of graphs and was pub-
lished by Moreno-García et al. (2016). Due to the importance of this database in GM field,
three versions are considered, and each one with different cost functions.

1. HOUSE-NA: it is the version where attributes are ignored in the cost functions. The
values are given in Eq. 4.4.

Subv(µ(i), µ′(k)) = 0,
Delv(µ(i)) =∞,
Insv(µ

′(k)) =∞,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 0,

Dele(ξ(e)) = 0.5,
Inse(ξ

′(f)) = 0.5,
∀e ∈ E,∀f ∈ E′.

(4.4)

2. HOUSE-A: the version where attributes are included in the cost functions by com-
puting the differences between the values using a L1-norm distance. Eq. 4.5 defines
the cost functions.

Subv(µ(i), µ′(k)) = ||µ(i)− µ′(k)||1,
Delv(µ(i)) =∞,
Insv(µ

′(k)) =∞,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 0,

Dele(ξ(e)) = 0.5,
Inse(ξ

′(f)) = 0.5,
∀e ∈ E,∀f ∈ E′.

(4.5)
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3. HOUSE-REF: this version defines the cost functions as in (Zhou and De la Torre,
2012). For vertices, the substitution has a null cost, while the deletion costs some
very high value (∞). This leads to favoring substitutions over deletions. However,
for edges, all costs are based on the attributes as shown in Eq. 4.6.

Subv(µ(i), µ′(k)) = 0,
Delv(µ(i)) =∞,
Insv(µ

′(k)) =∞,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 1− exp(−(ξ(e)−ξ′(f))2

2500 ),

Dele(ξ(e)) = 1− exp(−(ξ(e))2

2500 ),

Inse(ξ
′(f)) = 1− exp(−(ξ′(f))2

2500 ),
∀e ∈ E,∀f ∈ E′.

(4.6)

CMU-HOTEL. This graph database is similar to CMU-HOUSE, but the graphs are
modeling hotels inside 3D-images. It contains 101 graphs and the hotels are also rotated
inside the images with different angles. The same cost functions as in CMU-HOUSE (Eq.
4.4, 4.4, 4.6) can be used for this database.

PALMPRINT. It is a database of 160 graphs modeling the palm of human hands, with
high quality images (Han et al., 2007). The graphs are considerably big, with more than
800 vertices for some graphs, and around 2000 edges. They are undirected and attributed.
The attributes assigned to a vertex i are: [xi, yi, anglei, typei, `

1
i , `

2
i , `

3
i , `

4
i ], storing features

like the coordinates of i in the image, the angle, type, etc.

Subv(µ(i), µ′(k)) =


0.85×min(anglei − `3k, 360− anglei − `3k)+
0.15× (||`1k − xi||2 + ||`2k − yi||2),

if typei = typek

∞, otherwise

,

Delv(µ(i)) = 210,
Insv(µ

′(k)) = 210,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 0,

Dele(ξ(e)) = 5,
Inse(ξ

′(f)) = 5,
∀e ∈ E,∀f ∈ E′.

(4.7)

VOC-CAR. Graphs are representing cars inside images and they are undirected and
attributed (Zhou and De la Torre, 2012). The attributes over edges consist of two val-
ues: [de, θf ], respectively, the distance and the angle between the two vertices. The cost
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functions are defined in Eq. 4.8.

Subv(µ(i), µ′(k)) = 1− exp(−|µ(i)− µ′(k)|),
Delv(µ(i)) =∞,
Insv(µ

′(k)) =∞,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = 1− exp(−1

2 |de − df | −
1
2 |θe − θf |),

Dele(ξ(e)) =∞,
Inse(ξ

′(f)) =∞,
∀e ∈ E,∀f ∈ E′.

(4.8)

VOC-BIKE. There are 440 undirected and attributed graphs modeling bikes inside im-
ages. The cost functions are the same as those given in Eq. 4.8.

PROTEIN. The database contains 600 undirected and attributed graphs of proteins
(Riesen and Bunke, 2008). Three attributes are assigned to each vertex: type, sequence
(seq) and the length of the sequence. The edges attributes are: frequency, one or more
type and distance depending on the edge, e.g. [freq : 1, type0 : 1, distance0 : 17.1, type1 :
1, distance1 : 4.2, ...]. Therefore, the cost functions are given in Eq. 4.9.

Subv(µ(i), µ′(k)) =

{
string_distance(seqi, seqk), if typei = typek

8.25, otherwise
,

Delv(µ(i)) = 8.25,
Insv(µ

′(k)) = 8.25,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = Hungarian([type, distance]e, [type, distnace]f ),

Dele(ξ(e)) = 0.25 ∗ freqe,
Inse(ξ

′(f)) = 0.25 ∗ freqf ,
∀e ∈ E,∀f ∈ E′.

(4.9)

SYNTETHIC. This is a manually generated graph database. A library available in
Python and published by Csardi and Nepusz (2006), enables generating various types of
graphs (directed or undirected, attributed or not). The library is, then, used to generate
undirected and attributed graphs. One arbitrary attribute based on a uniform distribution,
of decimal type from the range between 0 and 1, is assigned to each vertex and edge in
the graph. A nice feature of this library is the possibility of controlling the density of the
generate graphs. The density is the percentage of actual number of edges in the graph, out
of the maximum number of edges that could be added (the case of a complete graph). As
an example, generating an undirected graph of size 30, the maximum number of edges is
30×(30−1)

2 = 435. Then, a graph with a density of 10% will have approximately 44 edges.
So, based on this, multiple subsets are created with different densities. And, two versions
of synthetic databases are generated.
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Table 4.1: Summary of graph databases suitable for the GEDEnA problem and/or the
GED problem

Nb. Size Edges has attri Edge cost fct GEDEnA

MUTA 4437 Small - Medium yes constant yes
PAH 94 Small no constant yes
Protein 600 Medium yes not constant no
COIL-DEL 7200 Medium yes constant yes
CMU-HOUSE 111 Medium yes constant yes
CMU-HOTEL 101 Medium yes constant yes
VOC-car 660 Medium yes not constant yes
VOC-bike 440 Medium yes not constant yes
PalmPrint 160 Large yes constant yes
Web 2344 Large yes not constant no
California-road-map 31 Large yes not constant no
MNIST 711 Large yes not constant no
GREC 1100 Small yes not constant no
Letter 2250 Small no constant yes
SYNTHETIC 2000 Medium - Large yes not constant no

1. SYNTHETIC-30: this database contains 10 subsets. Each one has 10 undirected and
attributed graphs, with different density values, starting from 10%, 20% till 100%
(fully connected graph). The total number of instances is 1000 (100 per subset).

2. SYNTHETIC-100: the same type and number of instances as in the first database,
but with graphs of size 100.

The goal of generating these graphs is to have medium and large instances and to be able
to test GED methods by considering different sizes and different densities. It might help
determining whether the difficulty of an instance is due to its size or its density or both.
The cost values for all edit operations are given in Eq. 4.10.

Subv(µ(i), µ′(k)) = ||µ(i)− µ′(k)||2,
Delv(µ(i)) = ||µ(i)− 0||2,
Insv(µ

′(k)) = ||0− µ′(k)||2,
∀i ∈ V,∀k ∈ V ′.

Sube(ξ(e), ξ
′(f)) = ||ξ(e)− ξ′(f)||2,

Dele(ξ(e)) = ||ξ(e)− 0||2,
Inse(ξ

′(f)) = ||ξ′(f)− 0||2,
∀e ∈ E,∀f ∈ E′.

(4.10)

Many other graph databases can be found in the literature, and the above list enu-
merates the most interesting and representative ones of medium and large sizes, taken
from different domains such as chemistry, biology and pattern recognition. It gives an
overview on the databases and makes the selection for the experiments of GED methods
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Table 4.2: Density (% of connectivity) of graph databases

Database Density %
MUTA 9.13
PAH 12.22
CMU 18.00
VOC 13.47
PALMPRINT 0.77
PROTEIN 16.00

easier. However, some databases are only valid for the GEDEnA problem, because their
edges cost functions do not include the attributes. To make it more clear and separate
those databases, Table 4.1 shows a summary of databases, covering the listed ones, plus
other databases existing in the literature. It indicates whether a database is suitable for
GEDEnA and/or for the general GED problem. Note that, a valid graph database for
the GEDEnA problem is also valid for the GED problem, but not the opposite. Graph
databases that have no attributes on edges, have certainly constant costs for edges opera-
tions, e.g. PAH and Letter databases. For instance, graph databases such as Protein and
Web have functions based on edges attributes to compute the costs, which makes them
irrelevant for the GEDEnA problem. The notation small, medium and large stands, re-
spectively, for graph sizes: less than 30, between 30 and 70, greater than 70. Databases
GREC, Letter, Web, COIL-DEL listed in Table 4.1, are published by Riesen and Bunke
(2008). The California-road-map database was found in the work by Leskovec et al. (2009).
MNIST database was used in the experiments in the work by Cecotti (2016). Finally, Table
4.2 shows the densities of the databases that were detailed earlier. In general and based
on the experiments, databases with densities less than 10% are considered as non-dense
graphs. Others, such as CMU, PROTEIN and SYNTHETIC databases are considered as
dense graphs.

4.3 Comparison of existing MILP formulations

As a first step in this thesis and after reviewing the available MILP formulations for the
GEDEnA problem, a comparison was conducted in order to study their performances. The
goal is to determine the best MILP formulation existing in the literature. This can help
exploiting the formulations and check their limits, in terms of scaling up to big instances
and form a basis of an interesting contribution. Also, it enables extracting useful properties
about the efficiency of the best MILP, which can help in the choices that have to be made
later in this thesis. The three MILP formulations are: JH, F1 and F2, and they are
explained in details in Section 2.3.7. In Table 4.3, a comparison in terms of number of
variables and constraints for each formulation, is given. The following are the remarks
extracted based on this comparison:

• JH has a number of variables and constraints independent from the number of edges
in the graphs.
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• In the case of dense graphs, F1 has a lot more variables and constraints than F2 and
JH.

• In the case of non-dense graphs, F2 has less number of variables and constraints than
F1 and possibly JH.

Table 4.3: MILP formulations comparison (nb. of variables and constraints)

Variables Constraints
JH 3 · (|V |+ |V ′|) · (|V |+ |V ′|) (|V |+ |V ′|) · (|V |+ |V ′|) + 2 · (|V |+ |V ′|)
F1 |V |+ |V ′|+ |E|+ |E′|+ |V ′| · |V ′|+ |E′| · |E′| |V |+ |V ′|+ |E|+ |E′|+ 2 · |E| · |E′|
F2 |V | · |V ′|+ |E| · |E′| |V |+ |V |+ |V ′| · |E|

It is hard to tell by just looking at the size of the formulations, which one is more
efficient. Therefore, they are compared on real graph instances. Two experiments are
executed for this purpose: standalone MILP formulations, and MILP formulations with
pre-processing. The details of each experiment and the obtained results are given in the
next sections.

Instances and experimentation settings. MUTA graph database is selected to test
the formulations, because it is compatible with the GEDEnA problem. All the details
(subsets, cost functions) of MUTA are discussed in Section 4.2. In this experiment, 7
subsets (10 to 70) are involved, which gives a total of 700 instances. JH, F1 and F2 are
implemented in C language. The solver CPLEX 12.6.0, in single thread mode, is used to
solve the formulations. A maximum running time limit, of 900 seconds per instance, is
imposed on CPLEX. If the optimal solution has not been found/proven before the 900
seconds, then CPLEX halts and returns the best solution found. Experiments are ran on
a machine with Windows 7 x64, Intel Xeon E5 2.30 GHz, 4 cores and 8 GB of RAM.

Evaluation indicators. The graph instances are solved for each formulation with the
settings explained above and the following indicators are recorded:

• tmin: the minimum CPU time in seconds over all instances in a subset,

• tavg: the average CPU time in seconds over all instances in a subset,

• tmax: the maximum CPU time in seconds over all instances in a subset,

• dmin: the minimum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• davg: the average deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• dmax: the maximum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• η: the number of optimal solutions computed,
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• η′: the number of solutions (whether optimal or not) computed by a formulation,
which are the best/minimum among those computed by all formulations.

For an instance I and a formulation F , the deviation is computed by Eq. 4.11.

deviationFI =


0, if bestSolI = 0 and solutionFI = 0

100, if bestSolI = 0 and solutionFI > 0
solutionF

I ×bestSolI
bestSolI

× 100, otherwise

,

with bestSolI = min{solutionJHI , solutionF1
I , solutionF2

I }.

(4.11)

4.3.1 Standalone MILP formulations comparison

The results obtained by each formulation and for each subset are given in Table 4.4.
Starting by η values, it seems that for subsets 10 and 20 (small graph instances), all
formulations were able to compute the optimal solutions for all 100 instances in each
subset. For subsets 30, 40 and 50, JH has the highest η values (93, 87, 67) comparing to
F1 and F2. However, the numbers drop for subsets 60 and 70 to 25 and 18, which contain
large instances, yet still better than η values of F1 and F2. JH also scores the highest
η′ values for all subsets. This, in turn, explains why the average deviation (davg) of JH
is the lowest for all subsets. It is also the fastest in terms of CPU time (tavg) with the
smallest values for all subsets, except for subset 10 where F2 is a bit faster with 0.12s
against 0.17s. Next, and as expected, F2 performs better than F1 in all terms (number
of optimal solutions, deviations and CPU time). F2 is designed over F1 by reducing the
number of variables and constraints, which has worked in its favor. Moreover, and to be
more precise about the running time of the formulations, Table 4.5 shows the running time
obtained only for instances where optimal solutions were found by all formulations. What
changes from the previous results, is that on subsets 50, 60 and 70, F1 has scored the lowest
average CPU time. The optimal solutions obtained for these subsets, are only for the 10
instances where G = G′. To conclude the analysis of the results shown in both tables, JH
is the fastest in solving MUTA instances, except for subset 10. In addition, JH solves a lot
more instances to optimality than F1 and F2.

Conclusion. The conclusion of this experiment is that JH is the best formulation to
solve to optimality the GEDEnA problem.

4.3.2 Comparison of MILP formulations with pre-processing

In this experiment a pre-processing step is involved, which is a procedure that can help
fixing some binary variables to optimality, tightening bounds on variables, or generating
new constraints to reduce the size of the instance. The variable fixing technique considered
is a pre-processing step that performs analysis on the LP solution and fixes binary variables
to optimality in the MILP formulation. This is intended to help the solver by reducing the
number of binary variables to compute. This pre-processing technique has achieved good
results when applied to NP-hard optimization problems like flowshop scheduling problems
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Table 4.4: Comparison of MILP formulations

S 10 20 30 40 50 60 70
JH tmin 0.06 0.14 0.28 0.49 0.77 1.18 1.70

tavg 0.13 1.02 141.07 247.80 451.40 723.68 745.91
tmax 0.49 3.52 900.20 900.42 900.46 900.71 900.92
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00 0.06 0.04 0.00
dmax 0.00 0.00 0.00 0.00 3.11 2.21 0.00
η 100 100 93 87 67 25 18
η′ 100 100 100 100 98 98 100

F1 tmin 0.01 0.02 0.03 0.05 0.06 0.08 0.11
tavg 0.18 26.73 741.12 786.99 810.08 810.11 810.14
tmax 0.90 486.18 900.23 900.17 900.12 900.35 901.07
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 2.99 6.40 14.93 19.26 23.63
dmax 0.00 0.00 21.43 29.58 47.85 49.15 91.07
η 100 100 22 14 10 10 10
η′ 100 100 51 25 13 10 10

F2 tmin 0.03 0.07 0.10 0.15 0.36 0.44 0.76
tavg 0.12 1.17 367.54 631.04 792.96 803.84 809.64
tmax 0.38 7.79 900.20 900.19 900.48 900.38 900.17
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.17 1.28 4.14 5.95 11.91
dmax 0.00 0.00 5.69 11.69 18.58 24.00 29.72
η 100 100 77 36 14 11 10
η′ 100 100 95 67 34 19 13

Table 4.5: Comparison of MILP formulations - optimal solutions

S 10 20 30 40 50 60 70
tmin 0.06 0.14 0.28 0.49 0.77 1.18 1.70
tavg 0.13 1.02 2.04 18.83 0.79 1.23 1.76
tmax 0.49 3.52 13.89 206.20 0.82 1.29 1.85JH

η 100 100 22 13 10 10 10
tmin 0.01 0.02 0.03 0.05 0.06 0.08 0.11
tavg 0.18 26.73 180.28 71.14 0.07 0.09 0.11
tmax 0.90 486.18 873.12 400.59 0.08 0.10 0.12F1

η 100 100 22 13 10 10 10
tmin 0.03 0.07 0.10 0.15 0.36 0.44 0.76
tavg 0.12 1.17 71.79 21.38 0.49 1.20 1.35
tmax 0.38 7.79 658.01 244.74 0.81 2.72 1.99F2

η 100 100 22 13 10 10 10
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(T’kindt et al., 2007) and (Baptiste et al., 2010), map sectorization problem (Tang et al.,
2014), and multidimensional knapsack problem (Osorio et al., 2002). Variable fixing uses
information such as reduced costs to handle non-basic variables and penalties to handle
basic variables. The notion of basic/non-basic variables and costs are explained in the next
section.

Algorithm 4: Pre-processing for variable fixing procedure.
1 /* Fix non-basic variables */
2 ∀xi ∈ B ∩ {xi : i ∈ I}
3 if xi = 0 then
4 if ZLP + ri > UB then
5 xi = 0 in the MILP formulation
6 end
7 end
8 if xi = 1 then
9 if ZLP − ri > UB then

10 xi = 1 in the MILP formulation
11 end
12 end
13 /* Fix basic variables */
14 ∀xj ∈ B ∩ {xi : i ∈ I}
15 if xj · lj + ZLP > UB then
16 xj = 1 in the MILP formulation
17 end
18 if uj · (1− xj) + ZLP > UB then
19 xj = 0 in the MILP formulation
20 end

4.3.2.1 Prep-processing procedure

A mixed integer linear program with n variables and m inequality constraints can be
rewritten as follows:

min cTx
Ax ≤ b ⇐⇒

∑n
i=1 aij · xi + sj = bj , ∀j ∈ {1, ...,m}

sj ≥ 0
xi ∈ {0, 1}, ∀i ∈ I
xi ∈ R, ∀i ∈ C

sj ∈ R, ∀j ∈ {1, ...,m}

(4.12)

where c ∈ Rn and b ∈ Rm are vectors of coefficients, A ∈ Rm×n is a matrix of coefficients,
and x is a vector of variables to be computed. The variable index set is split into two
sets (I, C), which respectively stand for integer (boolean) and continuous. Variables s
are known as slack variables and are added to transform inequality constraints to equality
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constraints. By relaxing the problem and modifying the integer variables whose indexes are
in I to become continuous, the new relaxed problem (LP) can, then, be solved efficiently by
the Simplex method in polynomial time. The objective function’s value of the LP optimal
solution is called ZLP . And, it is considered as a lower bound (LB) to the optimal solutions
of the initial MILP formulation. Moreover, by looking at the optimal solution of LP, the
following two sets can be defined:

• B = {xi 6= 0, sj 6= 0}, the set of basic variables that may have fractional values in
the solution of the relaxed problem. For all xi ∈ B ∩ {xi : i ∈ I}, xi ∈ [0, 1].

• B = ({xi : i ∈ I} ∪ {xi : i ∈ C} ∪ {sj : j ∈ {1, ...,m}}) \ B, is the set of non-basic
variables. For all xi ∈ B ∩ {xi : i ∈ I}, xi ∈ {0, 1} in the solution of the relaxed
problem.

Other useful values can be obtained from the Simplex method’s results: [ri] ∪ [rj ], with
i ∈ I ∪C and j ∈ {1, ...,m}, are the reduced costs of variables x and s. Reduced costs are
under-estimation of the cost that will be added/reduced from the value of the objective
function, in the case of changing the value of a non-basic variable from 0 to 1 (or the
opposite). Mathematical programming theory provides the following basic statements:

• ∀xi ∈ B, if xi = 0⇒ ri > 0

• ∀sj ∈ B, if sj = 0⇒ rj > 0

• ∀xi ∈ B, if xi = 1⇒ ri < 0

• ∀sj ∈ B, if sj = 1⇒ rj < 0

The pre-processing procedure uses the reduced costs and the value ZLP to try figuring out
the values of the binary variables in an optimal solution of the original MILP formulation.
Algorithm 4 shows the core of the pre-processing procedure for fixing non-basic variables
(lines 1-12) and basic variables (lines 13-20). It, simply, selects the non-basic binary vari-
ables and two cases are tested. If the variable is equal to 0, it checks if its reduced cost
plus ZLP exceeds UB (a computed upper bound): if so, that variable must remain 0 in
an optimal solution of the MILP formulation. The second case is the opposite, and the
variable is equal to 1 with a negative reduced cost: so if subtracting the reduced cost from
ZLP exceeds UB, this means the variable must remain 1. In the next phase, pre-processing
attempts to fix basic variables. To do so, lower (lj) and upper (uj) bounds are computed
for each variable. They are also called penalties and they were introduced by Driebeek
(1966). Penalty lj (resp. uj) represents an estimation to the increase of ZLP when xj = 0
(resp. xj = 1). So, the algorithm tests if lj estimation increases ZLP to exceed the UB,
then xj can be set to 1 in the MILP formulation. On the other hand, if the complement
value (1 − xj) multiplied by uj increases ZLP to exceed the UB, then xj is set to 0. Of
course, an important factor is to have very tight (close) bounds (UB and ZLP ), so the use
of reduced costs will lead to fixing a good amount of variables. If the gap is large, then
pre-processing will not be able to fix many variables.
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4.3. COMPARISON OF EXISTING MILP FORMULATIONS

Table 4.6: Comparison of MILP formulations with pre-processing

S 10 20 30 40 50 60 70
JH tmin 0.08 0.27 1.13 2.30 4.32 7.43 12.14

tavg 0.15 1.21 108.80 240.66 453.09 751.01 790.87
tmax 0.86 6.08 902.77 907.41 919.38 942.83 986.34
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00 0.03 0.02 0.00
dmax 0.00 0.00 0.00 0.00 2.86 1.81 0.00
η 100 100 96 84 67 23 18
η′ 100 100 100 100 99 90 100

% varFix 62.54 32.62 25.19 22.80 20.87 16.92 14.78
F1 tmin 0.03 0.09 0.43 0.76 3.96 7.19 17.97

tavg 0.15 17.86 735.95 790.22 816.69 825.17 847.59
tmax 0.66 185.43 902.39 908.14 925.72 939.60 1054.34
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 2.80 5.71 14.93 19.05 23.66
dmax 0.00 0.00 20.69 26.32 47.85 49.15 91.07
η 100 100 22 14 10 10 10
η′ 100 100 54 26 13 10 10

% varFix 43.08 19.33 14.33 11.18 10.13 10.00 10.00
F2 tmin 0.04 0.13 0.35 0.54 1.55 2.11 3.71

tavg 0.12 1.16 373.41 614.69 778.26 808.90 812.29
tmax 0.35 5.90 901.39 902.97 906.91 910.18 925.94
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.29 1.14 3.87 5.32 11.90
dmax 0.00 0.00 5.69 9.89 18.58 24.00 34.04
η 100 100 75 39 18 11 11
η′ 100 100 91 71 40 20 14

% varFix 48.77 24.94 17.30 13.77 11.49 10.43 10.39

4.3.2.2 Results with pre-processing

Before presenting the results, one evaluation indicator is added to each formulation, that
is the average percentage of variables fixed (%varF ix) during the pre-processing phase, for
all instances in a subset. It shows how good is pre-processing in fixing variables.

The results of the experiment are shown in Table 4.6. Analyzing based on the deviation
and η′ indicators leads to the same order as in the first experiment: JH is the best and it
has computed the best solutions, followed by F2 and at last F1. Regarding, the percentage
of fixed variables, the highest values are scored by JH. However, based on the recorded
tavg, and comparing with the values of the first experiment (Table 4.3), the variable fixing
procedure did not have an impact on the running time. It is maybe because the percentage
of fixed variables is rather low (< 25%) on subsets between 30 and 70. As in the previous
experiment, Table 4.7 reports the average times, and the average percentages of fixed
variables on instances where all MILP formulations have found the optimal solutions.
Based on the results, F2 has the best tavg for all subsets. Except for subset 30 where
JH is very fast comparing to F2 with tavg = 3.23s against 64s. This means that applying
pre-processing and fixing variables have helped F2 formulation in solving those instances
faster than F1 and JH formulations.
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Table 4.7: Comparison of MILP formulations with pre-processing - optimal solutions

S 10 20 30 40 50 60 70
tmin 0.08 0.27 0.71 1.39 2.55 4.30 6.92
tavg 0.15 1.21 3.23 41.57 2.59 4.49 7.19
tmax 0.86 6.08 16.94 520.83 2.67 4.69 7.72
η 100 100 22 13 10 10 10

JH

% varFix 62.54 32.62 54.27 89.17 100.00 100.00 100.00
tmin 0.03 0.09 0.23 0.40 2.01 3.63 9.04
tavg 0.15 17.86 150.11 73.32 3.14 6.32 13.63
tmax 0.66 185.43 872.84 385.91 4.59 9.39 22.10
η 100 100 22 13 10 10 10

F1

% varFix 43.08 19.33 50.60 78.80 100.00 100.00 100.00
tmin 0.04 0.13 0.22 0.34 0.96 1.27 2.23
tavg 0.12 1.16 64.01 20.20 1.35 3.10 3.88
tmax 0.35 5.90 658.87 242.10 2.00 6.40 5.89
η 100 100 22 13 10 10 10

F2

% varFix 48.77 24.94 52.88 80.77 100.00 100.00 100.00

Conclusion. The second experiment confirms that JH is the best MILP formulation
in the literature in terms of computing the best and optimal solutions. However, F2 turns
to be faster with pre-processing for instances where the optimal solutions have been found.
Finally, the pre-processing algorithm was not very helpful in improving the performances
of the formulations.

These results are published in the conference ROADEF2017:
Darwiche, M., Conte, D., Raveaux, R., & T’Kindt, V. (2017, February). Evaluation de modèles
mathématiques pour le problème de la distance d’édition entre graphes. In ROADEF2017.

4.4 An adapted local branching heuristic to solve the GEDEnA

problem

The efficiency of JH formulation was shown, in Section 4.3, in solving to optimality
the GEDEnA problem, even though it is limited to small-size instances. In general, MILP
formulations are known to be very powerful tools in modeling combinatorial optimization
problems. Usually, such formulations are solved using black-box solvers such as CPLEX,
Gurobi, etc. These solvers are equipped with an arsenal of effective algorithms to solve
MILP formulations. However, they are not capable all the time of finding the optimal solu-
tions. Especially in the case of large and complex instances, due to high computational time
and memory size requirements. Lately, a new family of metaheuristics, namely matheuris-
tics, has been introduced in Operation Research community. They involve both MILP
formulations and solvers in a defined scheme with one goal, that is to explore the solution
space efficiently and compute very good quality solutions. One well-known matheuristic,
called local branching, was introduced by Fischetti and Lodi (2003). Its main idea is to
perform a series of local searches based on a MILP formulation, and to focus the search
on defined regions looking for good quality solutions. Starting from an initial solution,
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Figure 4.2: Local branching flow. a) depicts the left and right branching. b) shows the
neighborhoods in the solution space

it defines the neighborhood around it and performs an intensification step looking form
better solutions. Local branching knows well how to escape from local optima, by employ-
ing a diversification mechanism. So, this heuristic combines several heuristic techniques
(neighborhood definition, intensification and diversification) in a defined branching scheme.
Local branching was used to solve many optimization problems and has obtained very good
results, such as the capacitated ring tree problem (Hill and Voß, 2018), the capacitated
fixed-charge network design problem (Rodríguez-Martín and Salazar-González, 2010), and
the open pit mine production scheduling problem (Samavati et al., 2017). A first attempt
to design a good heuristic for the GEDEnA problem is then, to use JH formulation with
CPLEX solver and to embed them in a local branching procedure. Such a heuristic has
not yet been tested on the GED problem in the literature.

4.4.1 Main features of the Local Branching heuristic

This section covers the functionalities and the main features of the local branching
heuristic specifically implemented to solve the GEDEnA problem. This heuristic version
follows the original version introduced by Fischetti and Lodi (2003), with improvements
outlined when appropriate.

This method is a local search heuristic, which embeds the truncated solution of JH
formulation into a search tree. It is based on 4 main ingredients:

• Neighborhood definition: giving a solution xp ∈ {0, 1}N×N to the problem, with
N = |V |+|V ′|, N (xp, π) is the π-opt neighborhood around xp, with π a given positive
integer. N (xp, π) is defined by adding the following local branching constraint to JH:

Δ(x, xp) =
∑

(i,k)∈Sp

(1− xi,k) +
∑

(i,k)/∈Sp

xi,k ≤ π (4.13)

with, Sp = {(i, k) : xpi,k = 1}. The neighborhood set contains the solutions that are
within a distance no more than π from xp (in the sense of the Hamming distance).
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• Intensification: after defining N (xp, π) by adding the local branching constraint,
LocBra solves the corresponding MILP formulation by CPLEX. This intensifies the
search by exploring the neighborhood around xp looking for a new and a better
solution. This step implies focusing the search into a small region of the solution
space instead of exploring the whole space. Note that, for large instances and even
after defining a neighborhood, the modified formulation might still be hard to solve
in reasonable time. For this reason, a time limit, called node_time_limit, is imposed
during the intensification.

• Complementary intensification: it may happen that, when exploring a neighborhood
N (xp, π), CPLEX fails to compute a feasible solution because the node time limit is
reached. This corresponds to the case where the neighborhood is too large. Then,
a complementary intensification phase is performed in the restricted neighborhood
N (xp, π/2).

• Diversification: this step is introduced when the complementary intensification step
fails to find an improved solution, which basically means that the current solution xp

is a local optimum. The main goal of this step is to skip local minima and switches
the exploration to new regions in the solution space. In an attempt to improve the
original diversification mechanism proposed by Fischetti and Lodi (Eq.4.14), a more
complex and problem-dependent one is proposed and described in section 4.4.2.

∆(x, xp) =
∑

(i,k)∈Sp

(1− xi,k) +
∑

(i,k)/∈Sp

xi,k ≥ 1 (4.14)

The basis of LocBra is illustrated in Fig. 4.2 that shows how the 4 ingredients are put
together. First, LocBra starts with an initial solution x0, and defines its π-opt neighborhood
N (x0, π). This is translated by adding the following local branching constraint to JH
formulation:

∆(x, x0) =
∑

(i,k)∈S0

(1− xi,k) +
∑

(i,k)/∈S0

xi,k ≤ π (4.15)

with, S0 = {(i, k) : x0
i,k = 1}. This new formulation is then solved leading to the search

of the best solution in N (x0, π). This step, which corresponds to node 2 in Fig. 4.2-a,
is referred to as the intensification phase. If a new solution x1 is found, the constraint
(Eq. 4.15) is replaced by ∆(x, x0) ≥ π + 1, and the right branch emanating from node
1 is explored. This guarantees that an already visited neighborhood will not be visited
again. Next, a left branch is created but now using the solution x1. And the neighborhood
N (x1, π) is explored by solving the JH formulation with the constraint ∆(x, x1) ≤ π (node
4 in Fig. 4.2-a). Then, the process is repeated until a stopping criterion is met, e.g.
a total time limit is reached. The stopping criteria are discussed in the following sub-
sections. For instance, assuming at node 6 in Fig. 4.2-a, the solution of JH formulation
plus equation ∆(x, x2) ≤ π does not lead to a feasible solution in the given time limit.
Then, a complementary intensification step is applied, by replacing the last constraint on
x2 by ∆(x, x2) ≤ π/2 and solving the new sub-problem: this results in the exploration of
a reduced neighborhood around x2. If again no feasible solution is found (node 7 in Fig.
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4.2-a), then a diversification step is applied to jump to another point in the solution space.
Figure 4.2-b shows the evolution of the solution search and the neighborhoods.

4.4.2 Problem-dependent features of the Local Branching heuristic

The original version of local branching is designed to solve any optimization problem
with existing MILP formulations. Of course, integrating GED properties and information
about the instance in the heuristic will help in improving its performance. The improve-
ments are integrated by adapting certain mechanisms of the method.

The first particularization relates to the choice of the variables when defining the neigh-
borhoods. Traditionally, in a local branching heuristic all boolean variables are considered
to in the local branching constraint ∆(x, xp) ≤ π. However, for the GEDEnA problem it
turns out that the crucial variables are the xi,k’s, which model vertices matchings. Other
sets of variables (si,k and ti,k) in JH, which correspond to edges matchings, can be easily
fixed by the solver as soon as the vertices are matched. This realization is concluded based
on GED Property 1 explained in Chapter 2. Letting LocBra explores the solution space
only on the basis of xi,k variables, leads to the consideration of a smaller number of variables
in the local branching constraint. By the way, this strengthens the local search by avoiding
fast convergence towards local optima. Consequently, the local branching constraint as
defined in Eq. 4.15 involves only xi,k variables.

Another important improvement is proposed for the diversification mechanism: again
not all binary variables are included but a smaller set of important variables is used in-
stead. Note that, only xi,k variables that represent vertices matchings are considered. The
diversification constraint is then

∆′(x, xp) =
∑

(i,k)∈Sp
imp

(1− xi,k) +
∑

(i,k)/∈Sp
imp

xi,k ≥ min(π_dv, ψ) (4.16)

with Spimp = {(i, k) ∈ Bimp : xpi,k = 1} and Bimp the index set of important binary variables.
This constraint replaces the original diversification constraint (Eq. 4.14). The notion of
important variable is based on the idea that when changing its value from 1 → 0 (or the
opposite), it highly impacts the objective function value. Forcing the solver to modify such
variables enables escaping from local optima and changing the matching. And it does not
matter if the new solution is worse than the current solution xp. The pseudo-code snippet
given in Algorithm 5 describes how to determine those important variables. Accordingly,
Bimp is obtained as follows:

(i) First, compute a special cost matrix [Mi,k] for each possible assignment of a vertex
i ∈ V ∪ {ε}, to a vertex k ∈ V ′ ∪ {ε}.

M =


c1,1 + θ1,1 c1,2 + θ1,2 . . . c1,|V ′| + θ1,|V ′| c1,ε + θ1,ε

c2,1 + θ2,1 c2,2 + θ2,2
... c2,|V ′| + θ2,|V ′| c2,ε + θ2,ε

...
...

...
...

...
c|V |,1 + θ|V |,1 c|V |,2 + θ|V |,2 . . . c|V |,|V ′| + θ|V |,|V ′| c|V |,ε + θ|V |,ε
cε,1 + θε,1 cε,2 + θε,2 . . . cε,|V ′| + θε,|V ′| 0


(4.17)
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Each value Mi,k = ci,k + θi,k, where ci,k is the vertex edit operation cost induced
by assigning vertex i to vertex k, and θi,k is the cost of assigning the set of edges
Ei = {(i, w) ∈ E} to Ek = {(k,w′) ∈ E′}. Ei (resp. Ek) is the set of edges
connected to vertex i (resp. k). A cost matrix can be built over the two sets Ei and
Ek, since all edges edit operations costs are known. This assignment problem, of size
max(|Ei|, |Ek|) × max(|Ei|, |Ek|), is solved by the Hungarian algorithm (Munkres
(1957)), which requires O(max(|Ei|, |Ek|)3) time, and this gives the value of θi,k.

(ii) Next, the standard deviation is computed at each row of the matrix [Mi,k], resulting
in a vector σ = [σ1, ..., σ|V |]. Typically, a high value of σi means that the contribution
to the objective function of the matching of vertex i with a vertex k strongly varies
depending on k. Such variables are considered as important.

(iii) To isolate the ones with the highest σi values, a simple clustering algorithm is ap-
plied. Two clusters Cmin and Cmax are built by starting with the minimum σmin
and maximum σmax values as the centers of the clusters. For all i ∈ V ∪ {ε}, if
|σi− avgCmin | < |σi− avgCmax | then σi → Cmin, otherwise σi → Cmax, with avgCmin

and avgCmax the averages of the selected values in the clusters Cmin and Cmax, re-
spectively. Every time a value σi is added to Cmin or Cmax, its average value avgCmin

or avgCmax is updated.

(iv) At last, for every σi belonging to Cmax cluster, the indexes of all binary variables
xi,k that correspond to the assignment of vertex i are added to Bimp.

Finally, note that the right hand side of the diversification constraint (Eq. 4.16) is
equal to min(π_dv, ψ). Variable π_dv is a positive integer parameter, which basically
should be higher than the π variable used in the local branching constraint (Eq. 4.15).
This guarantees better diversification by imposing a minimal number of variables xi,k to be
changed. However, π_dv should not exceed ψ, which is the number of i vertices selected
in Cmax (ψ = |Cmax|). Otherwise, solving JH with the diversification constraint will lead
to infeasibility and violating the formulation constraints. Here is an example to make the
picture more clear:

• Let be two graphs of sizes |V | = 100 and |V ′| = 100, and π_dv = 50.

• Assuming that ψ = |Cmax| = 30, this means that 30 vertices are selected from V .
Therefore, |Bimp| = 30× 100 = 3000 variable indexes.

• How many variables at most can be changed in Bimp?

The answer is 30, because changing more than 30 xi,k variables will lead to matching a
vertex i with multiple k vertices in V ′, which violates the constraints 2.21 and 2.22 in JH
formulation.

Eventually, ψ might be very big for large graphs and if the diversification only relies
on it, this might lead to a very difficult sub-problem, for which the solver might not be
able to find a solution. To avoid crippling the diversification, which is an important phase
in LocBra, the right hand side of the constraint is bounded by π_dv (a positive integer
parameter to the method).
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Algorithm 5: Algorithm to compute important variables for diversification
Input : G = (V,E, µ, ξ) and G′ = (V ′, E′, µ′, ξ′)
Output: Vector Bimp

1 /* Compute a special cost matrix */
2 Let [Mi,k] be a matrix of size |V | × |V ′|
3 foreach i ∈ V do
4 foreach k ∈ V ′ do
5 Let Ei = {(i, w) ∈ E}
6 Let Ek = {(k,w′) ∈ E′}
7 Let θi,k = Hungarian(Ei, Ek)
8 Mi,k = ci,k + θi,k // compute the minimum cost to assign the edges
9 end

10 end
11 /* Fix non-basic variables */
12 Let [σi] be a vector of size |V |
13 foreach i ∈ V do
14 σi = StandardDeviation(Mi) // compute the standard deviation at line

i

15 end
16 /* Compute clusters Cmin and Cmax */
17 Let Cmin and Cmax be two vectors of size |V |
18 Let σmin and σmax be, respectively, the minimum and maximum values in [σi]
19 Add σmin to Cmin
20 Add σmax to Cmax
21 Let avgCmin = Average(Cmin) // average of values in Cmin
22 Let avgCmax = Average(Cmax) // average of values in Cmax
23 foreach i ∈ V do
24 if |σi − avgCmin | < |σi − avgCmax | then
25 Insert σi to Cmin
26 else
27 Insert σi to Cmax
28 end
29 avgCmin = Average(Cmin)
30 avgCmax = Average(Cmax)

31 end
32 /* Collect important variables indexes */
33 foreach σi ∈ Cmax do
34 foreach k ∈ V ′ do
35 Add (i, k) to Bimp
36 end
37 end
38 Return Bimp
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This version of diversification significantly improves the local branching heuristic, better
than the original one introduced by Fischetti and Lodi (2003), which was quite inefficient for
escaping local optima. Both versions are evaluated and the results are reported in Section
4.4.5. Regardless of the new solution’s quality - whether it is better or worse than the
current best solution -, what is important is that the diversification mechanism succeeds
in diversifying the search and escaping local optima. Because, the intensification steps
afterwards will lead to a deep exploration of the solution space around the new solution.

4.4.3 The local Branching algorithm

A detailed algorithmic presentation of LocBra heuristic is provided in Algorithm 6,
and the details of the functions used, are given in Algorithm 7. The core function of the
heuristic takes the following parameters as input:

1. π, is the neighborhood size.

2. π_dv, is for diversification, to guarantee that the next solution to be found is far
enough from the current one by at least π_dv changes of binary variables.

3. total_time_limit, is the total running time allowed for LocBra before stopping.

4. node_time_limit, is the maximum running time given to the solver at any node to
solve the JH formulation.

5. UB_time_limit, is the running time allowed to the solver to compute an initial
solution.

6. `_max, is used to force a diversification step after a sequence of `_max intensification
steps returning solutions with the same objective function value. This parameter
avoids spending a lot of time searching in a region where no improving solutions are
found.

7. dv_max, is the maximum number of diversification steps allowed during the exe-
cution of LocBra. The rationale behind such a parameter comes from preliminary
experiments, which have shown that first diversification steps are useful to reach very
good solutions. Then, this parameter enables to decrease the global execution time
without losing in the quality of the solutions returned by LocBra.

8. dv_cons_max, serves as a stopping criterion. The heuristic stops after consecutive
diversification steps returning solutions with the same value of the objective func-
tion. When this situation occurs, then the diversification mechanisms is inefficient in
escaping from the current local optimum.

From the above list of parameters, the stopping criteria of LocBra heuristic do not only
rely on the total time spent. The algorithm stops whenever one of these three conditions
is met:

(i) the total execution time exceeds the total_time_limit, or
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Algorithm 6: LocBra algorithm
1 bestUB := UB := ∞; x∗ := x̄ := x̃ := undefined
2 tl := elapsed_time := dv := ` := dv_cons := 0
3 mode_dv := false; opt := false; first_loop := true
1 Function LocBra(π, π_dv, total_time_limit, node_time_limit,

UB_time_limit, dv_max, `_max, dv_cons_max)
Output: x∗, opt

2 tl = UB_time_limit // Set the time to compute the initial solution
3

4 InitLocBra()
5 ImprovedSolution()
6 elapsed_time := tl
7 tl = node_time_limit // Set the time for branching
8

9 while elapsed_time < total_time_limit and dv < dv_max and dv_cons < dv_cons_max do
10 tl := min{tl, total_time_limit − elapsed_time}
11 status := MIP_SOLVER(tl, UB, x̃)
12 tl := node_time_limit
13 if f(x̃) = f(x̄) and mode_dv = true then ` := `+ 1 else ` := 0
14 if ` ≥ `_max then Diversification(); continue
15 if status = "opt_sol_found" then
16 if x̃ 6= x̄ then ImprovedSolution() else Diversification()
17 end
18 if status = "infeasible" then Diversification()
19 if status = "feasible_sol_found" then
20 if f(x̃) < UB then
21 ImprovedSolution()
22 else
23 if mode_dv = false then Intensification() else

Diversification()
24 end
25 end
26 elapsed_time := elapsed_time + tl
27 end
28 End
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Algorithm 7: LocBra helper functions
1 Function InitLocBra()
2 status := MIP_SOLVER(tl, UB, x̃)
3 if status = "opt_sol_found" then opt := true; x∗ := x̃; exit
4 if status = "infeasible" then opt := false; exit
5 End
1 Function ImprovedSolution()
2 if mode_dv = false and x̄ 6= undefined then
3 replace last added constraint ∆(x, x̄) ≤ π by ∆(x, x̄) ≥ π + 1
4 end
5 x̄ := x̃; UB := f(x̃); mode_dv := false; dv_cons := 0
6 add new constraint ∆(x, x̄) ≤ π
7 if UB < bestUB then x∗ := x̃; bestUB := f(x̃)

8 End
1 Function Diversification()
2 replace last constraint ∆(x, x̄) ≤ π with ∆′(x, x̄) ≥ min(π_dv, ψ)
3 UB := ∞; dv := dv + 1; mode_dv := true; dv_cons := dv_cons + 1
4 End
1 Function Intensification()
2 replace last added constraint ∆(x, x̄) ≤ π by ∆(x, x̄) ≤ π

2
3 mode_dv := false; dv_cons := 0
4 End
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(ii) the number of diversification steps done during the search exceeds dv_max, or

(iii) the number of consecutive diversification steps done exceeds dv_cons_max.

The output of the algorithm is the best solution found (x∗) along the search, and a
flag to indicate whether it has been proved to be optimal or not (opt). The initial solution
x0 used by LocBra is obtained by solving JH formulation within a time limitation of
UB_time_limit seconds. First, it calls InitLocBra function that initializes the heuristic
by computing an initial solution x̃ (it is the first solution x0 as introduced in Section
4.4.1). If at this point, JH is solved to optimality or no feasible solution has been found,
the heuristic halts and returns the available solution and/or the status. Otherwise, the
current solution x̄ is set to the solution found and the exploration begins. Lines 2 to 23
present the core of the heuristic as previously described. At each iteration and after a
left/right branching constraint is added, the solver is called through MIP_Solver(tl,UB,x̃)
function, and the returned status is considered to make the next decision. Note that, tl
variable corresponds to the time limit imposed when solving JH. x̃ and UB are, respectively,
the solution computed by the solver (new solution) and its objective function value. Three
possible statuses may occur:

(i) Optimal solution is found at a branch, and then two cases must be distinguished
(line 11). If the new solution x̃ is better than the current solution x̄, then Improved-
Solution is called to update the current and best solutions (if needed), and to define a
new neighborhood by adding the constraint Eq. 4.15 using the new solution x̃. If the
new solution x̃ and the last solution x̄ are equal, i.e. x̃ = x̄, then Diversification is
called to skip the current neighborhood and search in a different region in the search
space. Diversification function ensures that the current solution is skipped with a
distance min(π_dv, ψ), and the upper bound UB is reset to ∞ to allow finding a
new solution even if it is worse than the best known one.

(ii) The formulation is infeasible (line 14). Therefore Diversification is triggered to
switch the last local branching constraint and look into a new neighborhood in the
search space.

(iii) A feasible solution is returned (line 15). This is very similar to the first case,
except when a worse solution is found, i.e. f(x̃) > UB. An additional Intensification
step is done but within a neighborhood limited to π/2 variable changes from x̄ in
order to improve it. However, if the solver fails again, then a Diversification step is
performed.

In addition, there is the condition (at line 10) that forces the diversification step, in the case
where `_max consecutive intensification iterations have returned solutions with the same
objective function value. This, in turn, guarantees the exploration of many neighborhoods
in different regions of the solution space, rather than remaining stuck in one region.

4.4.4 Parameters tuning

LocBra has multiple parameters to control the exploration of the search space. They
are split into two groups: pre-fixed parameters and tuned parameters. The first group
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contains parameters that are fixed for all the experiments and databases. Their values
were chosen based on existing similar works, or suggestions by the authors of the original
version of local branching. The second group of parameters are the ones that need to be
tuned for every database of graphs. The two groups are as follows:

• Pre-fixed: the parameters values are set after selecting instances from different
databases and testing them with different values. The best combination that led
to the best results, are retained.

1. π, its value is set to 20 based on the experiments done by Fischetti and Lodi
(2003). They have suggested to set π to a value between [10, 20], where good
performances are obtained. As well, it makes sense to have such a value, because
choosing a bigger value means that the neighborhood N (x, π) is rather large and
the sub-problem might be more complicated to solve. A second reason not to
increase this value, is that local branching is a metaheuristic based on small
neighborhoods, and by having large neighborhoods it becomes more like a large
neighborhood search metaheuristic.

2. π_dv, the value assigned to this variable is 30.

3. l_max, it is set to 3.

4. dv_max, it is set to 5.

5. dv_cons_max, it is set to 2.

• Tuned: the parameters values are set for each database.

1. total_time_limit, the value of this variable is set after preliminary experiments
over few instances from the database. The value that gives the best results is,
then, set to run the method over all instances.

2. node_time_limit, it is regulated based on preliminary tests by selecting in-
stances from the database.

3. UB_time_limit, since computing a good initial solution is crucial in LocBra,
this parameter is also tuned by running tests on some instances. Then, selecting
the value that yielded the best results and set it for the rest of the instances.

Basically, all the parameters are set based on preliminary tests. However, they can
be tuned in an adaptive fashion, which could be a complex problem by itself. Performing
a study on each parameter, its influence on the method and the relations between the
parameters is not an easy task. It was convenient to obtain fair results and performance by
regulating the values of the parameters empirically. Henceforth, each time an experiment
is conducted over a database, preliminary tests are conducted with different values of
parameters. The combination that gives the best results, is the one used to execute the
heuristic over all the instances in the database. The parameters values are indicated for
each database in each experiment.
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4.4.5 Original local branching vs improved local branching

The proposed version of local branching is designed and adapted to solve the GEDEnA

problem. As stated in Sections 4.4.2 and 4.4.3, the local branching constraints are changed
and replaced by Eq. 4.13. The new constraints consider only binary variables that represent
vertices matchings. Another modification is the diversification constraint (Eq. 4.16) that
replaces the original one (Eq. 4.14). The new version with the modifications has been
tested empirically on two hard instances, but this is not enough to generally asses the
improvements. Therefore, to wrap-up the work and prove experimentally the importance
of those modifications in solving better the problem, a comparison with the original local
branching scheme of Fischetti and Lodi, is conducted.

Methods. There are two of them:

1. LocBra-ori: original version of local branching as proposed by Fischetti and Lodi
(2003).

2. LocBra-imp: improved version of local branching as introduced in this work.

Database. The subset 70 of graph’s database MUTA, presented in Section 4.2, is selected
in the experiment. The graphs in this subset are large and they are known to be very hard
for GED heuristics.

Instances and experimentation settings. Both local branching versions are imple-
mented in C language. The solver CPLEX 12.6.0, in single thread mode, is used in this
experiment. The machine configuration: Windows 7 x64, Intel Xeon E5 2.30 GHz, 4 cores
and 8 GB of RAM. Finally, the parameters values set to both methods are:

LocBra− ori π = 20, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s

LocBra− imp π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

Comparison indicators. The following indicators are computed for each method: tmin,
tavg, and tmax, which are respectively the minimum, average and maximum CPU times in
seconds over all instances. Correspondingly, dmin, davg, and dmax are the deviations (in
percentage) of the solutions obtained by LocBra, from the best solutions computed by both
methods. The deviation is computed by using Eq. 4.11. ηI is the number of instances for
which a given heuristic has found the best solutions.

Results. The results, reported in Table 4.8, prove the superiority of LocBra-imp over
LocBr-ori. The former has a better (smaller) davg = 0.44% against 0.83%. It has computed
better solutions as well, than the original version with ηI = 84 against 75 over 100 instances.
These differences might seem small, but as the instances used in the experiment are very
hard to solve, they are significant and very important.
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Table 4.8: LocBra-ori vs. LocBra-imp

LocBra-ori LocBra-imp
tmin 1.75 1.36
tavg 759.26 751.44
tmax 901.11 900.36
dmin 0.00 0.00
davg 0.83 0.44
dmax 9.50 5.88
ηI 75 84

Conclusion. Experimentally, the improved local branching designed to solve the
GEDEnA problem is more efficient than the original version, and solves better the prob-
lem instances. This is all thanks to the analysis and the problem-dependent diversification
mechanism, that considers information and local structures around vertices for the instance
at hand.

4.4.6 Evaluation of local branching

This section presents the experimentation results to the different tests conducted on
LocBra and the heuristics selected from the literature that are known to be the best at
solving the problem. The goal of the experiments is to study the effectiveness of LocBra
heuristic and its contribution to GED applications. The experiments are divided into three
categories:

1. Effectiveness of LocBra w.r.t. competitor heuristics. LocBra is tested against
the most competitive heuristics picked from the literature, designed to solve the GED
problem. And of course they can be applied to the GEDEnA problem.

2. Effectiveness of LocBra w.r.t. an exact method. The goal of this experiment
is to measure the accuracy and closeness of LocBra solutions from the optimal or
best known ones.

3. Accuracy of LocBra from an application point of view. This experiment aims
at evaluating the heuristic from an application point of view. It is a serious attempt
to answer the questions raised in GED challenges (Section 2.3.6). To the best of
our knowledge, this kind of experiment has not yet been considered when evaluating
GED methods. It consists of two tests:

(a) The first one is in the context of similarity search, which is relevant when seeking
the nearest neighbor graphs. A query graph is compared to each graph in a
database, thanks to a given GEDEnA heuristic, which returns each time the
proposed matching as well as the distance between the two graphs. Then,
distances are sorted in ascending order to obtain a ranking. The target of
this experiment is to compare the rankings given by all heuristics against the
optimal ranking given by optimal methods. Though, this kind of evaluation has
not been done in the literature when evaluating GED heuristics.
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(b) The second test studies the relation between the ground-truth matchings given
by human experts and the matchings computed by the heuristics. This eval-
uation is also not common in the context of heuristics comparison, in spite of
its importance. Visualizing the computed matching and comparing it with the
ground-truth matching enables assessing the impact of mismatched vertices.

Common configuration. LocBra algorithm is implemented in C language. The solver
CPLEX 12.6.0 is used to solve the MILP formulations. Experiments are ran on a machine
with Windows 7 x64, Intel Xeon E5 2.30 GHz, 4 cores and 8 GB of RAM. When solving a
MILP formulation within LocBra heuristic, CPLEX solver is parametrized to use a single
thread (unless indicated otherwise) even if 4 cores are available. The aim of this, in the
experiments, is to evaluate the efficiency of the inner mechanism of LocBra. It can be
expected that its efficiency is going to be improved when enabling more threads. Although
the machine configuration is x64 based, the code was compiled in x86 mode, which means
LocBra process can reach a maximum of 2GB in terms of memory occupancy.

4.4.6.1 Effectiveness of LocBra w.r.t. competitor heuristics

These experiments answer the following question: which heuristic is the best mini-
mizer? It is about comparing the distances computed by each heuristic and finds out
which heuristic returns the smallest distances.

Methods. LocBra is being tested against the following heuristics:

i- CPLEX-t is the solver CPLEX ran on JH formulation with t seconds as a time limit.

ii- CPLEX-LocBra-t refers to enabling local branching heuristic implemented in CPLEX
solver. Note that in the default settings, this heuristic is disabled. So, CPLEX-
LocBra-t is the local branching heuristic as implemented in CPLEX with a time
limit of t seconds. The time limit is imposed in order to compute an initial solution,
which will be given to CPLEX to apply local branching on.

iii- BeamSearch-α, the BeamSearch heuristic with α the beam size.

iv- SBPBeam-α, the SBPBeam heuristic with α the beam size.

v- IPFP-it, the IPFP heuristic with it the maximum number of iterations.

vi- GNCCP-d, the GNCCP heuristic with d the quantity to be subtracted from the ζ
variable at each iteration. ζ is the variable that controls the concavity and convexity
of the objective function of the QAP model solved by GNCCP heuristic.

The first two heuristics are also based on solving the JH formulation by CPLEX, and
considering them as a part of the experiment will show if the branching scheme of LocBra
is capable of performing better than the solver CPLEX and its embedded heuristics. The
other heuristics are picked from the literature after reviewing the most important and
competitive ones. Their descriptions and details can be found in Chapter 2, Section 2.3.8.
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Comparison indicators. All heuristics are executed on different databases and for all
of them, the following indicators are computed: tmin, tavg, and tmax are the minimum,
average and maximum CPU times in seconds over all instances. Correspondingly, dmin,
davg, and dmax are the deviations of the solutions obtained by one heuristic, from the best
solutions found by all heuristics. The deviations are computed based on Eq. 4.11 and are
expressed in percentage. Lastly, ηI is the number of instances for which a given heuristic
has found the best solutions.

Evaluations on MUTA database. This is the first database of graphs selected in this
experiment. All the details about it are given in Section 4.2. MUTA is a database that is
divided into 8 subsets of different sizes of graphs and it contains easy and hard instances.

All the heuristics have one or more parameters to control their performances. For the
heuristics taken from the literature, each method has default parameters that are suggested
by the authors. Some of them are designed to converge very fast. It is not the case with
LocBra, it is based on solving the MILP formulation multiple times. Therefore, it may
require more time than the others. To harmonize all the tests, two versions of the heuristics
are considered:

• Default versions: heuristics with their default parameters as suggested by their au-
thors.

• Extended versions: heuristics with large parameter values that bring up their running
time to almost the same time required by LocBra. Those values are determined
based on preliminary tests to achieve this goal. Note that, CPLEX-t is left out of
this experiment because its running time is already equal to the running time given
to LocBra in the default versions.

The parameters are provided for each heuristic before the analysis of the results.

Default versions. The following are the values of the parameters set for each method.
The values are set for LocBra, CPLEX-t and CPLEX-LocBra-t based on preliminary tests.
CPLEX-LocBra-t is given t seconds equal to the time given to CPLEX to compute the
initial solution in LocBra heuristic.

LocBra π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 900
CPLEX-LocBra-t t = 180
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

Based on the results shown in Table 4.9, the heuristics LocBra, CPLEX-900, CPLEX-
LocBra-180, which are MILP-based, have the highest ηI for all the subsets. And they
strongly outperform the two beam search-based heuristics, IPFP-10 and GNCCP-0.1. On
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Table 4.9: LocBra vs. heuristics on MUTA instances

S 10 20 30 40 50 60 70 Mixed
LocBra tmin 0.06 0.13 0.28 0.45 0.69 0.95 1.36 0.14

tavg 0.17 1.12 212.36 364.86 580.04 753.48 751.44 332.32
tmax 2.92 3.63 900.13 900.12 900.17 900.27 900.36 902.25
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.06 0.02 0.17 0.59 0.04
dmax 0.00 0.00 0.00 3.90 2.03 3.35 5.57 1.77
ηI 100 100 100 98 99 93 79 95

CPLEX-900 tmin 0.06 0.14 0.28 0.49 0.77 1.18 1.70 0.09
tavg 0.13 1.02 141.07 247.80 451.40 723.68 745.91 305.72
tmax 0.49 3.52 900.20 900.42 900.46 900.71 900.92 900.70
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00 0.30 0.55 1.05 0.12
dmax 0.00 0.00 0.00 0.00 6.42 5.04 8.57 5.49
ηI 100 100 100 100 90 81 68 95

CPLEX-LocBra-180 tmin 0.09 0.22 0.41 0.73 1.03 1.45 1.98 0.14
tavg 0.21 1.51 60.36 104.19 141.43 167.59 181.18 86.32
tmax 0.74 5.77 182.86 194.08 195.43 217.38 263.60 223.53
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.16 1.16 1.41 4.24 0.36
dmax 0.00 0.00 0.00 3.90 7.19 6.70 27.20 6.86
ηI 100 100 100 94 72 57 41 82

BeamSearch-5 tmin 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.01
tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.18 0.09
tmax 0.07 0.02 0.04 0.11 0.09 0.13 0.22 0.21
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 15.17 36.60 47.21 58.69 72.13 62.96 68.71 21.20
dmax 110.00 124.59 147.37 186.67 200.00 146.37 210.71 112.71
ηI 35 10 10 10 10 10 10 12

SBPBeam-5 tmin 0.01 0.08 0.31 1.11 2.69 4.87 9.02 0.05
tavg 0.01 0.10 0.45 1.37 3.19 5.56 10.72 3.38
tmax 0.05 0.14 0.54 1.60 3.71 6.85 12.79 12.05
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 76.45 82.54 98.90 95.02 94.62 27.16
dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36 135.91
ηI 15 10 10 10 10 10 10 10

IPFP-10 tmin 0.00 0.01 0.02 0.03 0.06 0.10 0.15 0.01
tavg 0.01 0.06 0.20 0.30 0.39 0.66 1.05 0.46
tmax 0.08 0.20 0.35 0.59 0.56 1.01 1.49 1.39
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.84 18.31 21.34 22.59 25.9 27.63 7.45
dmax 30.00 80.77 90.41 93.33 66.67 66.67 99.08 49.72
ηI 69 28 14 11 10 10 10 19

GNCCP-0.1 tmin 0.02 0.12 0.38 0.89 1.68 2.88 4.59 0.15
tavg 0.16 1.30 4.77 11.78 22.08 72.29 111.30 28.53
tmax 0.29 2.52 10.86 31.58 73.46 145.53 255.88 218.99
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 13.29 22.00 26.93 21.69 31.46 21.99 27.61 10.66
dmax 411.43 400.00 188.79 119.12 205.36 205.77 101.79 125.16
ηI 57 35 6 6 5 9 4 17
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easy instances (subsets 10 to 40 vertices), the MILP-based heuristics have yielded the best
solutions for almost all instances (except 2 instances for subset 40). However, a major
difference starts to appear on hard instances (subsets 50, 60, 70), where LocBra scores the
highest values, with ηI = 99 for subset 50, ηI = 93 for subset 60 and ηI = 79 for subset
70 of best solutions. CPLEX-900 comes at the second place, followed by CPLEX-LocBra-
180, regarding the number of best solutions obtained. Considering the average deviations,
LocBra, on hard instances, has the smallest value (davg < 0.6%). And again CPLEX-900
scores the second lowest deviations 0% ≤ davg ≤ 1.05%. IPFP-10 and GNCCP-0.1 have a
maximum deviation (davg) of 28%, which means they perform better than the beam-search
based heuristics. BeamSearch-5 and SBPBeam-5 are very poor in terms of solutions quality
with a very high davg (about at most 98.9%). Looking at the solution time, BeamSearch-
5 is the fastest with a running time between 0 and 0.18 seconds. Heuristics IPFP-10,
SBPBeam-5 and GNCCP-0.1 come after BeamSearch-5 in terms of CPU time. Note that,
for the instances of mixed sizes, the above conclusions regarding the quality and time still
hold.

Table 4.10: LocBra vs. heuristics with extended running time on MUTA instances

S 10 20 30 40 50 60 70 Mixed
LocBra tmin 0.06 0.13 0.28 0.45 0.69 0.95 1.36 0.14

tavg 0.17 1.12 212.36 364.86 580.04 753.48 751.44 332.32
tmax 2.92 3.63 900.13 900.12 900.17 900.27 900.36 902.25
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.02 0.02 0.13 0.54 0.04
dmax 0.00 0.00 0.00 1.69 2.03 2.94 5.57 1.77
ηI 100 100 100 99 99 94 80 97

CPLEX-LocBra-800 tmin 0.08 0.21 0.38 0.67 1.01 1.40 1.94 0.20
tavg 0.20 1.34 130.26 230.68 424.70 662.58 688.13 291.64
tmax 0.71 3.90 802.16 806.16 821.39 839.69 869.65 849.58
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00 0.38 0.57 1.02 0.13
dmax 0.00 0.00 0.00 0.00 6.42 5.04 11.27 5.49
ηI 100 100 100 100 89 81 71 95

BeamSearch-15000 tmin 0.00 0.00 0.03 0.10 0.55 0.24 2.28 0.03
tavg 8.57 80.65 167.48 279.11 439.68 640.29 938.66 828.52
tmax 31.52 118.71 230.63 419.73 771.90 878.89 1385.11 1800.00
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
davg 1.35 26.66 47.45 52.29 63.98 62.51 63.71 -
dmax 30.00 142.31 165.52 180.00 150.00 157.63 226.79 -
ηI 88 12 10 10 10 10 10 -

SBPBeam-400 tmin 0.76 9.02 39.85 116.11 288.38 548.04 1019 1.98
tavg 0.84 10.02 47.65 139.75 322.43 590.86 1155 326.64
tmax 0.96 11.27 54.11 152.34 360.47 657.26 1310 1225.92
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 76.45 82.45 98.90 94.94 94.54 26.95
dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36 135.91
ηI 15 10 10 10 10 10 10 10

IPFP-20000 tmin 0.00 0.01 0.02 0.3 0.11 0.10 0.18 0.01
tavg 1.20 9.62 48.90 115.14 240.54 528.82 903 303.21
tmax 8.52 53.83 165.44 456.93 771.64 1620 2839 1827
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.18 16.45 17.17 19.00 18.99 20.70 6.03
dmax 30.00 80.77 90.41 56.47 47.62 50.53 85.71 38.03
ηI 69 29 14 11 10 10 10 21

GNCCP-0.03 tmin 0.03 0.18 0.58 1.26 2.44 4.33 6.65 0.25
tavg 0.55 6.41 29.80 81.24 195.89 396.37 946.25 185.55
tmax 1.13 16.81 71.94 167.06 450.41 797.39 2330 1398.72
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.23 6.67 17.20 15.74 18.38 16.12 18.17 5.13
dmax 90.00 30.7 7 82.76 57.35 95.24 52.29 77.06 25.35
ηI 81 34 4 6 5 9 5 17
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Extended versions. The parameter values, given here, are set empirically to extend
the running time of the heuristics picked from the literature to reach approximately the
900s given to LocBra.

LocBra π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-LocBra-t t = 800
BeamSearch-α α = 15000
SBPBeam-α α = 400

IPFP-it it = 20000
GNCCP-d d = 0.03

Table 4.10 shows the results of the heuristics with extended running times. LocBra
and CPLEX-LocBra-800 seem to have davg very close for small instances. The difference
starts to grow on hard and mixed instances where LocBra scores the lowest values (less
than 0.6%). The average deviation remains very high for beam-search based heuristics:
increasing the beam size did not actually improve the results obtained by BeamSearch
and SBPBeam. BeamSearch-15000 did not return feasible solutions for the set of mixed
graphs, therefore the deviations and ηI are not computed. IPFP-20000 and GNCCP-0.03
perform better and get smaller deviation comparing to the original versions (Table 4.9).
However, they remain far from LocBra heuristic. Regarding the running time, LocBra
is the fastest for subsets 10 and 20, then GNCCP-0.03 becomes the fastest method for
the rest of the subsets. Note that, GNCCP and IPFP are heuristics that have converging
conditions, which means that they stop if these conditions are satisfied, regardless of the
number of iterations left. For this reason, GNCCP is the fastest because it does not always
reach its maximum number of iterations.

Concolusion. With respect to the solution quality, the results show that LocBra
strongly outperforms all the literature heuristics, in the case where the default parameters
as in their original references, are used. Besides, LocBra also outperforms CPLEX-900 and
CPLEX-LocBra-180. To this end, the proposed local branching heuristic is more effective
than the solver and its generic implementation of local branching. However, LocBra is
slower than the existing heuristics.

The same experiments are done on other databases: PAH, HOUSE-NA and HOUSE-A.
The results and the analyses can be found in Appendix A, Section A.1.1. The conclusions
of those experiments are:

• PAH database: LocBra, in both default and extended versions, outperforms the ex-
isting heuristics by computing better solutions for PAH instances. However, CPLEX-t
heuristic is also good at solving PAH instances and performs better in the average
case. This due to the presence of very small instances in PAH database, which are
very easy to solve by CPLEX to optimality.

• HOUSE-NA database: The results are very interesting and shows that LocBra
is better than all existing heuristics in terms of solutions quality. Moreover, it is also
faster than SBPBeam and GNCCP heuristics.
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• HOUSE-A database: For HOUSE-A database, LocBra was able to solve efficiently
all the instances and with reasonable running times. It is even faster than existing
heuristics such as SBPBeam and GNCCP. It is very suitable for this graph database.

General conclusions based on the evaluations. Based on all the experiments re-
ported earlier and the summary in Table 4.11, the proposed local branching heuristic
significantly outperforms the heuristics available in the literature. It is shown, as well, the
capacity of LocBra in improving the solutions quality over the default behavior of CPLEX
and the embedded local branching version in CPLEX. It is not the fastest in terms of run-
ning time, but it is the most effective and thus it is a very good minimizer to the GEDEnA

problem. It is worth mentioning that on HOUSE-NA and HOUSE-A, LocBra was faster
than SBPBeam and GNCCP and it has computed the best solutions.

Table 4.11: Summary of LocBra comparison w.r.t. competitor heuristics

Database Solutions quality Speed

Default versions

MUTA LocBra BeamSearch
PAH CPLEX BeamSearch
HOUSE-NA LocBra IPFP
HOUSE-A LocBra/CPLEX IPFP

Extended versions

MUTA LocBra GNCCP/LocBra
PAH CPLEX IPFP
HOUSE-NA LocBra IPFP
HOUSE-A - -

4.4.6.2 Effectiveness of LocBra w.r.t. an exact method

This experiment will answer the following question: how close the LocBra solutions are
from the optimal solutions?

Methods. The exact approach consists in solving the JH formulation using CPLEX
limitations, in order to get the optimal solutions. Note that, here the default settings of
the solver are used, this means the solver uses 4 threads. However, even without imposing
restrictions and limitations on the resources of CPLEX, it can occur that CPLEX may not
be able, on the largest instances, to compute the optimal solutions after several hours (time
limit was set to 10 hours). In this case and when CPLEX is stopped, the best solution
found is returned. The exact approach is denoted by CPLEX-∞.

Comparison indicators. The following indicators are computed for each database:
tmin, tavg, and tmax, which are respectively the minimum, average and maximum CPU
times in seconds over all instances. Correspondingly, dmin, davg, and dmax are the de-
viations (in percentage) of the solutions obtained by LocBra, from the optimal or best
solutions found. The deviation is computed by using Eq. 4.11. In addition, ηI is the
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number of optimal solutions found, and η′I is the number of solutions found by LocBra
that are equal to the optimal or best known ones. At last, η′′I is the number of solutions
computed by LocBra that are better than the best known solutions, when CPLEX-∞ was
not able to find optimal solutions.

Table 4.12: LocBra vs. Exact solution on MUTA instances

CPLEX-∞ (4 threads) LocBra (1 thread) LocBra (4 threads)
S tmin tavg tmax ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I tmin tavg tmax dmin davg dmax ηI η′I η′′I
10 0.07 0.12 0.32 100 0.06 0.17 2.92 0.00 0.00 0.00 100 100 0 0.07 0.16 0.48 0.00 0.00 0.00 100 100 0
20 0.15 0.95 19.74 100 0.13 1.12 3.63 0.00 0.00 0.00 100 100 0 0.14 1.00 21.80 0.00 0.00 0.00 100 100 0
30 0.31 101.53 2865.24 100 0.28 212.36 900.13 0.00 0.00 0.00 78 100 0 0.32 101.33 900.10 0.00 0.00 0.00 91 100 0
40 0.52 266.00 9243.72 99 0.45 364.86 900.12 0.00 0.06 3.90 63 98 0 0.49 179.45 900.13 0.00 0.00 0.00 84 100 0
50 0.83 682.71 4212.68 92 0.69 580.04 900.17 -1.79 0.04 4.14 37 97 1 0.73 435.16 900.32 -1.79 0.00 2.07 54 98 1
60 1.24 2419.33 14732.35 71 0.95 753.48 900.27 -2.68 0.36 3.57 16 82 2 1.09 718.25 901.66 -3.31 -0.03 3.21 21 90 6
70 1.80 3740.34 24185.25 35 1.36 751.44 900.36 -2.67 0.78 8.85 17 52 14 1.48 741.52 901.35 -3.90 0.22 3.65 18 60 16
Mixed 0.09 1613.41 17084.43 91 0.14 332.92 902.25 -2.67 0.03 3.43 64 88 5 0.09 324.17 900.27 -1.35 0.05 1.87 66 92 2

Evaluations on MUTA database. It is said earlier that MUTA instances, especially
subsets 40, 50, 60 and 70, are harder than other instances of graphs. To this end, two
versions of LocBra are included in this experiment: the first one is with one thread used
by CPLEX to solve the MILP formulations, and the second one with 4 threads. The aim
is to evaluate the gain for LocBra heuristic when increasing the calculation capacity of
CPLEX solver. LocBra parameters are set to the following values: π = 20, π_dv = 30,
total_time_limit = 900s, node_time_limit = UB_time_limit = 180s, dv_max = 5,
l_max = 3, dv_cons_max = 2.

The results on MUTA instances are reported in Table 4.12. All optimal solutions are
found by CPLEX-∞ (4 threads) for easy instances (subsets 10 to 40), except one. And
both LocBra with 1 and 4 threads have davg = 0% (except for 2 instances in subset 40).
Clearly both versions have returned the same optimal or best solutions. For hard instances
(subsets 50 to 70), davg is always less than 1% and even less than 0% (−0.03%) for the
version with 4 threads on subset 60. Note that, a negative deviation implies that for some
instances CPLEX-∞ was not able to find the optimal solutions and that LocBra provided
better solutions. The values of ηI reveal that this case occurred. η′′I for hard instances
reveals that the heuristics have outperformed CPLEX-∞ and found improved solutions
(better than the best ones obtained) for 17 instances with 1 thread and 23 instances with 4
threads. Considering the running time, it drastically increases for CPLEX-∞ and reaches
thousands (tavg = 3740s), while the proposed heuristic has a maximum of tavg = 751s.
It is the same conclusion for subset Mixed: both LocBra versions are faster in terms of
average CPU time, and also they have very low average deviations.

Conclusion. The first conclusion from the experiments on MUTA instances is that
local branching mechanism as implemented is very efficient in reaching optimal or near-
optimal solutions. The second conclusion relies on the number of threads used within
LocBra heuristic: even if, as expected, increasing the number of used threads in CPLEX
leads to an improvement of the heuristic, this one is reduced enough to render this im-
provement marginal.

More results and discussions can be found in Appendix A, Section A.1.2 for other
databases (PAH, HOUSE-NA and HOUSE-A). The conclusions are:

• PAH database: This experiment shows that PAH instances are easy ones for the JH
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formulation, so CPLEX is very fast in computing the optimal solutions. In addition,
they are easy for LocBra, which has computed solutions with a deviation of 0.35%
from the optimal ones.

• HOUSE-NA database: On HOUSE-NA instances, LocBra is 5 times faster than
CPLEX on the average. Also, LocBra reaches a maximum time of 10s, while CPLEX
reaches more than 2000s in the worst case. The solutions computed by LocBra are
close from the optimal solutions (davg = 11%).

• HOUSE-A database: The instance of HOUSE-A are very easy to solve by CPLEX
and LocBra. The average deviation is 0%, which means that LocBra has computed
solutions equal to the optimal ones. The CPU times of CPLEX and LocBra are very
close, where CPLEX is a bit faster than LocBra (by 0.2s).

General conclusions based on the evaluations. In the case of easy instances (small
graphs) as in PAH database, HOUSE-A and subsets 10 to 40 in MUTA database, CPLEX
is very efficient in solving JH formulation and obtaining the optimal solutions. On the
other hand, LocBra results prove also its efficiency in obtaining near-optimal solutions.
One advantage of LocBra is that it is always faster in the worst case because of the time
limit imposed. Regarding the hard instances, as in MUTA (subsets 50, 60, 70) and HOUSE-
NA, LocBra was able to overcome CPLEX and achieved better results on instances where
CPLEX failed to compute the optimal solutions. All those results have answered the ques-
tion asked at the beginning of this experiment. LocBra is capable of computing solutions
that are very close to the optimal/best ones.

The results of LocBra comparisons against the competitive heuristics and the exact
method are published in Computers & Operations Research journal:
Darwiche, M., Conte, D., Raveaux, R., & T’Kindt, V. (2018). A local branching heuristic for
solving a graph edit distance problem. Computers & Operations Research.

4.4.6.3 Accuracy of LocBra from an application point of view

To evaluate LocBra from an application point of view, it should be put in tests involving
real-life cases of using graphs comparison. Two tests are conducted: the first one is in
similarity search context, and the second one is about the correlation with ground-truth.

Similarity search application
An important question is brought up: what is the impact of GED heuristics on the
(dis)similarity search? This experiment intends to answer this question by evaluating
the ranking of graphs, which is considered as an important task in graph retrieval.

Methods. The heuristics involved in this experiments are:

i- LocBra.

ii- SBPBeam-α, the BeamSearch heuristic with α the beam size.
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iii- IPFP-it, the IPFP heuristic with it the maximum number of iterations.

iv- GNCCP-d, the GNCCP heuristic with d the quantity to be subtracted from the ζ
variable at each iteration. ζ is the variable that controls the concavity and convexity
of the objective function of the QAP model.

LocBra has shown superiority over CPLEX-t and CPLEX_LocBra-t, therefore those
heuristics are not considered in this experiment. BeamSearch-α is also dropped out, be-
cause it has shown poor results compared to the rest of the heuristics. Note, that only
extended versions of the methods are considered in this experiment. The reason is because
LocBra was more accurate in comparison to both original and extended versions of the
heuristics, in the previous experiments. In addition, the extended versions of the heuristics
performed better than the original versions.

Comparison indicators The current experiment is about evaluating the ranking
of the graphs based on the distances computed by each heuristic. For a target graph,
the distance is computed against the rest of the graphs in the database. Then, ordering
the obtained solutions by ascending order (of the computed distance) will show first the
graphs with high resemblance w.r.t. the target one. Consequently, the experiment will
compare the orders provided by the heuristics and the order provided by an exact method.
It proceeds as follows: assuming a graph database with 5 graphs DG = [g1, g2, ..., g5].
Starting with graph g1, the optimal and heuristics solutions (distances) are computed for
all possible pairs of graphs e.g. (g1, g1); (g1, g2); ...(g1, g5). Then, graphs are ordered by
ascending order based on the distances. For instance, assuming that the optimal order
for g1 is gopt1 = [g1, g2, g4, g3, g5], and a heuristic H order is gH1 = [g1, g5, g4, g3, g2]. Then,
the metric used is Kendall rank correlation coefficient τb: it is a statistic used to study
the correlation between two ranked/sorted ordinal variables (Agresti, 2010). Computing
τb consists in measuring the degree of concordance between the two ranked variables. An
ordinal variable is a categorical variable in which the possible values are ordered. The
correlation τb is computed between gopt1 and gH1 . Then, to analyze τb values, a p-value
test is applied, which is a statistical test based on the null hypothesis that assumes two
variables (vectors) are uncorrelated and τb = 0. The alternative hypothesis is that the
variables are correlated, and τb is non-zero. P-value represents the probability of obtaining
results similar or better to what was observed. If the p-value is less than a threshold
(referred to as significance level), then the null hypothesis is rejected. Otherwise, the
null hypothesis cannot be rejected (but it does not accept the alternative hypothesis in
all cases). τb and p-value are computed for the rest of the heuristics after ordering the
solutions for all pairs of graphs. So far, this is done for g1, the same process is repeated
for the rest of the graphs in the database. Finally, the p-values obtained for each graph
and for each heuristic are grouped by heuristics, and the average of the values smaller than
the threshold are calculated for each heuristic. The heuristic with the highest percentage,
means that the null hypothesis is rejected and eventually the solutions returned by it, are
strongly correlated with the optimal ones.

The MUTA subset with graph size 30 is picked in this experiment, because all optimal
solutions are known for these instances (100 instances) and 30 is the average graph sizes.
All PAH instances (8836) are selected to be part of this experiment as well.
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Table 4.13: Average p-value for each heuristic on PAH instances

Average p-value
LocBra 100
SBPBeam 14
IPFP 21
GNCCP 23

Table 4.14: Average p-value for each heuristic on MUTA-30 instances

Average p-value
LocBra 100
SBPBeam 50
IPFP 50
GNCCP 70

Evaluations on PAH database. The parameters values are set to:

LocBra π = 20, π_dv = 30, total_time_limit = 12.25s,
node_time_limit = UB_time_limit = 1.75s,
dv_max = 5, l_max = 3, dv_cons_max = 2

SBPBeam-α α = 140
IPFP-it it = 2000

GNCCP-d d = 0.09

Table 4.13 presents the p-values computed on PAH instances. LocBra is at 100%, so
the null hypothesis is always rejected for all instances. LocBra has a very strong correlation
with the optimal ranking. The other heuristics have lower percentages and are far from
LocBra, the highest (23%) being obtained by GNCCP-0.09. In Fig. 4.3; chart(b) shows τb
distribution for PAH instances. LocBra has correlation values between [0.6, 1] and all the
other heuristics are below those values. This proves that the ranking obtained by LocBra
is very similar to the optimal ranking. In the second place comes GNCCP-0.09, followed
by IPFP-2000 and then SBPBeam-140 at last.

Evaluation on MUTA database. The parameters of each heuristic are the same
as before:

LocBra π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

SBPBeam-α α = 400
IPFP-it it = 20000

GNCCP-d d = 0.03

Similar results as on PAH instances are noted in Table 4.14 for MUTA-30 instances.
The average p-value is 100% for LocBra. Hence, there is a strong correlation between
the ranking of LocBra and the optimal ranking. Moreover, GNCCP-0.03 has scored 70%,
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Figure 4.3: Histograms showing τb distribution for each heuristic for MUTA-30 (a) and
PAH (b)

higher than SBPBeam-400 and IPFP-20000 (both 50%). GNCCP-0.03 should reject the
null hypothesis in 70% of the cases. Regarding the correlation distribution shown in Fig.
4.3; chart (a), all the values obtained by LocBra are uniformly in bin 1. This means that
LocBra ranking is perfectly correlated with the optimal ranking. GNCCP-0.03 comes in
the second place but the correlation values are distributed in a wide range between [0.2, 1].
IPFP-20000 shows poor correlation with the optimal and has negative value (−0.2) for
one instance.

Conclusion. These experiments have proved indeed that LocBra ranking is strongly
correlated with the optimal ranking. Therefore, LocBra is suitable for GED applications,
especially in the context of similarity search and graph retrieval. In other words, the use
of inaccurate heuristics may lead to really wrong results in terms of nearest neighbors of a
graph query.

Correlation with the ground-truth
The main question to be answered by this experiment is: does the best minimizer guaran-
tees finding the ground-truth matching? As discussed earlier, there are certain databases
that come with ground-truth matchings, which are given by human experts. They represent
the true matching expected to be obtained between each pair of graphs. Therefore, this
experiment consists in studying the closeness of the matchings computed by the heuristics
to the ground-truth matchings.

Methods. The same as in the above experiment:

i- LocBra.

ii- SBPBeam-α, the SBPBeam heuristic with α the beam size.

iii- IPFP-it, the IPFP heuristic with it the maximum number of iterations.

iv- GNCCP-d, the GNCCP heuristic with d the quantity to be subtracted from the ζ
variable at each iteration. ζ is the variable that controls the concavity and convexity
of the objective function of the QAP model.
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v- CPLEX-∞, to compute the optimal solutions.

As earlier, only extended versions are considered. Note that CPLEX-∞ is included in order
to compute the optimal solutions. This enables evaluating the optimal and the ground-
truth solutions and detect if they are conformed. This proves the relevance of the edit
operations cost values defined for the databases.

Comparison indicators. The indicator used here is the Hamming Distance between
the ground-truth and heuristics matchings. A matching is represented through a binary
matrix, in which each value refers to an assignment of two vertices, e.g. [xik] is a matching
matrix, where i and k are the indexes of two vertices ui ∈ V ∪ {ε} and vk ∈ V ′ ∪ {ε}.
The Hamming distance simply counts the number of positions at which the corresponding
values are different. For two matching matrices [xik] and [x̂ik], with i ∈ {1, 2, ..., N},
k ∈ {1, 2, ...,M} and N = |V | + 1, M = |V ′| + 1, the Hamming distance HD(x, x̂) is
defined by:

HD(x, x̂) =
N∑
i=1

M∑
k=1

(1− δ(xik, x̂ik)) , (4.18)

where δ : R2 → {0, 1} is the Kronecker delta function, which returns 1 when xik = x̂ik and
0 otherwise. Note that the value obtained is normalized by dividing by (N +M), in order
to return representative quantities between [0, 1]. This normalized distance is denoted by
ĤD. Therefore, what is of interest is when ĤD = 0, because it means that the heuristic
matchings is equivalent to the ground-truth matchings.

Evaluation on HOUSE-NA database. For this database, the settings of the
heuristics are as follows:

LocBra π = 20, π_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,
dv_max = 5, l_max = 3, dv_cons_max = 2

SBPBeam-α α = 8
IPFP-it it = 400

GNCCP-d d = 0.09

HOUSE-NA (also HOUSE-A) database contains graphs modeling rotated houses inside
images with different angles. In this experiment, the graphs are grouped by rotation
angles, to show more consistent and representative results, which are reported in Fig. 4.4-
(a). Before analyzing heuristics behaviors, the optimal matching is considered in order to
confirm the relation and the closeness between the ground-truth and the optimal matchings.
A strong relation is noted when looking at the optimal line, since it is close to 0 for all
rotation angles. Next, the heuristic with the smallest values is LocBra for all the rotation
angles. The line is constantly close to 0 and almost linear, which means that LocBra has
computed matchings very close to the ground-truth ones. GNCCP-0.09 and IPFP-400
are at the second and third positions after LocBra, except for rotated images at 90◦ where
IPFP-400 outperforms GNCCP-0.09 and the ĤDavg drops to 0.2. SBPBeam-8 comes last
with the highest ĤDavg for all rotation angles. Regarding, the average CPU time charts,
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Figure 4.4: Hamming distance and time averages for heuristics matchings vs. ground-truth
matchings. Charts (a) and (b) are the results for HOUSE-NA database, and charts (c) and
(d) are the results for HOUSE-A database

as shown in Fig. 4.4-(b), IPFP-400 and LocBra are the fastest, while SBPBeam-8 and
GNCCP-0.09 are very slow and close to each other. This means that IPFP-400 and LocBra
are able to find solutions and converge faster than the others. For the optimal method, as
expected, it is not the fastest because CPLEX spends more time proving the optimality of
the solution found.

Evaluation on HOUSE-A database. For this database, the heuristics parameters
are set to:

LocBra π = 20, π_dv = 30, total_time_limit = 2s,
node_time_limit = 0.5s, UB_time_limit = 1s,
dv_max = 5, l_max = 3, dv_cons_max = 2

SBPBeam-α α = 5
IPFP-it it = 10

GNCCP-d d = 0.01

The same conclusion, as for HOUSE-NA database, can be deduced when looking at
Fig. 4.4-(c). However, an important remark is that the gap between LocBra, IPFP-10 and
GNCCP-0.01 is reduced. Their lines are very close to each other and below 0.1 for all
rotation angles. This is due to the fact that HOUSE-A instances are easier to solve, and
therefore all the heuristics (except SBPBeam-5 ) are able to compute accurate matchings.
Remarkably, the Shape Context features are meaningful and the objective function guides
well the exploration of the solution space. Another important point is that the optimal
method has scored always the smallest values except at 60 and 70 degrees, where it is
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slightly outperformed by LocBra: this is due to the fact that on some of the instances
CPLEX was not able to find the optimal matchings. Figure 4.4-(d) shows the average
running time for all methods on HOUSE-A database. As earlier, IPFP-10 is the fastest,
followed by the optimal and LocBra. An important gap is seen between GNCCP-0.01,
SBPBeam-5 and the rest of the methods, which are actually slow.

Conclusion. Among the set of compared heuristics, LocBra has shown to be very
competitive and gave the best accuracy and closeness to the ground-truth matchings.

General conclusions based on the evaluations.
These two experiments have shown the efficiency of LocBra in computing good quality
solutions that are very close to the optimal and the ground-truth solutions. They have
shown also that LocBra is very accurate, when used as a method to compute distances
between graphs and to determine a ranking. Therefore, it is suitable to be used in graph
retrieval and determining nearest neighbor graphs tasks.

The results of the experiments were published in Pattern Recognition Letters journal:
Darwiche, M., Conte, D., Raveaux, R., & T’Kindt, V. (2018). Graph Edit Distance: Accuracy of
Local Branching from an application point of view. Pattern Recognition Letters.

4.5 Summary and contributions

This chapter is dedicated to the GEDEnA problem, which is defined and explained
in Section 4.1.1. It shed the light and emphasizes on the importance of distinguishing
between the general GED problem and the sub-problem GEDEnA. The main reason is
because a method (exact or heuristic) that solve the sub-problem cannot be applied to
the GED problem. This clearly appears in the literature, and especially when reviewing
JH formulation, which is an exact model of the sub-problem and not the general one. In
addition, it shows the influence of the cost functions on graph databases. If edges operations
cost functions do not consider attributes on edges, then the graph database is relevant to
both the general GED and the GEDEnA problems. Whilst, the graph database is only
applicable to the GED problem if edges attributes are considered. Making this distinction
enables deriving more effective algorithms to solve the problem.

First, a comparison is conducted on three MILP formulations that exist in the literature
and can solve the GEDEnA problem. It shows that JH formulation, which is dedicated
to solve the GEDEnA problem, is the best one in computing optimal solutions. These
positive results have led to choosing JH formulation in the implementation of local branch-
ing heuristic to solve the GEDEnA problem. This heuristic, denoted shortly by LocBra,
is a first attempt of bringing a matheuristic from OR field and apply it the GED prob-
lem. LocBra’s main idea is to perform a series of local searches and focuses the search
in defined regions looking for good quality solutions of a MILP formulation. It combines
several heuristic techniques (neighborhood definition, intensification and diversification) in
a defined branching scheme by solving small sub-problems using a MILP black-box solver.
A dedicated version of local branching is designed to solve the GEDEnA problem. The key
points of LocBra are:
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• Neighborhood definition: it is done by considering only variables modeling vertices
matching, which leads to a better decomposition of the problem.

• Problem-dependent diversification: to improve the diversification, which is considered
as an important step to escape local minima, LocBra adapts a special diversification
based on analyses done over the data of the instance at hand. It determines the
important variables that guarantee very good diversification. It was shown that this
diversification is more efficient than the original one.

• LocBra is very flexible and its performance can be controlled by a set of input pa-
rameters.

Next, this new heuristic is intensively evaluated on reference databases against the best
heuristics available in the literature. The experiments try to capture different points of
view on GM field. They are categorized as follows:

Experiment type Main comparison indicator Application
Distance minimization Deviation Near-optimal quality
Ranking Kendall correlation Similarity search/graph retrieval
Ground-truth matching Hamming Distance Result interpretation

The results of all the experiments have shown that LocBra is a very effective heuristic. It
is capable of computing better solutions than the other heuristics. Also, those solutions
are pretty close to the optimal solutions. From an application point of view, the two exper-
iments, based on ranking and ground-truth correlations, have shown very high correlation
with the optimal and the ground-truth solutions. This, in turn, proves that LocBra is
very suitable to be applied in GED applications to perform full (sub-)graph and similarity
searches. LocBra is efficient when dealing with complex graphs where neighborhoods and
attributes do not allow to easily differentiate between vertices. Therefore, it is suitable
for chemical graphs and graphs extracted from images. However, it cannot be generalized
unconditionally on all graph types, since some exceptions or untested scenarios may be
encountered in cases where graphs are a bit different (very sparse, unconnected vertices,
...). In addition, the results obtained on HOUSE-NA and HOUSE-A, have confirmed the
importance of having good and representative cost functions in helping the algorithm
spotting the dissimilarities faster. The CPU time was much more lower for HOUSE-A
instances, but very expensive for HOUSE-NA.

It is important to note that the proposed LocBra heuristic is a significant contribution to
the Pattern Recognition research field: this heuristic solves very efficiently some classes of
Graph Matching problems, which could improve the solution of other application domains
that use such problems like graph classification and clustering.

Additionally to the results reported in this chapter, more results and videos are pub-
lished on a dedicated website 1.

The works presented in this chapter were communicated to the following conferences
and scientific journals:

1https://sites.google.com/site/gedlocbra/
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• Darwiche, M., Conte, D., Raveaux, R., & T’Kindt, V. (2017, February). Evaluation
de modèles mathématiques pour le problème de la distance d’édition entre graphes. In
ROADEF2017.

• Darwiche, M., Conte, D., Raveaux, R., & T’Kindt, V. (2017, July). The Graph Edit Dis-
tance Problem treated by the Local Branching Heuristic. In MIC17 12th Metaheuristics
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LocBra has achieved potentially good results in solving theGEDEnA problem, therefore
it will be interesting to apply it to the general GED problem but at the cost of changing JH
formulation. In the next chapter, the focus will be on developing a new MILP formulation,
then applying LocBra over it, and investigate other matheuristics.
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Chapter 5

MILP formulations and
matheuristics to solve the GED
problem

Contents
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5.1 Introduction

This chapter is dedicated for the GED problem, which is the main objective of this
thesis. All kinds of graph databases and cost functions are accepted, even if there are
attributes on edges. This chapter presents propositions of exact and heuristic methods,
based on mathematical programming techniques, to solve the GED problem. The methods
are organized by type and each one is evaluated against the appropriate methods existing
in the literature.

5.2 Proposed MILP formulations

Multiple MILP formulations have been designed for solving the GED problem. The
formulations are developed based on theoretical analysis of the problem’s properties, and by
adapting known modeling techniques in OR field. Each formulation is presented, followed
by experimentation results to study its performance and effectiveness in computing good
solutions and improving the existing methods.
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5.2.1 Vertex-based Model (VbM)

VbM is a formulation inspired by existing ones, in particular F1 and F2 formulations
explained in Section 2.3.7. Its fundamental idea is based on Property 1 (Page 44) , which
states that edges matching are very dependent from vertices matching. Also, it is known
that binary decision variables, in most cases, are the ones responsible of increasing the
complexity of a MILP formulation. So, VbM follows the same way to model vertices and
edges matchings as in F1 and F2 formulations, by introducing xi,k and yij,kl variables.
However, only xi,k variables are binary, and yij,kl variables are continuous. In addition,
yij,kl variables will store the costs of edges operations. The belief is that by doing so, it
may reduce the complexity of the formulation. But, this requires rewriting the constraints
to satisfy the GED definition.

5.2.1.1 VbM formulation

This formulation works on graphs G and G′, so deletions are allowed in both graphs and
assigning a vertex to ε means that vertex is deleted. For more details, please see Section
4.1.2.

Data. The cost functions are assumed to be given, therefore [cv] and [ce] are computed
as in equations 2.7 and 2.8.

Variables. One set of binary variables and another set of continuous variables are needed:

• xi,k ∈ {0, 1}, ∀i ∈ V , ∀k ∈ V
′: xi,k = 1 when vertices i and k are matched, and 0

otherwise.

• yij,kl ∈ R, ∀(i, j) ∈ E,∀(k, l) ∈ E′: yij,kl = ce(ij, kl) when edge (i, j) is matched with
(k, l), and 0 otherwise. The variable, when selected, holds the cost of the underlying
edge operation. To be more precise, every yij,kl ∈ {0, ce(ij, kl)}.

Objective function. The objective function to be minimized is the following:

min
x,y

∑
i∈V

∑
k∈V ′

cv(i, k) · xi,k +
∑

(i,j)∈E

∑
(k,l)∈E′

yij,kl (5.1)

The objective function minimizes the cost of vertices (resp. edges) matching.

Constraints. First, all constraints are given and then, the role of each constraint is given
next. ∑

k∈V ′
xi,k = 1, ∀i ∈ V (5.2)

∑
i∈V

xi,k = 1, ∀k ∈ V ′ (5.3)
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yij,kl ≥ ce(ij, kl) · (xi,k + xj,l − 1), ∀(i, j) ∈ E,∀(k, l) ∈ E′ (5.4)

yij,kl ≥ ce(ij, kl) · (xi,l + xj,k − 1), ∀(i, j) ∈ E,∀(k, l) ∈ E′ (5.5)

yij,εε ≥ ce(ij, εε) · (xi,k + xj,l − 1), ∀(i, j) ∈ E,∀(k, l) /∈ E′ (5.6)

yεε,kl ≥ ce(εε, kl) · (xi,k + xj,l − 1), ∀(i, j) /∈ E,∀(k, l) ∈ E′ (5.7)

yij,εε ≥ ce(ij, εε) · xi,ε, ∀(i, j) ∈ E (5.8)

yij,εε ≥ ce(ij, εε) · xj,ε, ∀(i, j) ∈ E (5.9)

yεε,kl ≥ ce(εε, kl) · xε,k, ∀(k, l) ∈ E
′ (5.10)

yεε,kl ≥ ce(εε, kl) · xε,l, ∀(k, l) ∈ E
′ (5.11)

yij,kl ≥ 0, ∀(i, j) ∈ E,∀(k, l) ∈ E′ (5.12)

Constraints 5.2 (resp. 5.3) ensures that a vertex i ∈ V (resp. k ∈ V ′) can be matched with
one vertex in V (resp. V ′). ε is in both V and V ′, and a vertex can be matched with it
only one time. Constrains 5.4 and 5.5 make sure that when matching two couple of vertices
(e.g. i → k and j → l OR i → l and j → k), the two edges, if they exist, (i, j) and (k, l)
have to be matched. If the matching of the two couples of vertices is selected, and one of
the edges does not exist, then the existing edge must be deleted. This case is handled by
constraints 5.6 and 5.7. Then, there is the case where a vertex i is chosen to be deleted,
then all edges connected to i have to be deleted (by GED definition). Constraints 5.8, 5.9,
5.10 and 5.11 take care of this case for both graphs. Finally, constraints 5.12 forces the
yij,kl variables to be positive.

This formulation works perfectly with undirected graphs and it copes with the sym-
metry case, i.e. (i, j) = (j, i). It can be applied on directed graphs, as well, by removing
constraints 5.5 and 5.7.

The number of variables in this formulation is: (|V | · |V ′|) binary variables, plus (|E| ·
|E′|) continuous variables. And the number of constraints is: (|V |+ |V ′|+ 2|E| · |E′|+ |E| ·
|Ê′|+ |Ê| · |E′|+ 2|E|+ 2|E′|+ |E| · |E′|), with Ê (resp. Ê′) the complement set of edges
of E (resp. E′).

5.2.1.2 Evaluation of VbM formulation

VbM is a formulation designed to solve the GED problem, so it will be evaluated
w.r.t. the best known formulations in the same context, which are F1 and F2. Note that,
JH formulation has performed the best among the existing ones, but it only solves the
GEDEnA problem. Therefore it is not included in the experiments.

Methods. The two formulations F1 and F2 are involved in this experiments. The details
of these formulations are presented in Section 2.3.7.
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Instances and experimentation settings. MUTA graph database is selected in this
experiment. The details of this database can be found in Section 4.2. 7 subsets (10 to
70) are considered, resulting in a total of 700 instances. All formulations are implemented
in C language. The solver CPLEX 12.6.0, in single thread mode, is used to solve the
formulations. A maximum running time limit, of 900 seconds per instance, is imposed on
CPLEX. Experiments are ran on a machine with Windows 7 x64, Intel Xeon E5 2.30 GHz,
4 cores and 8 GB of RAM.

Evaluation indicators. The following indicators are computed for each subset:

• tmin: the minimum CPU time in seconds,

• tavg: the average CPU time in seconds,

• tmax: the maximum CPU time in seconds,

• dmin: the minimum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• davg: the average deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• dmax: the maximum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• η: the number of optimal solutions computed,

• η′: the number of solutions (whether optimal or not) computed by a formulation,
which are the best/minimum among those computed by all formulations.

The deviations are computed based on Eq. 4.11.

Evaluation analysis. The results of the experiment are shown in Table 5.1. In terms of
average deviation (davg), F2 has scored the lowest values (always ≤ 0.55%) for all subsets.
F1 comes in the second place, and it was able to solve all instances in subsets 10 and 20,
with davg = 0%. As the size of the graph increases, the difference starts to grow, from
2.80% on subset 30 to reach 12% on subset 60. VbM formulation comes in the last position,
with average deviations very high compared to F1 deviations, except for subset 10 where
the davg = 0%. The average deviation for VbM reaches 87.20% on subset 70, which means
that solutions computed by VbM are very far from the best solutions obtained by F2.
Moreover, F2 has computed the highest number of optimal solutions (η) for all subsets,
except for subsets 10, 20 and 70 where η values of F2 are equal to η values of F1. F1
formulation has computed better solutions than VbM for subset 20 with 100 instances
against 25, and subset 30 with 22 instances against 10. Looking at η′ values, again F2 has
scored the highest values for all subsets, with values always between 90 and 100. Regarding
the average CPU time (tavg), F2 was the fastest among the others, but the gap gets smaller
as the graph sizes increase, where the instances become harder and all formulations require
high computational time.
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Table 5.1: Comparison of VbM, F1 and F2 formulations

S 10 20 30 40 50 60 70

VbM

tmin 0.02 0.08 0.28 0.58 1.25 2.22 3.67
tavg 0.22 694.04 621.06 763.68 810.78 799.82 813.99
tmax 0.72 901.55 900.60 900.88 901.52 941.70 904.59

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.52 22.29 42.43 59.77 76.04 87.20
dmax 0.00 12.50 113.79 487.14 142.86 193.22 655.81

η 100 25 10 10 10 10 10
η′ 100 91 12 10 10 10 10

F1

tmin 0.01 0.02 0.03 0.05 0.06 0.08 0.11
tavg 0.18 26.73 741.12 786.99 810.08 810.11 810.14
tmax 0.90 486.18 900.23 900.17 900.12 900.35 901.07

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 2.88 5.05 10.71 12.62 11.01
dmax 0.00 0.00 21.43 26.32 47.85 41.94 60.00

η 100 100 22 14 10 10 10
η′ 100 100 54 30 18 14 22

F2

tmin 0.03 0.07 0.10 0.15 0.36 0.44 0.76
tavg 0.12 1.17 367.54 631.04 792.96 803.84 809.64
tmax 0.38 7.79 900.20 900.19 900.48 900.38 900.17

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.05 0.00 0.25 0.02 0.55
dmax 0.00 0.00 2.76 0.00 12.59 1.55 11.88

η 100 100 77 36 14 11 10
η′ 100 100 98 100 97 99 90

Table 5.2: Comparison of VbM, F1 and F2 formulations - optimal solutions

S 10 20 30 40 50 60 70

VbM

tmin 0.02 0.08 0.28 0.58 1.25 2.22 3.67
tavg 0.22 114.42 0.30 0.69 1.32 2.31 3.79
tmax 0.72 749.55 0.32 0.74 1.38 2.44 3.99

η 100 25 10 10 10 10 10

F1

tmin 0.01 0.02 0.03 0.05 0.06 0.08 0.11
tavg 0.18 0.81 0.04 0.05 0.07 0.09 0.11
tmax 0.90 2.58 0.05 0.05 0.08 0.10 0.12

η 100 25 10 10 10 10 10

F2

tmin 0.03 0.07 0.10 0.15 0.36 0.44 0.76
tavg 0.12 0.28 0.26 0.30 0.49 1.20 1.35
tmax 0.38 0.94 0.64 0.58 0.81 2.72 1.99

η 100 25 10 10 10 10 10
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To get a better idea about the running time of each formulation, the evaluation indica-
tors are recomputed for instances where optimal solutions were found by all formulations.
The results are reported in Table 5.2. For subsets 10 and 20, F2 formulation is faster than
the others. However, F1 becomes faster on average for the rest of the subsets. And, VbM
is the slowest comparing to F1 and F2 formulations.

Conclusion. Based on the results obtained, F2 formulation is the best in solving
MUTA instances to optimality. The proposed formulation did not succeed in performing
better than the existing ones.

An additional experiment is done to compare the three formulations on the same
database, with the pre-processing procedure. The results of this experiment are reported
in Appendix B, Section B.1. The results have shown that F2 is the best formulation
compared to F1 and VbM. F2 was able to compute better solutions than the other for-
mulations. This is the same conclusion as in the experiment without pre-processing. So,
pre-processing procedure did not help improving the performances of the formulations.

5.2.1.3 General conclusions

Despite the theoretical analysis when designing VbM formulation, by reducing the
number of binary variables, VbM did not succeed in performing better than the existing
formulations. Reducing the number of binary variables have resulted in increasing the
number of constraints, which clearly made the formulation more complex and hard to solve.
Therefore, VbM is less effective than the existing formulations. Yet, it is an interesting
one, because it has investigated the idea of reducing the number of binary variables and
focusing on vertices assignment variables. In addition, it can be added to the list of exact
methods for solving the GED problem.

5.2.2 Object-based Model (ObM)

The main idea of this formulation is based on the notion of objects, where an object
represents the matching of some vertices and edges. On the contrary to other formulations
where vertices and edges matching are expressed separately (as such, one variable to model
the matching of two vertices and another variable to model the matching of two edges).
ObM formulation is an attempt to create high level and complex objects that model mul-
tiple matchings of vertices and edges at once. An object op is, then, defined by 4-tuples
(ui, uj , vk, vl) with ui, uj ∈ V and vk, vl ∈ V

′. The object underlies three edit operations
on vertices and edges depending on the selected vertices. For an object op = (ui, uj , vk, vl),
the operations are as follows.

• First edit operation is one of the following:
Substitution: ui → vk if ui ∈ V and vk ∈ V ′

Deletion from G: ui → ε if ui ∈ V and vk = ε

Deletion from G’: ε→ vk if ui = ε and vk ∈ V ′

• Second edit operation is one of the following:
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Substitution: uj → vl if uj ∈ V and vl ∈ V ′

Deletion from G: uj → ε if uj ∈ V and vl = ε

Deletion from G’: ε→ vl if uj = ε and vl ∈ V ′

• Third edit operation is one of the following:
Substitution: (ui, uj)→ (vk, vl) if (ui, uj) ∈ E and (vk, vl) ∈ E′

Deletion from G: (ui, uj)→ ε if (ui, uj) ∈ E and (vk, vl) /∈ E′

Deletion from G’: ε→ (vk, vl) if (ui, uj) /∈ E and (vk, vl) ∈ E′

If ui = ε, then vk is deleted from G′, and if the edge (vk, vl) ∈ E′, it is removed from G′ as
well. The presence of ε in an object indicates deletion operations of corresponding vertices
and the incident edge (if it exists).

The following list shows few examples of objects and their underlying vertices and edges
matchings. These objects are constructed based on the graphs in Fig.4.1.

• o1 = (1, 2, a, b), the operations are: substitution 1 → a, substitution 2 → b and
substitution (1, 2)→ (a, b)

• o2 = (1, 4, c, ε), the operations are: substitution 1 → c, deletion 4 → ε and deletion
(1, 4)→ ε

• o3 = (3, 4, a, c), the operations are: substitution 3 → a, substitution 4 → c and
deletion ε→ (a, c) since (3, 4) /∈ E

Unlike F2 which is considered as a compact formulation, ObM is an expanded one.
Every object implies multiple matchings represented by selecting four vertices at a time.
Generating the objects will, then, requires multiplying the input data, in particular the sets
of vertices V and V ′. This leads to increasing the number of variables in the formulation
and hopefully making the problem easier to solve. This kind of expanded formulations has
been tested on other optimization problems such as scheduling problems with time-indexed
formulations, where good results are achieved.

5.2.2.1 Objects generation

The trivial case is to create all objects by considering all permutations of ui, uj ∈ V
and vk, vl ∈ V

′, which results in (V · V ′)2 objects. In fact, this will introduce a lot of
redundancies and increase the number of binary variables in the formulation and thus its
complexity. Therefore, objects generation is considered as a very important step, and only
necessary objects are generated, covering all possible matchings that could occur between
two graphs. The procedure to generate the objects goes as follows.

1. Let LG be the list of vertices sorted by increasing order after assigning integer ids to
each vertex in V and placing ε at the end of the list.

2. Let LG′ be the list of vertices sorted by increasing order after assigning integer ids
to each vertex in V ′ and placing ε at the end of the list.
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3. Let O be the list of objects:

op = (ui, uj , vk, vl)

{
∀ui, uj ∈ LG such that i < j and (i 6= j or ui = uj = ε)

∀vk, vl ∈ LG′ such that k 6= l or vk = vl = ε

The number of objects in O is: |O| =
(
|V |.(|V |−1)

2 + 1
)
×
(
|V ′|.|V ′| − V ′

)
. Algorithm 8

gives the details of the objects generation procedure.

Algorithm 8: Algorithm for generating objects
1 Let LG the order set of vertices V
2 LG := LG ∪ {ε}
3 Let LG′ the order set of vertices V ′

4 LG′ := LG′ ∪ {ε}
5 O = {}
1 Function GenerateObjects()
2 for i← 1 to |V | by 1 do
3 for j ← i+ 1 to |V | by 1 do
4 for k ← 1 to |V |′ by 1 do
5 for l← 1 to |V |′ by 1 do
6 if k = l and vk 6= ε and vk 6= ε then
7 continue
8 end
9 op = (ui, uj , vk, vl)

10 O = O ∪ {op}
11 end
12 end
13 end
14 end
15 /* Next add objects where ui and uj are ε */
16 ui := uj := ε

17 for k ← 1 to |V |′ by 1 do
18 for l← 1 to |V |′ by 1 do
19 if k = l and vk 6= ε and vk 6= ε then
20 continue
21 end
22 op = (ui, uj , vk, vl)
23 O = O ∪ {op}
24 end
25 end
26 End

Only attributed and undirected graphs are considered so far. The procedure can be
replicated and altered so it can deal with the directed case.

154



5.2. PROPOSED MILP FORMULATIONS

5.2.2.2 ObM formulation

Given two undirected graphs G and G′, ObM formulation is as follows.

Data. Besides the costs matrices [cv] and [ce] (computed as in equations 2.7 and 2.8),
the following sets are needed:

• Let O be the set of all generated objects of the form (ui, uj , vk, vl).

• The cost associated to objects co(p): ∀op = (ui, uj , vk, vl) ∈ O is equal ce(ij, kl).

• Let Li = {op = (ui,−,−,−) or (−, ui,−,−), ui ∈ V } be the set of all objects op
where vertex ui appears.

• Let L′k = {op = (−,−, vk,−) or (−,−,−, vk), vk ∈ V ′} be the set of all objects op
where vertex vk appears.

• The sets intersection Li ∩ Lj = {op = (ui, uj ,−,−) or (uj , ui,−,−), ui, uj ∈ V }
returns objects where vertices ui and uj appear.

• The sets intersection L′k ∩ L′l = {op = (−,−, vk, vl) or (−,−, vl, vk), vk, vl ∈ V ′}
returns objects where vertices vk and vl appear.

• Let Li,k = {op = (ui,−, vk,−) or (−, ui,−, vk), ui ∈ V, vk ∈ V ′} be the set of objects
where ui is matched with vk.

• Let Ti,k = {op = (ui,−, vl,−) or (−, ui,−, vl), ui ∈ V, vk ∈ V ′, vl ∈ V ′, vk 6= vl} be
the set of objects where ui is not matched with vk but matched instead with vl, such
that vk 6= vl.

• Let T ′i,k = {op = (uj ,−, vk,−) or (−, uj ,−, vk), ui ∈ V, uj ∈ V, vk ∈ V ′, ui 6= uj} be
the set of objects where vk is not matched with ui but matched instead with uj , such
that ui 6= uj .

Variables. Two sets of binary variables are used:

• xp ∈ {0, 1}, ∀op = (ui, uj , vk, vl) ∈ O. if xp = 1, then the object is selected, otherwise
xp = 0.

• yi,k ∈ {0, 1}, ∀ui ∈ V , ∀vk ∈ V
′. yi,k is set to 1 when vertex ui is matched with vertex

vk.

Objective function. The objective function to be minimized is the following:

min
x,y

∑
op∈O

co(p) · xp +
∑

∀i∈V ,∀k∈V ′
cv(i, k) · yi,k (5.13)

x variables represent the objects in the formulation, and each object has an associated
cost, which is the cost of matching the underlying edges. In order to compute the cost
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Table 5.3: Number of variables and constraints in ObM formulation

Variables x
(
|V |·(|V |−1)

2
+ 1

)
×

(
|V ′| · |V ′| − |V ′|

)
y |V | · |V ′|

Constraints

5.14 |E|
5.15 |E′|
5.16 |V | · |V ′|.|Li,k| · |Ti,k|
5.17 |V ′| · |V |.|Li,k| · |T ′i,k|
5.18 |V | · |V ′|

of vertices matchings, y variables are introduced, such that their associated costs are the
cost of vertices matchings. Therefore, the objective function, Eq. 5.13, minimizes both
the costs induced by x and y variables. It may seem sufficient to use only x variables, but
in fact y variables are needed to correct the value of the objective function and compute
the right distance between the two graphs. Because of the possibility of selecting multiple
objects in the final solution that share the same vertices matchings as in this example:
op = (1, 2, a, b) and o′p = (1, 3, a, c). So, including the cost of vertices matchings in the cost
of the objects may lead to counting multiple times the cost of one operation. Therefore,
the use of y variables is essential.

Constraints. The required constraints are:∑
op∈Li∩Lj

xp = 1, ∀(i, j) ∈ E (5.14)

∑
op∈L′k∩L

′
l

xp = 1, ∀(k, l) ∈ E′ (5.15)

xp + xp′ ≤ 1, ∀i ∈ V , ∀k ∈ V ′, ∀op ∈ Li,k,∀o′p ∈ Ti,k (5.16)

xp + xp′ ≤ 1, ∀k ∈ V ′,∀i ∈ V , ∀op ∈ Li,k,∀o′p ∈ T ′i,k (5.17)

yi,k ≥
∑

op∈Li,k xp

|O|
, ∀i ∈ V , ∀k ∈ V ′ (5.18)

Constraints 5.14 and 5.15 ensures that each edge can be assigned to at most one edge.
Next, constraints 5.16 and 5.17 make sure that every vertex is matched with no more than
one vertex. Theses constraints are called disjunctive constraints, because they select each
pair of objects that are in disjunction and forbid them from being selected at the same
time in the final solution. Lastly, constraints 5.18 maintain the relation between xp and yi,k
variables, by forcing to one yi,k variables that correspond to vertices assignments appearing
in a selected op. And, this guarantees the correctness of the objective function value and
avoid counting more than once the matching cost of two vertices (if they happen to appear
in multiple selected objects). Table 5.3 shows the number of variables and constraints in
ObM formulation.
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5.2.2.3 Evaluation of ObM formulation

First, to verify the validity of this formulation, F2 is selected as the base formulation for
comparison, which also can be justified since F2 is the best existing one. To have a glance
at the formulations sizes, the numbers of variables and constraints in each formulation are
compared. Since it is not easy to compare based on the equations given earlier, because
ObM constraints require computing the sets L and T . So, the comparison is done over real
instances after generating the actual variables and constraints. Two instances are selected:
I4,3 is the instance of graphs shown in Fig. 4.1 (|G| = 4, |G′| = 3), and I10,10 is an instance
selected from the subset 10 in MUTA database (|G| = 10, |G′| = 10). Table 5.4 sums up
the numbers obtained for instance I4,3. Clearly, F2 has generated way less binary variables
24 against 163 variables in ObM. The constraints in F2 are 24 against 6669 constraints in
ObM. The numbers obtained for instance I10,10 are shown in Table 5.5. The number of
constraints has drastically increased and reached millions (≈ 10 millions against 110 in
F2).

Table 5.4: Number of variables and constraints in F2 and ObM for instance I4,3

F2 ObM

Variables
x 12 143
y 12 20
Total 24 163

Constraints Total 19 6669

Table 5.5: Number of variables and constraints in F2 and ObM for instance I10,10

F2 ObM

Variables
x 100 6216
y 90 100
Total 190 6316

Constraints Total 110 9520515

Despite the high number of constraints in ObM, which are mostly disjunctive constraints
(Eq. 5.16 and 5.17), ObM might still have a chance in solving efficiently the instances.
These constraints might be easy to satisfy and the solver may be able to solve the instance
quickly. This is an assumption that can be validated experimentally. Therefore, the two
instances I4,3 and I10,10 are solved by CPLEX for both formulations, and the results are
reported in Table 5.6. Both formulations were able to solve the instances to optimality.
However, in terms of CPU time, F2 is much faster than ObM. The difference is small for
instance I4,3, but it becomes drastically big for instance I10,10, with 0.27s needed by F2
against 208s by ObM. This proves wrong the assumption made earlier. There a lot of
disjunctive constraints and the formulation is not easy to solve at all. Nevertheless, the
hand-made test instance I4,3 and the real instance I10,10 are notably small instances, and
basically the solver is capable of solving them in a matter of milliseconds for all existing
formulations (see the results in Section 4.3). Consequently, ObM formulation, as it is, is
not efficient in solving GED instances, especially the hard ones.
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Table 5.6: Results (CPU time in seconds and objective value) of I4,3 and I10,10

CPU time Objective value

ObM I4,3 0.19 31
I10,10 208.31 22.275

F2 I4,3 0.02 31
I10,10 0.27 22.275

5.2.2.4 Improving ObM formulation

The reason behind the inefficiency of ObM formulation, is the number of generated
disjunctive constraints. After carefully reviewing and analyzing the constraints and the
objects, it seemed possible to aggregate multiple disjunctive constraints into one constraint,
without violating the GED definition. Here is an example of such a case taken from instance
I4,3 (graphs in Fig. 4.1):

• Considering the following objects: o1 = (1, 2, a, b), o2 = (1, 2, a, c), o3 = (1, 2, a, ε)
and o4 = (2, 3, b, c).

• A disjunctive constraint must be created for objects o1 and o2, i.e. objects o1 cannot
be selected at the same time with o2, because: on one hand, o1 is selected which
means 1→ a, 2→ b and (1, 2)→ (a, b). On the other hand, selecting o2 means that
1→ a, 2→ c and (1, 2)→ (a, c). Obviously, vertex 2 is matched with two vertices a
and c, which contradicts the GED problem definition. These two objects must be in
disjunction.

• It is the same case for pairs o1 and o3, o2 and o3.

• ObM formulation will generate three disjunctive constraints for each pair: x1+x2 ≤ 1,
x1 + x3 ≤ 1 and x2 + x3 ≤ 1.

• It will remain valid to replace the three disjunctive constraints with the following
constraint: x1 + x2 + x3 ≤ 1. Because only one of them can be selected in the final
solution.

• This is an aggregated constraint, which contains multiple objects in disjunction.

• However, to include more objects to this aggregated form, the new object must be
in disjonction with all existing objects. In this example, o4 is in disjunction with o2

and o3 but not with o1, therefore it cannot be added to the aggregated constraint.

This seems to be an important realization, which may help in reducing the number
of constraints in ObM formulation. But as mentioned in the above example, generating
the aggregated constraints requires vigilance, so not to violate the definition of the GED
problem by preventing correct matchings. The question is then, how to generate the
aggregated disjunctive constraints?
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Method-1: Aggregation based on cliques in a graph. To objects are in disjonc-
tion if their matched vertices are overlapping. Then, it is possible to create a graph Go,
where vertices are the objects, and edges are the disjunction relation between two objects.
The presence of an edge between two vertices means that the objects are in disjunction.
And there will be a disjunctive constraint for them in ObM. One way to aggregate the
constraints is to compute all maximal cliques in the graph. A maximal clique in a graph
is a clique such that, all pairs of vertices in the clique are connected with only one edge
(complete subgraph), and it is not possible to add an additional vertex to the clique while
preserving its complete connectivity. This is exactly what is needed in order to aggregate
all the disjunctive constraints. In fact, a maximal clique will contain all objects that are
in disjunction between each other, and no more objects can be added to them without
breaking the rule. Therefore finding all maximal cliques guarantees finding the best list of
aggregate constraints in ObM formulation.

Algorithm 9: Bron & Kerbosch Algorithm for generating all maximal cliques in a
graph
1 Let P be the set of vertices of the graph
2 Let R = {φ}
3 Let X = {φ}
4 Let N = {φ}
1 Function BronKerbosch(R, P , X)
2 if P and X are both empty then
3 Return R as a maximal clique
4 end
5 foreach vertex v in P do
6 Add all v neighbors into N(v)
7 BronKerbosch(R ∪ {v}, P ∩N(v), X ∩N(v)) // recursive call
8 P = P \ {v}
9 X = X ∪ {v}

10 end
11 End

A famous algorithm, developed by Bron and Kerbosch (1973), can be found in the
literature which computes all maximal cliques in a graph. It is a simple algorithm that
runs recursively on every vertex in the graph to detect the cliques. The steps of the
algorithm are given in Algorithm 9. Many improvements to the algorithm are suggested
later by considering pivoting and vertices set ordering based on the degree in ascending
order, to reduce the number of recursive calls (Johnston, 1976). It is argued in the literature
that the algorithm tends to be time consuming because the number of cliques can grow
exponentially with every new added vertex. Furthermore, there is a study regarding the
worst-case running time required by the algorithm (the version with pivoting), done by
Tomita et al. (2006), that gives a bound of O(3n/3) on the running time (with n the
number of vertices in the graph). So, the algorithm computes the maximal cliques in linear
time relative to the number of cliques, but becomes exponential with the growth of the
number of the cliques.
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Back to the test instance I10,10, it was shown in Table 5.5 that ObM has created 6316
objects. The worst-case running time is a huge number, but again it depends on the cliques
number in the graph. After building the disjunction graph, which has 6316 vertices and
9520515 edges, and executing the algorithm during 5min, it only generated 767 aggregated
constraints. Those constraints were covering only 10% out of the 6316 objects. Clearly, the
number of maximal cliques is very big and it is not possible to generate all of them. In the
end, the 767 constraints were not enough to compute a feasible solution to the problem.

Method-2: Generate disjunctive constraints when needed. ObM formulation is
created without generating disjunctive constraints Eq. 5.16 and 5.17. Then, it is solved by
the solver, and the solution returned may not be feasible to the problem (a vertex could
be matched with multiple vertices). By looking at the solution and detecting the wrong
assignments, their vertices are selected and the idea is to add the disjunctive constraints for
those vertices and re-solve the formulation. Repeating this procedure will avoid generating
all disjunctive constraints from the beginning and hoping that after few iterations only
needed constraints will be added to get to the optimal solution. The first found feasible
solution will be an optimal one as well, and the iterations can be stopped.

Testing this method on instance I10,10, took only 9.2s to find the optimal solution
with only 3 iterations. The procedure had added 14140 disjunctive constraints. This is,
actually, interesting and the solution time was reduced from 208s to 9.2s, plus the number
of constraints dropped from 9.5 millions to 14140. Yet, 9.2s running time to solve an easy
instance where F2 formulation takes 0.27s to solve, is still relatively high.

Method-3: Hybridization of method-1 and method-2. This time, methods 1 and
2 and are put together in motion. The idea is to give few seconds to generate as much as
possible aggregated constraints based on Bron & Kerbosch algorithm. Next, the formula-
tion is solved and a first solution is computed. If it is not feasible for the GED problem,
then as in method-2 the needed disjunctive constraints to prevent wrong assignments are
generated and the formulation is solved. The process is repeated until a feasible solution
is found, which will be the optimal as well.

This method was tested on instance I10,10, and it spent 27s to obtain the optimal
solution with 7 iterations and 19400 disjunctive constraints. The hybridization has obtained
better results than method-1 but not method-2.

5.2.2.5 General conclusions

ObM is a formulation based on the notion of objects and multiple vertices and edges
matchings at once. Theoretically, this concept sounds interesting, especially because all
existing formulations are based on the notion of single vertice/edge operation per decision
variable and such an idea was not investigated before. It turned out that ObM requires
a very big number of disjunctive constraints to prevent matching a vertex with multiple
vertices. This has led to build very big formulations, even for small instance of graphs,
compared to F2 formulation. To solve this problem and to reduce the complexity of the
formulation, three methods were tested to avoid generating all the disjunctive constraints.

160



5.2. PROPOSED MILP FORMULATIONS

However, none of these methods has succeeded in reducing the running time when solving
the formulation on a test instance. The best that was done is 9.2s instead of 208s with
the original formulation. But, the 9.2s is still very big compared to 0.27s required by F2
to solve the same instance.

The conclusion is that ObM formulation will not be able to compete with the best
existing formulation (F2). Nevertheless, it is a new concept that is studied and it will serve
as reference for future works. Of course, it is an add-on to the list of exact methods for
solving the GED problem.

This work was published in the conference ROADEF2018:
Darwiche, M., Conte, D., Raveaux, R., & T’kindt, V. (2018, February). Formulation linéaire en
nombres entiers pour le problème de la distance d’édition entre graphes. In ROADEF18.

5.2.3 F3 formulation - an improvement of F2

The ObM formulation can be seen an expansion of the compact F2 formulation, which
did not perform as good as F2. This work has led to think of a different approach to
improve F2. The result is a F3 that is a new and an improved MILP formulation, inspired
by F2, to solve the GED problem. It shares some parts with F2 formulation but rewrite
the constraints in a different fashion. The main improvements are removing the symmetry
case from the constraints to become in the objective function, which has led to new way
of writing the constraints. The number of the new constraints is totally independent from
the number of edges in the graphs.

5.2.3.1 F3 formulation

Data. Same as in F2 formulation, F3 uses the cost matrices [cv] and [ce], defined in
equations 2.7 and 2.8.

Variables. F3 introduces two sets of decision variables xi,k and yij,kl as in F2. However, it
includes more y variables, by creating two variables: yij,kl and yij,lk for every ((i, j), (k, l)) ∈
E × E′. Let Ẽ′ = {(l, k) : ∀(k, l) ∈ E′}. The variables of the formulation are as follows.

• xi,k ∈ {0, 1} ∀i ∈ V,∀k ∈ V ′; xi,k = 1 when vertices i and k are matched, and 0
otherwise.

• yij,kl ∈ {0, 1} ∀(i, j) ∈ E,∀(k, l) ∈ E′∪ Ẽ′; yij,kl = 1 when edge (i, j) is matched with
(k, l), and 0 otherwise.

Objective function. It is basically the same function as in F2 formulation, except for
the sum of costs over the y variables to include all of them.

min
x,y

∑
i∈V

∑
k∈V ′

(cv(i, k)− cv(i, ε)− cv(ε, k)) · xi,k+∑
(i,j)∈E

∑
(k,l)∈E′∪Ẽ′

(ce(ij, kl)− ce(ij, ε)− ce(ε, kl)) · yij,kl + γ
(5.19)
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Figure 5.1: Example of edges assignment when assigning two vertices

Constraints. F3 formulation has the following constraints:∑
k∈V ′

xi,k ≤ 1 ∀i ∈ V (5.20)

∑
i∈V

xi,k ≤ 1 ∀k ∈ V ′ (5.21)

These two constraints are the same as in F2, and they guarantee that a vertex can be
only matched with one vertex at most. However, the constraints 2.36 is replaced with the
following constraint: ∑

(i,j)∈E

∑
(k,l)∈E′∪ ˜E′

yij,kl ≤ di,k · xi,k ∀i ∈ V, ∀k ∈ V ′, (5.22)

with di,k = min(degree(i), degree(k)). The degree of a vertex is the number of edges
incident to the vertex. The constraints stands for: whenever two vertices are matched,
e.g. (i → k), the maximum number of edges substitution that can be done is equal to the
minimum degree of the two vertices. Figure 5.1 shows an example of the case. Two edges
at most can be substituted and the third of i has to be deleted. Of course, the deletion of
all edges is possible, if it costs less than the substitutions. These constraints force matching
the edges and respecting the topological constraint defined in the GED problem.

The given formulation handles the case of undirected graphs. Though, it can be adapted
to deal with the directed case, by setting Ẽ′ = {φ} (because edges (i, j) are different from
(j, i) and they are already included in E), and replacing the objective function Eq. 5.19
by the objective function of F2 Eq. 2.32.

5.2.3.2 Comparison of F2 and F3 formulations

The most important improvement in the proposed formulation is that F3 has a number
of constraints independent of the number of edges in the graphs. Constraints 5.20 and 5.21
are shared by both formulations and they do not include edges. However, constraints 2.36
rely on the edges of G, which is not the case of the constraints 5.22 in F3. Table 5.7 shows
the number of variables and constraints in both formulations. Clearly, F3 has (2 times)
more y variables than F2. The reason behind creating two y variables for each couple of
edges, is to accommodate to the symmetry case that appears when dealing with undirected
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Table 5.7: Nb. of variables and constraints in F2 and F3

Nb. of variables Nb. of Constraints
F2 |V | · |V ′|+ |E| · |E′| |V |+ |V ′|+ |V | · |E|
F3 |V | · |V ′|+ |E| · |E′| · 2 |V |+ |V ′|+ |V | · |V ′|

graphs, i.e. (i, j) = (j, i). By doing so, constraints 2.36 can be re-written differently by
relying only on the vertices in the graphs (constraints 5.22). Note that, this comparison
is done for undirected graphs. In the other case, the symmetry is discarded, and both
formulations have the same number of variables.

In the GED problem, edge operations are driven by vertex-vertex matching. On this
basis, the difficulty in F2 and F3 comes from the x decision variables, rather than the y
variables. Moreover, F2 formulation is more sensitive to the density of the graphs, because
its constraints depend on the edges, which is not the case in F3. This reasoning led to
making the following two hypotheses, by distinguishing between two cases:

1. Non-dense graphs: even if F3 has more y variables than F2, its performance will not
be degraded compared to F2.

2. Dense graphs: F3 will have less constraints than F2, since F3 has a number of con-
straints independent from the number of edges. Consequently, F3 tends to perform
better than F2.

To validate those hypotheses, both formulations are tested over graph databases and
real instances. The results are discussed in the next section.

5.2.3.3 Evaluation of F3 formulation

F3 formulation is designed to solve the GED problem. So, the graph databases must
have instances of GED and not only GEDEnA problem.

Methods. F3 is evaluated against F2 formulation, which is the best one in the literature.

Experimentation settings. Both formulations are implemented in C language. The
solver CPLEX 12.7.1, in single thread mode, is used to solve the formulations, with a
maximum time limit of 900s. Experiments are ran on a machine with Windows 7 x64,
Intel Xeon E5 2.30 GHz, 4 cores and 8 GB of RAM.

Evaluation indicators. The following indicators are computed for each subset:

• tmin: the minimum CPU time in seconds,

• tavg: the average CPU time in seconds,

• tmax: the maximum CPU time in seconds,
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• dmin: the minimum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• davg: the average deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• dmax: the maximum deviation, in percentage, between the solutions obtained by a
formulation against the best solutions found by the three formulations,

• η: the number of optimal solutions computed,

• η′: the number of solutions (whether optimal or not) computed by a formulation,
which are the best/minimum among those computed by all formulations.

The deviations are computed based on Eq. 4.11.

Table 5.8: Evaluation of F3 on MUTA database

S 10 20 30 40 50 60 70 mixed

F3

tmin 0.02 0.05 0.16 0.47 0.83 2.96 6.94 0.06
tavg 0.10 3.07 365.44 575.65 770.61 810.51 811.10 410.08
tmax 0.27 24.60 900.11 900.17 900.50 900.31 900.64 901.03

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.74 0.54 1.78 3.60 2.55 0.80
dmax 0.00 0.00 20.69 12.86 13.04 25.42 44.63 9.33

η 100 100 81 76 31 10 10 62
η′ 100 100 91 90 68 53 61 78

F2

tmin 0.00 0.00 0.06 0.11 0.22 0.41 0.61 0.02
tavg 0.05 0.99 320.35 571.65 766.63 802.94 802.69 370.36
tmax 0.30 14.52 900.05 900.02 900.16 900.08 900.00 900.14

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.21 0.51 1.52 1.46 2.76 0.15
dmax 0.00 0.00 4.20 7.06 9.63 11.69 46.15 3.54

η 100 100 79 48 19 11 11 61
η′ 100 100 93 84 69 69 60 91

Table 5.9: Evaluation of F3 on MUTA database - optimal solutions

S 10 20 30 40 50 60 70 mixed

F3

tmin 0.02 0.05 0.16 0.47 0.83 2.96 6.94 0.06
tavg 0.10 3.07 217.27 358.44 282.05 5.41 11.45 79.13
tmax 0.27 24.60 836.98 814.03 869.97 6.69 16.63 729.77

η 100 100 66 45 16 10 10 59

F2

tmin 0.00 0.00 0.06 0.11 0.22 0.41 0.61 0.02
tavg 0.05 0.99 152.67 185.27 168.24 0.95 1.16 27.59
tmax 0.30 14.52 797.35 784.28 883.22 3.63 2.06 684.20

η 100 100 66 45 16 10 10 59
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Evaluations on MUTA database. The obtained results are shown in Table 5.8. For
easy instances (subsets 10 and 20), both formulations were able to solve all of them to
optimality, with 0% as average deviation. A difference in average deviations starts to
appear for the rest of the subsets. F2 was able to score better average deviations than F3,
except for subset 70 which contains the hardest instances. Though, the average deviations
are very close (always less than 1%), excluding subset 60 where F2’s average deviation is
better by 2% from F3. Next, F3 was able to solve more instances to optimality (η) for
subsets 30, 40, 50 and mixed. Regarding the best solutions obtained (η′), F2 has slightly
higher values than F3 for subsets 30, 50, 60 and mixed. In addition, F2 was the fastest on
the average running time for all subsets, but the difference is very marginal e.g. on subsets
30 and 40, F2 is faster by 4s than F3. Note that for hard instances, both formulations
have reached 800s, so they are not far from the maximum time limit given to the solver.
In terms of solution quality, it can be called a tight between the two formulations. There
is not a formulation that have performed better than the other.

In Table 5.9, the running time are filtered by considering only instances solved to
optimality by both formulations. The average running times scored recorded for F2 are
better than the ones for F3, which means F2 is faster than F3.

Conclusion. In fact, these results are very expected, and they confirm the first hy-
pothesis mentioned earlier. MUTA database is considered as non-dense graphs, and its
density is 9.13%. The first hypothesis states that for non-dense graphs, F3 formulation
is capable of performing as good as F2. Because F2 and F3 will have almost the same
number of constraints, but F3 will have twice y variables than F2. The claim is that those
variables will not increase the complexity of the formulation. This has turned out to be
true experimentally, because F3 and F2 formulations were very close after analyzing the
solutions quality indicators (davg, η and η′). However, F2 formulation was faster in com-
puting the optimal solutions, which is expected since F3 has more variables and will require
a bit more running time to converge. Consequently, the first hypothesis is validated and
F3 is as good as F2 on non-dense graphs.

Evaluations on CMU-HOUSE database. The three versions (HOUSE-NA, HOUSE-
A and HOUSE-REF) of this database, as detailed in Section 4.2, are considered in this
experiment. The results are given in Table 5.10. Both formulations were able to solve to
optimality all instances of HOUSE-A, with average deviations 0%. For HOUSE-NA, which
is harder than the other two versions, F3 has scored davg = 0.70% against a huge difference
of 600% by F2. F3 has solved to optimality more than 50% of the instances, against 25
instances by F2. Also, F3 has found the best solutions for 644 instances, while F2 has found
the best solutions only for 54 instances. For the last database HOUSE-REF, F3 has the
smallest average deviation of 0.22%, the highest η and η′ values w.r.t. F2 formulation. On
the other hand, F2 is faster on the average running time for HOUSE-A and HOUSE-REF,
while F3 is faster for HOUSE-NA.

Table 5.11 sums up the running times by keeping only instances solved to optimality
by both formulations. F3 is 20 times faster than F2 for HOUSE-NA. But, F2 becomes
faster on HOUSE-REF instances with more than 250s gap.

Conclusion. CMU-HOUSE has a density of 18%, and it is considered as a dense graph
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Table 5.10: Evaluation of F3 on CMU-HOUSE database

A NA REF

F3

tmin 0.19 1.68 66.07
tavg 2.95 497.07 416.75
tmax 236.08 901.25 900.67

dmin 0.00 0.00 0.00
davg 0.00 0.70 0.22
dmax 0.00 250.00 88.34

η 660 365 633
η′ 660 644 652

F2

tmin 0.11 93.07 1.26
tavg 0.61 880.74 278.78
tmax 34.21 900.02 900.02

dmin 0.00 0.00 0.00
davg 0.00 604.11 4.68
dmax 0.00 3600.00 163.86

η 660 25 505
η′ 660 54 548

Table 5.11: Evaluation of F3 on CMU-HOUSE database - optimal solutions

NA REF

F3

tmin 2.54 66.07
tavg 20.26 374.51
tmax 42.18 869.39

η 25 482

F2

tmin 93.07 1.26
tavg 395.33 89.89
tmax 828.52 891.76

η 25 482
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database. The results have proven that F3 formulation is better than F2 formulation in
solving instances of HOUSE-NA and HOUSE-REF. This is, probably, because F3 has way
less constraints than F2, which makes it easier for the solver to converge and to find the
optimal solution. This proves the second hypothesis, that for dense graphs F3 has less
constraints and therefore it is better than F2 formulation.

Table 5.12: Evaluation of F3 on SYNTHETIC-30 database

D 40 60 80 100

F3

tmin 899.75 888.29 900.09 900.25
tavg 899.92 899.92 901.16 900.93
tmax 900.03 900.14 902.45 901.48

dmin 0.00 0.00 0.00 0.00
davg 9.34 10.25 10.70 10.40
dmax 100.00 100.00 100.00 100.00

η 0 0 0 0
η′ 72 78 66 77

F2

tmin 18.69 54.10 96.38 395.62
tavg 812.42 818.37 829.83 862.04
tmax 900.11 901.20 903.12 903.73

dmin 0.00 0.00 0.00 0.00
davg 5.15 3.95 2.60 55.65
dmax 18.70 15.30 11.49 227.96

η 10 10 10 10
η′ 31 22 34 23

Evaluations on SYNTHETIC-30 database. The details of this database are given
in Section 4.2. It is split into different subsets based on the density of the graphs. The
above experiments were done over databases with densities less than 20%. Therefore in
this experiment, subsets with densities 40%, 60%, 80% and 100% are selected to study the
performance of the formulations with high dense graphs. The results of this experiment
are reported in Table 5.12. The best average deviations are obtained by F2 for all subsets,
except subset with 100% density. The differences between the deviations varies from 4%
to 8% for subset 80. And a big difference of 45% is noted for subset 100 in favor of F3
formulation. In terms of optimal solutions, F3 did not solve any instance to optimality for
all subsets, which is not the case for F2 that succeeded in finding optimal solutions for 10
instances per subset. Actually, those instances are the pair of identical graphs. On the
other hand, F3 has computed best solutions (η′) for two times more instances than F2 on all
subsets. Clearly, there is something suspicious, because F2 has smaller average deviations,
yet it is not better in computing best/smaller solutions. After carefully analyzing the
results per instance, it turned out that F3 had hard time in solving instances where graphs
are identical, while F2 was more efficient. To give a more objective analysis, the instances
are split into two groups: first group with all instances of different graphs, and the second
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group with instances of identical graphs.

Table 5.13: Evaluation of F3 on SYNTHETIC-30 database - without identical graphs

D 40 60 80 100

F3

tmin 899.75 899.80 900.09 900.39
tavg 899.92 900.04 901.16 900.93
tmax 900.03 900.13 902.45 901.48

dmin 0.00 0.00 0.00 0.00
davg 1.48 0.27 0.78 0.44
dmax 15.21 4.87 11.49 7.28

η 0 0 0 0
η′ 70 78 66 77

F2

tmin 896.94 898.50 899.94 900.11
tavg 899.42 900.07 900.20 900.52
tmax 900.11 901.20 903.12 903.73

dmin 0.00 0.00 0.00 0.00
davg 5.73 4.39 2.89 61.84
dmax 18.70 15.30 11.49 227.96

η 0 0 0 0
η′ 21 12 24 13

The results of the first group are shown in Table 5.13. This time, all good average
deviations are scored by F3. For instance, on subset 100 the davg scored by F3 is 0.44%
against 61% by F2. η′ values for F3 formulation are 3 to 4 times bigger than the val-
ues obtained by F2 formulation. Evidently, F3 performs much better than F2 in solving
SYNTHETIC-30 instances. Note that both formulations have reached the maximum time
limit when solving all instances, that is why tavg values are always ≈ 900s.

The results of the second group where only identical graphs are considered are reported
in Table 5.14. F2 has solved all these instances to optimality (i.e. davg = 0.00% for all
subsets), while F3 has failed to do so (all davg = 100% for all subsets). In addition, F2 is
much more faster than F3, which reaches the 900s all the time against half the time by F2
in the worst case (instances of subset 100).

Conclusion. Excluding instances with identical graphs, F3 is very effective in solving
SYNTHETIC-30 database instances, and it outperforms F2 formulation by far. This con-
clusion, without any doubts, confirms the second hypothesis that F3 performs better with
dense and high dense graphs. However, there seems to be a problem when solving F3 with
identical graphs instances where it suffers without converging towards the optimal solu-
tions. F2 did not have this problem with those particular instances, but it was not effective
in solving the others. Further digging and troubleshooting by looking at CPLEX output
when solving those instances, showed that CPLEX spent all the time generating cuts before
it starts the branching with F3 formulation. While it behaves differently with F2 formu-
lation and it starts the branching earlier. Then, the discussion is moving towards CPLEX
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Table 5.14: Evaluation of F3 on SYNTHETIC-30 database - identical graphs

D 40 60 80 100

F3

tmin 899.83 888.29 900.13 900.25
tavg 899.92 898.88 901.13 900.84
tmax 899.99 900.14 902.08 901.14

dmin 100.00 100.00 100.00 100.00
davg 100.00 100.00 100.00 100.00
dmax 100.00 100.00 100.00 100.00

η 0 0 0 0
η′ 2 0 0 0

F2

tmin 18.69 54.10 96.38 395.62
tavg 29.46 83.06 196.53 515.77
tmax 41.23 124.97 258.15 559.33

dmin 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.00 0.00
dmax 0.00 0.00 0.00 0.00

η 10 10 10 10
η′ 10 10 10 10

behavior during the solution phase with its default parameters. It is highly probable that
modifying CPLEX parameters, especially the ones related to cuts generation, might help
finding the optimal solutions faster for F3. Though, doing so is not easy, because CPLEX
has hundreds of parameters, which may require a lot of time to tune and find the best
combinations. Additionally, tuning CPLEX parameters can be a research topic on its own,
which is out of the scope of this thesis. Finally, this case appeared only on those particular
instances synthetically generated, and they might not be very representative and close to
real-life instances.

F3 formulation is evaluated against two other databases: PROTEIN and SYNTHETIC-
100. The results can be found in Appendix B, Section B.2. The conclusions of those
experiments are:

• PROTEIN database: PROTEIN is a dense graph database (D = 16%) and again
the second hypothesis is confirmed. F3 formulation is more effective than F2 in solv-
ing PROTEIN instances. Mainly, because it has less constraints than F2 formulation.

• SYNTHETIC-100 database: F3 has performed better than F2 on very big and
high-dense graphs. Both formulations were not able to find any optimal solution.
However, F3 has computed feasible solutions for all the instances. While F2 did
not succeed in computing any feasible solution. The instances are very hard for F2
formulation.
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5.2.3.4 General conclusions

F3 is a new and improved formulation inspired by the existing F2 formulation. F3 in-
troduces more variables in the formulation to handle edges matching, but it has constraints
independent from the number of edges in the graphs. Two hypotheses are made regarding
two cases: first one is that F3 is as good as F2 when dealing with non-dense graphs, and
the second is that F3 is better dealing with dense graphs because its constraints are inde-
pendent from the number of edges. Experimentally, the first hypothesis is confirmed when
testing F3 on MUTA database, which contains non-dense graphs. The second hypothe-
sis is validated by selecting multiple databases and varying the densities from 16% until
reaching 100% (complete graphs). The results have shown F3 to be more efficient than F2
formulation in solving the instances to optimality.

These results were published in the following conferences:

• Darwiche, M., Raveaux, R., Conte, D., & T’Kindt, V. (2018, April). A New Mixed Integer
Linear Program for the Graph Edit Distance Problem. In ISCO18.

• Darwiche, M., Raveaux, R., Conte, D., & T’Kindt, V. (2018, August). Graph Edit Distance
in the Exact Context. In Joint IAPR International Workshops on Statistical Techniques in
Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) (pp.
304-314). Springer, Cham.

5.3 Proposed matheuristics

This section covers the second part of this thesis, which is about designing matheuristics
to solve the GED problem. Matheuristics require having a MILP formulation modeling the
problem and a MILP solver. So, they can employ the solver to explore the solution space of
the MILP formulation looking for good solutions. The choice of the MILP formulation can
be made based on the results of the previous section. The MILP formulation F3, proposed
earlier and proved to be effective in solving the problem, will form the basis of the proposed
matheuristics in this section.

5.3.1 An adapted local branching to solve the GED problem

In Chapter 4, an adapted local branching matheuristic is presented to solve the sub-
problem GEDEnA, where good results were obtained w.r.t. existing heuristics. To fulfill
one of the main objective of this thesis, which is to develop a good heuristic to solve
the general problem, local branching will be modified so it can be applied to the general
GED problem. The limitation of the local branching version presented in Chapter 4 comes
from the use of JH MILP formulation in the implementation of the heuristic. Changing
the MILP formulation, and using instead a formulation modeling the GED problem, will
result in a heuristic that solves the general problem. Basically, all LocBra features are kept
the same, as explained in Section 4.4. Only JH formulation is replaced by F3 formulation
(Section 5.2.3). Therefore, local branching constraints for intensification and diversification
are defined over the set of xi,k variables in F3.

To evaluate the performance of LocBra, it is compared with the best known heuristics.
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This version will be evaluated on GED instances. Unlike experiments done in Section 4.4,
where only GEDEnA instances were involved, the following experiments will include both,
GEDEnA instances and more importantly GED instances. The experiments are divided
into two categories:

1. Effectiveness of LocBra w.r.t. competitor heuristics. LocBra is tested against
the most competitive heuristics picked from the literature, designed to solve the GED
problem.

2. Effectiveness of LocBra w.r.t. an exact method. The goal of this experiment
is to measure the accuracy and closeness of LocBra solutions from the optimal or
best known ones.

Common configuration. LocBra algorithm is implemented in C language. The solver
CPLEX 12.7.1 is used to solve the MILP formulations. Experiments are ran on a machine
with Windows 7x64, Intel Xeon E5 2.30 GHz, 4 cores and 8 GB of RAM. CPLEX solver is
configured to use single thread, and the rest of the parameters are set to default. The aim
of this, in the experiments, is to evaluate the efficiency of the inner mechanism of LocBra.
It can be then expected that its efficiency is going to be improved by enabling the use of
more threads.

5.3.1.1 Effectiveness of LocBra w.r.t. competitor heuristics

These experiments answer the following question: which heuristic is the best mini-
mizer? It is about comparing the distances computed by each heuristic and finds out
which heuristic returns the smallest ones.

Methods. The heuristics chosen in the evaluation are:

i- CPLEX-t is the solver CPLEX ran on F3 formulation with t seconds as a time limit.

ii- CPLEX-LocBra-t refers to enabling local branching heuristic implemented in CPLEX
solver. The time limit is imposed in order to compute an initial solution, before
running local branching on that solution.

iii- BeamSearch-α, the BeamSearch heuristic with α the beam size.

iv- SBPBeam-α, the SBPBeam heuristic with α the beam size.

v- IPFP-it, the IPFP heuristic with it the maximum number of iterations.

vi- GNCCP-d, the GNCCP heuristic with d the quantity to be subtracted from the ζ
variable at each iteration. ζ is the variable that controls the concavity and convexity
of the objective function of the QAP model solved by GNCCP heuristic.

The first two heuristics are also based on solving F3 formulation by CPLEX. Considering
them as a part of the experiment will show if the branching scheme of LocBra is capable of
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performing better than the solver CPLEX and its embedded heuristics. The other heuristics
are picked from the literature after reviewing the most important and competitive ones.
Their descriptions and details can be found in Chapter 2 (Section 2.3.8).

Comparison indicators. All heuristics are executed on different databases and for all
of them, the following indicators are computed: tmin, tavg, and tmax are the minimum,
average and maximum CPU times in seconds over all instances. Correspondingly, dmin,
davg, and dmax are the deviations of the solutions obtained by one heuristic, from the best
solutions found by all heuristics. The deviations are computed based on Eq. 4.11 and are
expressed in percentage. Lastly, ηI is the number of instances for which a given heuristic
has found the best solutions.

Evaluations on PROTEIN database. This database contains GED graph instances.
It has 4 subsets of 10 graphs each, which gives 400 instances in total. The details of the
database can be found in Section 4.2.

As in previous experiments, two versions of each heuristic are considered: Default and
Extended. The default version is to evaluate the default behavior of the heuristic, and the
extended version is to see if it is capable of improving the results by spending as much time
as LocBra. The parameters of each heuristic are set based on preliminary experiments not
reported here.

Default versions. The parameters are set to the following values:

LocBra π = 20, π_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 10
CPLEX-LocBra-t t = 9
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

The results reported in Table 5.15 reveal that LocBra has scored the best/smallest
average deviations for all subsets, along with the highest ηI values. In the second place, it
is a tight between CPLEX-10 and CPLEX-LocBra-9. The former has the best davg values
for subsets 30 and mixed with 0.12% and 0.16% respectively, against 0.13% and 0.17%
scored by the latter. Though, the difference is very small. IPFP-10 and GNCCP-0.1
performances are also very close, because IPFP-10 is better on subsets 20 and 30, but not
on subsets 40 and mixed. At last, BeamSearch-5 and SBPBeam-5 are close to each other,
but far from the rest of the heuristics. Regarding the average running time, BeamSearch-5
is the fastest heuristic with a big difference compared to the running times of LocBra. The
10s given to LocBra, however, sounds reasonable when looking at the running time values
of GNCCP-0.1 (e.g. tavg = 8.82s against 23.17s on subset 40).
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Table 5.15: LocBra vs. heuristics on PROTEIN instances

S 20 30 40 mixed

LocBra

tmin 0.06 0.09 0.20 0.09
tavg 6.54 8.68 8.82 8.59
tmax 10.08 10.05 10.09 10.19

dmin 0.00 0.00 0.00 0.00
davg 0.07 0.06 0.39 0.11
dmax 0.84 0.56 1.53 2.51

ηI 80 74 37 68

CPLEX-10

tmin 0.05 0.06 0.16 0.05
tavg 5.86 8.54 8.84 8.24
tmax 10.03 10.05 10.06 10.03

dmin 0.00 0.00 0.00 0.00
davg 0.09 0.12 0.57 0.16
dmax 0.84 0.75 2.47 3.07

ηI 77 53 29 58

CPLEX-LocBra-9

tmin 0.08 0.16 0.27 0.11
tavg 5.76 8.01 11.38 7.92
tmax 11.23 9.48 27.25 11.56

dmin 0.00 0.00 0.00 0.00
davg 0.09 0.13 0.50 0.17
dmax 0.84 0.75 1.92 3.26

ηI 75 54 31 52

BeamSearch-5

tmin 0.00 0.01 0.01 0.00
tavg 0.02 0.07 0.10 0.06
tmax 0.04 0.13 0.22 0.13

dmin 0.00 0.00 0.00 0.00
davg 5.62 3.33 2.88 5.57
dmax 123.86 155.56 7.29 26.54

ηI 10 11 10 10

SBPBeam-5

tmin 0.26 1.03 2.66 0.36
tavg 0.37 1.54 3.76 1.75
tmax 0.54 2.26 5.05 4.39

dmin 0.00 0.00 0.00 0.00
davg 3.19 5.58 3.43 2.74
dmax 5.36 155.56 5.58 4.78

ηI 12 10 10 10

IPFP-10

tmin 0.02 0.05 0.04 0.03
tavg 0.09 0.27 0.59 0.31
tmax 0.13 0.38 0.88 0.81

dmin 0.00 0.00 0.00 0.00
davg 1.05 0.97 1.13 1.02
dmax 3.25 3.38 2.65 2.80

ηI 23 13 11 13

GNCCP-0.1

tmin 1.32 4.50 13.93 1.45
tavg 2.05 7.21 23.17 9.36
tmax 2.47 10.45 30.51 23.26

dmin 0.00 0.00 0.00 0.00
davg 0.22 0.19 1.67 1.35
dmax 1.08 0.80 156.60 117.42

ηI 53 47 69 50
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Table 5.16: LocBra vs. heuristics with extended running time on PROTEIN instances

S 20 30 40 mixed

LocBra

tmin 0.08 0.12 0.22 0.12
tavg 14.28 24.77 26.38 23.57
tmax 30.08 30.11 30.31 30.37

dmin 0.00 0.00 0.00 0.00
davg 0.02 0.04 0.19 0.07
dmax 0.28 0.51 1.68 2.90

ηI 91 81 58 80

CPLEX-30

tmin 0.03 0.11 0.17 0.05
tavg 11.56 24.09 26.18 22.33
tmax 30.03 30.01 30.05 30.03

dmin 0.00 0.00 0.00 0.00
davg 0.05 0.07 0.36 0.10
dmax 1.12 0.51 1.68 3.08

ηI 90 67 32 69

CPLEX-LocBra-25

tmin 0.08 0.16 0.27 0.08
tavg 9.78 20.40 24.70 18.97
tmax 27.13 25.44 42.57 27.38

dmin 0.00 0.00 0.00 0.00
davg 0.04 0.07 0.35 0.10
dmax 1.12 0.56 1.68 3.08

ηI 91 67 33 68

BeamSearch-1500

tmin 0.00 0.01 0.01 0.00
tavg 3.94 13.72 23.72 13.42
tmax 5.85 20.93 34.15 25.98

dmin 0.00 0.00 0.00 0.00
davg 1.65 7.33 1.86 4.44
dmax 21.88 311.11 6.66 26.01

ηI 12 10 10 10

SBPBeam-30

tmin 1.57 6.16 15.28 1.63
tavg 2.15 8.95 23.05 8.79
tmax 3.06 13.33 31.71 21.32

dmin 0.00 0.00 0.00 0.00
davg 3.23 5.65 3.48 2.79
dmax 5.66 155.56 5.89 4.78

ηI 12 10 10 10

IPFP-500

tmin 0.01 0.04 0.13 0.02
tavg 2.14 7.36 22.26 9.01
tmax 5.03 12.99 31.93 27.64

dmin 0.00 0.00 0.00 0.00
davg 0.80 0.81 0.75 0.77
dmax 2.71 3.01 2.10 2.22

ηI 24 16 13 12

GNCCP-0.09

tmin 1.47 4.58 15.84 1.52
tavg 2.19 7.69 24.34 9.75
tmax 3.32 10.96 29.79 28.58

dmin 0.00 0.00 0.00 0.00
davg 0.23 0.24 0.14 0.24
dmax 1.12 0.94 0.95 1.13

ηI 46 27 57 30
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Extended versions. LocBra is configured with a maximum running time of 30s.
The rest of the heuristics are configured, as well, to reach almost the same running time.

LocBra π = 20, π_dv = 30, total_time_limit = 30s,
node_time_limit = 6s, UB_time_limit = 12s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 30
CPLEX-LocBra-t t = 800
BeamSearch-α α = 1500
SBPBeam-α α = 30

IPFP-it it = 500
GNCCP-d d = 0.09

The results of this version are presented in Table 5.16. Extending the running time of
the heuristics has really helped IPFP-500 and GNCCP-0.09 in computing better solutions
and therefore improving their davg values. In fact, GNCCP-0.09 was even able to perform
better than LocBra on the hardest instances with davg = 0.14% against 0.19%. But,
LocBra has performed better on the other subsets in terms of average deviations and ηI
values. GNCCP-0.09 was able also to beat CPLEX-30 and CPLEX-LocBra-25 on subset
40. However, it is not the case for the other subsets where CPLEX-30 and CPLEX-LocBra-
25 are still in the second position after LocBra. Despite, the improvement in the davg values
obtained by BeamSearch-1500 and SBPBeam-30, it is still not enough to compete with
the other heuristics. IPFP-500 is the fastest when looking at the average running time,
except for subset mixed where SBPBeam-30 is faster.

Conclusion. The results of both experiments show, on one hand, that LocBra improves
the default behavior of the solver, and it is a better version than the basic embedded one
in CPLEX. On the other hand, LocBra outperforms existing heuristics in their default
behaviors and also when increasing their running time.

The same experiments are repeated on other databases (MUTA and HOUSE-REF),
and the obtained results are reported in Appendix B, Section B.3.1. The conclusions of
those experiments are:

• MUTA database: LocBra heuristic was able to compute better solutions for MUTA
instances than the other heuristics. In both the default and the extended versions,
LocBra has outperformed CPLEX-based methods and the four heuristics selected
from the literature. Yet, LocBra is slower than other existing heuristics, such as
BeamSearch and IPFP.

• HOUSE-REF database: In the default version, LocBra has succeeded in solving
efficiently HOUSE-REF instances. However and remarkably, GNCCP was able to
perform better than LocBra in the extended version. Yet, the difference is pretty
much small with 2.7% on average deviation.

General conclusions based on the evaluations. Based on all the results of these
experiments and the summary given in Table 5.17, LocBra significantly outperforms the
default behavior of CPLEX, the embedded local branching version in CPLEX, and the
heuristics available in the literature. Especially in terms of solutions quality, it is the
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most effective. However, it is not the fastest where other heuristics such as IPFP and
BeamSearch are faster. There has been an exception in the extended version on HOUSE-
REF instances, where GNCCP has performed better than LocBra. Since, it was not the
case in the rest of the experiments, LocBra can still be considered the best minimizer to
the GED problem in the general case.

Table 5.17: Summary of LocBra comparison w.r.t. competitor heuristics

Database Solutions quality Speed

Default versions
PROTEIN LocBra BeamSearch
MUTA LocBra BeamSearch
HOUSE-REF LocBra BeamSearch

Extended versions
PROTEIN LocBra IPFP
MUTA LocBra LocBra/GNCCP
HOUSE-REF GNCCP IPFP

5.3.1.2 Effectiveness of LocBra w.r.t. an exact method

This experiment will answer the following question: how close the LocBra solutions are
from the optimal solutions?

Methods. The exact approach in these experiments consists in solving a GED MILP
formulation using CPLEX. In a similar experiment presented in Section 4.4.6.2, the exact
method was running CPLEX to solve the MILP formulation until finding all the optimal
solutions. In the case of MUTA database and because some of its instances are very
hard, CPLEX was set to run during 10 hours. Now, the current experiment involves new
databases that contain GED instances. So, the exact method must be executed to find the
optimal solutions. But, due to the hard time constraint of the thesis, it was not possible
to afford running CPLEX with a time limit of 10 hours. Instead, CPLEX was given only
900s to compute a solution per instance. Of course, this is not an exact method, however
it will give an idea about the solutions quality computed by LocBra. Note that for GED
instances, the formulation used is F3 with CPLEX.

Comparison indicators. The following indicators are computed for each database:
tmin, tavg, and tmax, which are respectively the minimum, average and maximum CPU
times in seconds over all instances. Correspondingly, dmin, davg, and dmax are the de-
viations (in percentage) of the solutions obtained by LocBra, from the optimal or best
solutions found. The deviation is computed by using Eq. 4.11. In addition, ηI is the
number of optimal solutions found, and η′I is the number of solutions found by LocBra
that are equal to the optimal or best known ones. At last, η′′I is the number of solutions
computed by LocBra that are better than the best known solutions, when CPLEX was
not able to find the optimal solutions.
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Table 5.18: LocBra vs. Exact solution on PROTEIN instances

CPLEX-900 LocBra

S tmin tavg tmax ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I

20 0.03 26.83 215.59 100 0.08 14.28 30.08 0.00 0.07 0.84 60 81 0
30 0.09 132.00 856.79 100 0.12 24.77 30.11 0.00 0.14 0.66 19 49 0
40 0.14 575.70 900.52 63 0.22 26.38 30.31 -0.14 0.35 1.26 12 16 3

mixed 0.03 180.36 900.66 96 0.12 23.57 30.37 0.00 0.16 0.71 24 46 0

Evaluations on PROTEIN database. LocBra parameters are set to the following val-
ues:
π = 20, π_dv = 30, total_time_limit = 30s, node_time_limit = 6s,
UB_time_limit = 12s, dv_max = 5, l_max = 3, dv_cons_max = 2. The exact
method for this database is CPLEX with a time limit of 900s. It turned out that the 900s
were enough to compute the optimal solutions for 322 instances out of 400.

The results are reported in Table 5.18. The average deviations of LocBra are less than
1% for all subsets, except subset 40 because the instances are the hardest. But, on that
subset LocBra has a minimum deviation of −0.14%, and η′′I = 3. Which means that LocBra
has found in 30s solutions better than CPLEX in 900s. Another important remark is that
LocBra average and maximum running times are very small compared to CPLEX-900
running times. LocBra, in the worst case, stops at 30s, while CPLEX-900 reaches 575s
on average and 900s in the worst case. Such difference is remarkable, especially because
LocBra in that short amount of time has found good solutions that are very close to the
best or optimal ones. This proves the high quality of solutions computed by LocBra.

Conclusion. LocBra has computed very good solutions in a maximum time of 30s
compared to CPLEX with 900s. The deviation on average does not exceed 0.35%, which
considerably small. In addition, LocBra was able to compute better solutions than CPLEX
for 3 instances.

The same experiments are repeated on other databases (MUTA and HOUSE-REF),
and the obtained results are reported in Appendix B, Section B.3.2. The conclusions of
those experiments are:

• MUTA database: Those results show that LocBra in 900s can compute solutions
at 10.78% far from the optimal/best solutions computed by solving JH formulation
during 10 hours. This number is, of course, in the worst case and it is considerably
good.

• HOUSE-REF database: The results have shown that LocBra was able to compute
very good quality solutions that are far by 2.5% from the optimal/best solutions.
LocBra has achieved these results with a maximum running time of 100s, while
CPLEX needed more than 400s on average. Moreover, LocBra in 100s was able to
find better solutions than CPLEX in 900s for 6 instances.

General conclusions based on the evaluations. LocBra has shown closeness between
its solutions and optimal/best solutions with MUTA instances. It, even, succeeded in
computing better solutions in very short amount of time, like shown in the experiment
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on PROTEIN instances. In a maximum of 30s, LocBra was able to converge to better
solutions than CPLEX in 900s. Same behavior and results are recorded on HOUSE-REF
database as well. All those results have answered the question asked at the beginning of
this experiment. They also proves that LocBra is capable of computing solutions very close
to the optimal/best ones.
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Figure 5.2: F3 formulation solved for two MUTA instances with different time limits.

5.3.1.3 LocBra parameters analysis

It is discussed in Chapter 4 (Section 4.4.4) how the parameter values are chosen for
every experiment. This section gives a better insight about the parameters and their
influences in LocBra, and in particular the version with F3 formulation.

Upper Bound (UB) computation. To determine a good time limit to compute an UB
in LocBra, few instances are picked from each database and they are ran with different time
limits. Figure 5.2 shows the UB solutions trend with different time limits when solving F3
formulation. The optimal solution for each instance is also shown in the figures. As can be
seen in I1 instance, the objective function value starts at 53.075 with 60s as a time limit.
It decreases to 51.425 with 180s, and reaches 31.625 with 900s. Knowing that the optimal
solution is 29.975 that requires more than 2500s to be found, the UB value obtained within
180s seems to be a good solution to start up LocBra algorithm. Similarly, in I2 instance,
the UB 124.85 obtained at 180s seems a good one to start the branching iterations. The
difference between 124.85 and the optimal solution with an objective value of 101.75 is
smaller than other UB values obtained at 60s and 120s. The results of other instances,
not shown here, have led to the same conclusions. Therefore, 180s is chosen as the value
to UB_time_limit parameter in LocBra heuristic.
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Figure 5.3: F3 formulation solved for two HOUSE-REF instances with different time limits.

Figure 5.3 shows the UB behavior with time on two HOUSE-REF instances. For both
instances, the UB obtained within 30s is, actually, the objective function values of the
optimal solutions. These optimal solutions were found when solving F3 formulations with
time reaching hundreds of seconds. All the time spent after the first 30s, was consumed by
the solver trying to prove that this is the optimal solution. So, 30s seems to be reasonable
as an UB time limit, in the extended version of LocBra. And in the default version, the
30s is set as the total time limit to the heuristic. This will show what the heuristic has to
offer compared to the solver CPLEX.

The evolution of solutions per iteration. LocBra is an iterative process and in each
iteration it explores a neighborhood in the solution space. Figure 5.4 shows the evolution
of the objective function values of the solutions found in each iteration. This gives an idea
about the behavior of LocBra and shows whether an iteration is an intensification or a
diversification step. For example, on MUTA instance, LocBra has reached 20 iterations.
It starts with an UB of 69.85, and the next solution found had an objective function
value of 66.55. Up until forth iteration, the intensification had always found solutions
with the same objective function value. This case had caused a diversification step to be
fired, which explains the curve jump to 68.2. The parameter �_max is responsible for
this diversification step. Next, it continued with an intensification step in iteration 6. The
curve keeps going up and down, which means that diversification followed by intensification
steps are occurring. Finally, the best solution is the one with the objective function value
of 66.55.

On HOUSE-REF instance, LocBra starts off with an UB of 35.88. The first iteration
improved the solution and reached a value of 7.53. In the second iteration, which is an
intensification step, the solver did not find a feasible solution (represented by −1). The
reason is whether the time limit given is reached, or there is no feasible solution in that
neighborhood. This case has forced a diversification step, followed by intensification steps.
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Figure 5.4: The evolution of the objective function values of computed solutions with the
number of iterations for one MUTA instance and HOUSE-REF instance.

These examples confirm the usefulness of LocBra parameters and they show the im-
portance of diversification when getting blocked in a region in the solution space.

Iterations vs. best solutions. Figure 5.5 shows at which iteration the best solutions
were found for MUTA and HOUSE-REF instances. Iteration 0 indicates the phase of
UB computation, where at this point it is possible to find the optimal solution. The
best solutions are found in iteration 0 for 368 instances in MUTA database. Then, for
98 instances an intensification was needed to find the best solutions. The number grows
for 2 intensification iterations, and then starts to drop until reaching 4 instances with 7
iterations. On HOUSE-REF database, the best solutions where found in the phase of UB
computation for 282 instances. For the rest of the instances (378), 1 to 3 intensification
steps were needed to improve the solutions and to converge towards the best ones. Note that
the maximum number of iterations in the charts is not necessarily the actual maximum
number. There could be for some instances more iterations but without finding better
solutions.
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Figure 5.5: Nb. iterations vs. the number of instance where best solutions are found.

Stopping criteria statistics. Figure 5.6 shows the number of instances per stopping
criterion. Based on LocBra algorithm presented in Section 4.4.3, the conditions that cause
LocBra to stop are:

1. Optimal: if the optimal solution is found when computing the UB.

2. TLReached: if the total time limit imposed is reached. This is controlled by the
parameter total_time_limit.

3. Cons_dv: if the number of maximum consecutive diversification steps is reached.
This is controlled by the parameter dv_cons_max.

4. DV_max: if the number of maximum diversification steps allowed is reached. This
is controlled by the parameter dv_max.
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Figure 5.6: Stopping criteria vs. number of instances.

On MUTA instances, LocBra stopped after finding the optimal solution for 316 in-
stances. It stopped because of reaching the maximum time limit for 453 instances. The
parameters controlling the diversification were useful for only 31 instances. However, on
HOUSE-REF instances, the only used stopping criterion is the maximum time limit for all
the 660 instances.

All the above analyses and statistics are interesting and show how LocBra behaves
when solving GED instances. Even, if it is not shown here, the same was done for other
databases such as PROTEIN, PAH, etc.
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5.3.2 An adapted VPLS to solve the GED problem

Variable Partitioning Local Search (VPLS) is matheuristic, proposed by Della Croce
et al. (2013), that aims at solving optimization problems by embedding a MILP solver
into heuristic algorithms. VPLS framework can be seen as a local search approach. As
in local branching, VPLS is based on defining neighborhoods around feasible solutions
by modifying the MILP formulation. Then, the modified formulation is handed out to
the solver to explore the neighborhood. Della Croce et al. (2013) have applied VPLS to
problems such as two-machine total completion time flow shop, and nurse rostering, where
good and satisfying results were achieved. For this reason, and after obtaining satisfactory
results with local branching matheuristic, it is interesting to test a special VPLS version to
solve the GED problem. VPLS allows integrating information and characteristics into the
neighborhood definition, which increases most likely the performance of the heuristic. This
section will cover the details of a VPLS heuristic designed for solving the GED problem.

5.3.2.1 Main features of VPLS

Considering the general form of a MILP formulation, as given in Eq. 3.5, VPLS focuses
on the list of binary variables, which are the main source of difficulty in such formulations.
Let XB = {xi | ∀i ∈ B} be the set of binary variables, and X̄B = {x̄i | ∀i ∈ B} be the
values assigned to binary variables for a given X̄ feasible solution. Assuming that there
exists a partition S ⊆ B of "special" binary variables. The variables in S are selected
based on some defined rules, where these rules underlies some analyses and observations
related to the problem. As an example, those special variables can be determined based
on problem-dependent information and characteristics of an instance. After determining
the set S, a neighborhood N(X̄, S) can be defined as follows:

N(X̄, S) = {XB | xj = x̄j , ∀j /∈ S} (5.23)

The neighborhood of X̄, then, contains all solutions of the MILP such that, they share
the same values of binary variables not belonging to subset S, as in the current solution
X̄B. Meanwhile, the variables belonging to subset S remain free. An example of variables
partitioning is depicted in Fig. 5.7. So, the resulting restricted MILP formulation has a
part of its binary variables with default values (as in the solution X̄. At this point, the
solver can be called to solve the restricted formulation looking for the optimal/best solution
in the neighborhood N(X̄, S). The new solution is the optimal in that neighborhood, if the
prove is optimality is returned by the solver. In the case where the restricted formulation
is difficult, then the solver can be forced to stop and return the best solutions found so far.
This step stands for the search intensification in VPLS. Finally, the current solution X̄ is
updated with the new solution. To sum up, VPLS consists of three main steps:

1. Neighborhood definition around a current solution X̄.

2. Intensifying the search in the neighborhood.

3. Update the current solution with the new one.

The process can be repeated until a defined stopping criterion is met.
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Figure 5.7: Example of VPLS partitioning.

5.3.2.2 VPLS for the GED problem

The first ingredient needed in VPLS is the MILP formulation, which will be the for-
mulation F3. A fundamental question arises when implementing VPLS is how to define
the set S? Earlier, the variables in S were referred to as special variables, and this is to
indicate that they should be chosen carefully. Choosing them randomly is a possibility, but
there is no guarantee that the neighborhoods will contain good and diversified solutions.
Therefore, the set S will be defined based on the GED problem and the knowledge and
experience picked up when designing the local branching heuristic. It is argued earlier
the importance of choosing which variables to include in intensification and diversification
mechanisms in LocBra. Particularly, selecting only xi,k variables, representing vertices
matchings, is more important than selecting all the variables including the ones represent-
ing edges matchings. Moreover, the diversification is more efficient when selecting only
the, so-called, important variables. The logic behind doing this, is based on GED property
1 that says edges matching can be deduced when determining vertices matching. Regard-
ing the important variables, the procedure followed to pick them is based on determining
which variables have big impact on the objective function value. The analysis was done
over the cost matrices and a local estimation cost computed for each vertices assignment.
Theoretically, such ideas have meaning and sounds rational, and experimentally they have
shown good results and have increased the efficiency of the method. Similarly, VPLS may
achieve good results by following the same directions.

So, back to defining the set S, it is essential to select variables that affect the most the
matching (and at the same time the objective function). Basically, only xi,k variables are
going to be considered when defining the set S. And next, a procedure based on the notion
of spheres is followed to determine S. This procedure needs two input graphs G and G′

and an initial solution x0, and it proceeds as follows:

(i) First, define the list of spheres on graph G of radius δ. For each vertex i in G, the
sphere Si contains all vertices j that are distant from i with at most δ edges, e.g.
if δ = 1, Si contains all vertices connected to i with an edge. To compute how
many edges are needed to go from one vertex to another, the well-known algorithm
Dijkstra is used. This is a polynomial algorithm, designed by Edsger Wybe Dijkstra
in 1965 and presented in the book of Cormen (2001). It computes the shortest path
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Figure 5.8: Example of generating spheres for a graph. When δ = 1, in red is the sphere
for vertex 1, in green is the sphere for vertices 2 and 3, in orange is the sphere for vertex 4
and in blue is the sphere for vertex 5. When δ = 2, in red is the sphere for vertices 1 and
4, in green is the sphere for vertices 2, 3, and in blue is the sphere for vertex 5.

between two vertices in a graph. In fact, each sphere is a subgraph of G, containing
all vertices accessible by at most δ edges, plus the edges connecting any two vertices
in the sphere. Figure 5.8 shows an example of spheres with different δ values.

(ii) Next, compute a cost for each sphere Si based on the assignments in the initial
solution x0. For example, if S1 for vertex u1 contains vertices {u1, u2, u3, u4}. From
the solution x0, see which vertex k in G′ the vertex u1 is assigned to, and include the
cost of this operation c(u1 → v) to the cost of the sphere. The same is done for the
rest of the vertices ({u2, u3, u4}). As well, check the edges that are part of sphere S1

and find their assignments so their costs are added to the sphere’s cost, e.g. if there
exists an edge (u1, u3) in G, get the cost of the operation (u1, u3) → (k, l) where
(k, l) ∈ E′.

cS =
∑
∀i∈S

c(i → assign(i)) +
∑

∀(i,j)∈(S×S )∩E
c((i, j) → assign((i, j))), (5.24)

with assign a function determining vertices/edges assignments based on xp solution.
The result of this step is an array [cS ] storing the costs of all spheres.

(iii) Finally, find the sphere with the highest cost in [cS ] array. Then, for every vertex i
in this sphere, add all xi,k variables to the set S.

This procedure is called each time a new feasible solution is found to select the next sphere
with the highest cost. An already selected sphere is excluded in the next iteration. This
avoids selecting a sphere multiple times, and searching in the same neighborhood several
times consecutively.

Once the set S is determined, the next step is to set all variables not in S to their
values in the solution x0 and the rest of the variables are left free in the MILP formulation.
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Algorithm 10: VPLS algorithm
1 x∗ := x̄ := x̃ := undefined
2 tl := elapsed_time := cons_sol_eq := 0
3 opt := false; first_iter := true
4 LS := ∅
1 Function VPLS(δ, total_time_limit, node_time_limit, UB_time_limit,
2 cons_sol_max)

Output: x∗, opt
3 tl = UB_time_limit // Set the time to compute initial solution
4 /* Compute a first solution */
5 status := MIP_SOLVER(tl, ∅, ∅, x̃)
6 if status = "opt_sol_found" then opt := true; x∗ := x̃; exit
7 if status = "infeasible" then opt := false; exit
8 ImprovedSolution()
9 elapsed_time := tl

10 tl = node_time_limit // Set the time for an iteration
11 ComputeSpheres(δ)
12 while elapsed_time < total_time_limit and cons_sol_eq < cons_sol_max do
13 Smax := SelectHighCostSphere()
14 S := ComputePartitionS(Smax)
15 tl := min{tl, total_time_limit − elapsed_time}
16 /* S contains free variables, and x̄ is current solution to fix

variables not in S */
17 status := MIP_SOLVER(tl, S, x̄, x̃)
18 tl := node_time_limit
19 ImprovedSolution()
20 /* Count consecutive equivalent solutions */
21 if first_iter 6= true and f(x̃) = f(x̄) then
22 cons_sol_eq := cons_sol_eq + 1
23 else
24 cons_sol_eq := 0
25 end
26 elapsed_time := elapsed_time + tl
27 first_iter := false
28 end
29 End
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Algorithm 11: VPLS helper functions
1 Function ImprovedSolution()
2 x̄ := x̃
3 if f(x̃) < f(x∗) then x∗ := x̃;
4 End
1 Function ComputeSpheres(δ)
2 foreach vertex i in V do
3 /* Compute shortest paths towards all other vertices */
4 distances[i] := Dijkstra(i,G)
5 foreach vertex j in V do
6 if distances[i,j] ≤ δ then
7 Add vertex j to sphere Si

8 end
9 end

10 Add Si to LS

11 end
12 End
1 Function SelectHighCostSphere()
2 max_cost := 0
3 high_cost_sphere := undefined
4 foreach sphere s in LS do
5 cost := 0
6 foreach vertex i in s do
7 cost := cost + c(i, assign(i)) // get vertex cost assignment
8 end
9 foreach edge (i, j) in s do

10 cost := cost + c((i, j), assign((i, j))) // get edge cost assignment
11 end
12 if max_cost > cost then
13 high_cost_sphere := s
14 max_cost := cost
15 end
16 end
17 return high_cost_sphere
18 End
1 Function ComputePartitionS(Smax)
2 S := ∅
3 foreach vertex i in Smax do
4 foreach vertex k in V ′ do
5 Add xi,k to S
6 end
7 end
8 return S

9 End
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The solver will solve the restricted MILP formulation trying to find the best solution by
finding the right values for variables in S. This is the intensification phase, that will result
in a new solution x1. Again, the spheres costs are recomputed based on x1, and the one
with the highest cost will be selected for the next iteration. An iteration, then, consists
of three steps: computing and selecting the sphere to define S, defining the neighborhood
based on S, intensifying the search in the neighborhood. This process is repeated until
reaching some defined stopping criterion.

A detailed algorithmic presentation of VPLS heuristic is provided in Algorithm 10.
Functions for spheres and set S computations are given in Algorithm 11. The input pa-
rameters for VPLS are:

1. δ, is the radius of spheres.

2. total_time_limit, is the total running time allowed for VPLS before stopping.

3. node_time_limit, is the maximum running time given to the solver to solve the
restricted MILP formulation.

4. UB_time_limit, is the running time allowed to the solver to compute an initial
solution.

5. cons_sol_max, serves as a stopping criterion: VPLS stops when the number of
consecutive intensification steps finding solutions with the same objective function
values is equal to this parameter.

There are two parameters serving as stopping criteria, so VPLS heuristic halts when
at least one of them is met:

(i) the total execution time exceeds the total_time_limit, or

(ii) the number of consecutive intensification steps done with solutions with the same
objective function values exceeds cons_sol_max.

The output of the algorithm is the best solution found (x∗) along the search, and
a flag to indicate whether it has been proved to be optimal or not (opt). The initial
solution x0 used by VPLS is obtained by solving F3 formulation within a time limitation
of UB_time_limit seconds. If at this point, F3 is solved to optimality or no feasible
solution has been found, the heuristic halts and returns the available solution and/or the
status. Otherwise, the current solution x̄ is set to the solution found and the exploration
begins. The spheres are computed by calling the function ComputeSpheres (line 11), before
starting the loop. Each iteration starts by calling the function SelectHighCostSphere (line
13), to compute the spheres costs based on x̄ solution, and to find the sphere with the
highest cost Smax. Next, the set S is defined based on Smax by calling the function
ComputeParitionS at line 14. Then, the solver is called to solve the new formulation after
setting free the variables in S and fixing the other variables to their values as in x̄. A
new solution x̃ is returned by the solver, and x̄ is updated to the new solution. Also, x∗

is updated if the objective function value of x̃ is better than the best one. The last step
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Algorithm 12: Compute δ in VPLS heuristic
1 Let distanceMat be a matrix // to store distances between all vertices
1 Function ComputeDelta(R, P , X)

Output: δ
2 foreach vertex i in V do
3 distanceMat[i] = Dijkstra(i,G) // compute all distances rooted

from i towards other vertices
4 end
5 Let maxDistance = Max(distanceMat) // compute max value in the

matrix
6 Let H = ComputeHistogram(distanceMat) // compute histogram of

values
7 /* cover quarter of the values in the matrix */
8 Let sum = 0
9 for i← 1 to maxDistance by 1 do

10 if (sum+H[i]) < |V |×|V ′|
4 then

11 sum = sum+H[i]
12 else
13 break
14 end
15 end
16 δ = i

17 End

is to count the consecutive solutions with equal objective function values and update the
elapsed time (lines 21 to 26).

To evaluate the performance of VPLS, the same experimentation protocol is used as
when evaluating LocBra heuristic:

1. Effectiveness of VPLS w.r.t. competitor heuristics.

2. Effectiveness of VPLS w.r.t. an exact method.

As in LocBra, tuning VPLS parameters is based on the same concept explained in
Section 4.4.4. Parameters total_time_limit, UB_time_limit and node_time_limit are
considered as tuned parameters. There values are set based on preliminary tests for each
database. The parameter cons_sol_max is considered as a pre-fixed parameter, and is
set to 5 in all the experiments and for all databases. The value 5 is chosen based on
the results of several tests on different instances selected from different databases. This
value seemed to be reasonable, because for most instances getting solutions with the same
objective function value more than 5 times, was enough to stop VPLS. Moreover, this
solution has turned out to be the optimal one. At last, the δ parameter is set in an
adaptive fashion depending on the current instance and the graph structures. The snippet
of code in Algorithm 12 presents the procedure to compute δ. The main idea is to select δ
that leads to generating spheres covering a quarter of the vertices in the graph. Based on
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the experiments done, the values of δ were varying between 2 and 4, and such values have
returned good results.

Common configuration in all experiments. VPLS algorithm is implemented in C
language. The solver CPLEX 12.7.1 is used to solve the MILP formulations. Experiments
are ran on a machine with Windows 7x64, Intel Xeon E5 2.30 GHz, 4 cores and 8 GB of
RAM. CPLEX solver is configured to use single thread, and the rest of the parameters are
set to default.

5.3.2.3 Effectiveness of VPLS w.r.t. competitor heuristics

These experiments answer the following question: which heuristic is the best minimizer?

Methods. The heuristics chosen in the evaluation are:

i- CPLEX-t is the solver CPLEX ran on F3 formulation with t seconds as a time limit.

ii- BeamSearch-α, the BeamSearch heuristic with α the beam size.

iii- SBPBeam-α, the SBPBeam heuristic with α the beam size.

iv- IPFP-it, the IPFP heuristic with it the maximum number of iterations.

v- GNCCP-d, the GNCCP heuristic with d the quantity to be subtracted from the ζ
variable at each iteration. ζ is the variable that controls the concavity and convexity
of the objective function of the QAP model solved by GNCCP heuristic.

Comparison indicators. All heuristics are executed on different databases and for all
of them, the following indicators are computed: tmin, tavg, and tmax are the minimum,
average and maximum CPU times in seconds over all instances. Correspondingly, dmin,
davg, and dmax are the deviations of the solutions obtained by one heuristic, from the best
solutions found by all heuristics. The deviations are computed based on Eq. 4.11 and are
expressed in percentage. Lastly, ηI is the number of instances for which a given heuristic
has found the best solutions.

Evaluations on PROTEIN database. This database is selected to evaluate VPLS
heuristic on GED instances.

Default versions. The parameters are set to the following values:

V PLS cons_sol_max = 5, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,

CPLEX-t t = 10
CPLEX-LocBra-t t = 9
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1
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Table 5.19: VPLS vs. heuristics on PROTEIN instances

S 20 30 40 mixed

VPLS

tmin 0.05 0.09 0.16 0.05
tavg 3.30 5.47 6.59 5.31
tmax 5.79 9.98 9.98 9.98

dmin 0.00 0.00 0.00 0.00
davg 0.12 0.10 0.37 0.11
dmax 1.08 1.31 1.25 0.84

ηI 73 65 30 64

CPLEX-10

tmin 0.05 0.06 0.16 0.05
tavg 5.86 8.54 8.84 8.24
tmax 10.03 10.05 10.06 10.03

dmin 0.00 0.00 0.00 0.00
davg 0.08 0.11 0.55 0.16
dmax 0.84 0.75 2.47 3.46

ηI 79 60 30 60

BeamSearch-5

tmin 0.00 0.01 0.01 0.00
tavg 0.02 0.07 0.10 0.06
tmax 0.04 0.13 0.22 0.13

dmin 0.00 0.00 0.00 0.00
davg 5.61 3.33 2.86 5.57
dmax 123.86 155.56 7.29 26.54

ηI 10 11 10 10

SBPBeam-5

tmin 0.26 1.03 2.66 0.36
tavg 0.37 1.54 3.76 1.75
tmax 0.54 2.26 5.05 4.39

dmin 0.00 0.00 0.00 0.00
davg 3.18 5.57 3.41 2.74
dmax 5.36 155.56 5.58 4.78

ηI 12 10 10 10

IPFP-10

tmin 0.02 0.05 0.04 0.03
tavg 0.09 0.27 0.59 0.31
tmax 0.13 0.38 0.88 0.81

dmin 0.00 0.00 0.00 0.00
davg 1.04 0.97 1.12 1.02
dmax 3.25 3.38 2.65 2.51

ηI 23 13 11 11

GNCCP-0.1

tmin 1.32 4.50 13.93 1.45
tavg 2.05 7.21 23.17 9.36
tmax 2.47 10.45 30.51 23.26

dmin 0.00 0.00 0.00 0.00
davg 0.21 0.19 1.65 1.36
dmax 1.08 0.81 156.60 117.73

ηI 55 48 72 50
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Table 5.19 shows the results of this experiment. VPLS has the smallest average de-
viations for all subsets, except subset 20 where it is outperformed by CPLEX-10, with a
difference of 0.04%. On subset 40, despite the average deviation difference between VPLS
and GNCCP-0.1, the latter has found best solutions two times more than VPLS (30 against
72). Nevertheless, VPLS wins w.r.t. deviations, and GNCCP-0.1 in the worst case reaches
156% while VPLS reaches a max of 1.25%. The beam-search based methods are the worst
in terms of solutions quality. Yet, BeamSearch-5 is the fastest heuristic. An important re-
mark here is the difference between tavg values of VPLS and CPLEX-10, where the former
is always faster.

Extended versions. Another version of LocBra is considered in this version with a
maximum running time of 30s. The rest of the heuristics are configured, as well, to reach
almost the same running time.

V PLS cons_sol_max = 5, total_time_limit = 30s,
node_time_limit = 6s, UB_time_limit = 12s,

CPLEX-t t = 30
BeamSearch-α α = 1500
SBPBeam-α α = 30

IPFP-it it = 500
GNCCP-d d = 0.09

The results of this experiment are reported in Table 5.20. There is not a clear winner
here. On easy instances (subsets 20 and 30), CPLEX-30 seems to have computed the best
solutions, which can be seen by looking at the davg and ηI values. On hard instances (subset
40), GNCCP-0.9 has the best average deviation at 0.12%, with the best ηI at 63, followed
by VPLS with davg = 0.34% and ηI = 40. On medium instances (subset mixed), VPLS
is the best in terms of average deviation and number of best solutions. Regarding the
average running time, IPFP-500 is the fastest on easy instances, while VPLS is the fastest
on hard instances, and on medium instances SBPBeam-30 is the fastest. Consequently,
VPLS outperforms the existing heuristics on these instances, except on hard instances
where GNCCP-0.09 is better in terms of solutions quality. Moreover, VPLS is never the
slowest heuristic and it is faster than the others on medium and hard instances.

Conclusion. On PROTEIN instances, VPLS has shown very good performance, beat-
ing BeamSearch, SBPBeam and IPFP heuristics. However, GNCCP was able on hard
instances to perform slightly better in default and extended versions. One more thing,
VPLS results are very close to the default behavior of CPLEX. But, VPLS heuristic is
faster than CPLEX in converging towards good solutions.

More results on other databases can be found in Appendix B, Section B.4.1. The
conclusions of those experiments are:

• MUTA database: VPLS heuristic has achieved better results than existing heuris-
tics in terms of solutions quality, but it does not outperform the default behavior of
the solver when solving F3 formulation.

• HOUSE-REF database: VPLS heuristic, in the default version with a maximum
running time of 10s, has performed better than all existing heuristics with their
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Table 5.20: VPLS vs. heuristics with extended running time on PROTEIN instances

S 20 30 40 mixed

VPLS

tmin 0.05 0.11 0.19 0.06
tavg 7.17 12.54 15.03 12.04
tmax 13.77 29.73 29.97 29.95

dmin 0.00 0.00 0.00 0.00
davg 0.06 0.08 0.27 0.07
dmax 0.84 0.75 1.25 0.70

ηI 82 71 41 74

CPLEX-30

tmin 0.03 0.11 0.17 0.05
tavg 11.56 24.09 26.18 22.33
tmax 30.03 30.01 30.05 30.03

dmin 0.00 0.00 0.00 0.00
davg 0.03 0.05 0.34 0.09
dmax 0.84 0.48 1.68 3.08

ηI 92 80 35 70

BeamSearch-1500

tmin 0.00 0.01 0.01 0.00
tavg 3.94 13.72 23.72 13.42
tmax 5.85 20.93 34.15 25.98

dmin 0.00 0.00 0.00 0.00
davg 1.64 7.30 1.85 4.44
dmax 21.88 311.11 6.79 26.01

ηI 12 10 10 10

SBPBeam-30

tmin 1.57 6.16 15.28 1.63
tavg 2.15 8.95 23.05 8.79
tmax 3.06 13.33 31.71 21.32

dmin 0.00 0.00 0.00 0.00
davg 3.21 5.62 3.46 2.79
dmax 5.66 155.56 5.89 4.78

ηI 12 10 10 10

IPFP-500

tmin 0.01 0.04 0.13 0.02
tavg 2.14 7.36 22.26 9.01
tmax 5.03 12.99 31.93 27.64

dmin 0.00 0.00 0.00 0.00
davg 0.79 0.79 0.73 0.76
dmax 2.71 2.82 2.10 2.22

ηI 27 15 13 12

GNCCP-0.09

tmin 1.47 4.58 15.84 1.52
tavg 2.19 7.69 24.34 9.75
tmax 3.32 10.96 29.79 28.58

dmin 0.00 0.00 0.00 0.00
davg 0.21 0.21 0.12 0.24
dmax 1.12 0.81 0.95 1.13

ηI 50 32 63 31
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default parameters. However, in the extended version, VPLS came second, right
after GNCCP heuristic, which surprisingly was able to solve HOUSE-REF instances
efficiently.

General conclusions based on the evaluations. All the above experiments have
shown the efficiency of VPLS heuristic in solving the GED problem. It outperforms the
existing heuristics in general, except in few cases such as subset 40 in PROTEIN database
and HOUSE-REF extended version, where GNCCP was able to perform slightly better.
VPLS has also performed better than CPLEX solver in some cases such as on HOUSE-REF
instances. Moreover, an important remark concerning the running time of VPLS that was
better than the running time of other heuristics and CPLEX solver. Indeed, not only in
terms of solution quality, VPLS is also able to compete with other heuristics in terms of
running time. Table 5.21 summarizes the experiments conclusions.

Table 5.21: Summary of VPLS comparison w.r.t. competitor heuristics

Database Solutions quality Speed

Default versions
PROTEIN VPLS BeamSearch
MUTA CPLEX BeamSearch
HOUSE-REF VPLS BeamSearch

Extended versions
PROTEIN CPLEX/VPLS IPFP/VPLS
MUTA VPLS VPLS/GNCCP
HOUSE-REF GNCCP IPFP

5.3.2.4 Effectiveness of VPLS w.r.t. an exact method

This experiment will answer the following question: how close the VPLS solutions are
from the optimal solutions?

Methods. The exact approach in these experiments consists in solving a GED MILP
formulation using CPLEX. This exact method was already executed on several databases
when testing LocBra heuristic. So, the results obtained in Section 5.3.1.2 are used in this
experiment.

Comparison indicators. The following indicators are computed for each database:
tmin, tavg, and tmax, which are respectively the minimum, average and maximum CPU
times in seconds over all instances. Correspondingly, dmin, davg, and dmax are the devia-
tions (in percentage) of the solutions obtained by VPLS, from the optimal or best solutions
found. The deviation is computed by using Eq. 4.11. In addition, ηI is the number of
optimal solutions found, and η′I is the number of solutions found by VPLS that are equal
to the optimal or best known ones. At last, η′′I is the number of solutions computed by
VPLS that are better than the best known solutions, when CPLEX was not able to find
optimal solutions.

193



5.3. PROPOSED MATHEURISTICS

Table 5.22: VPLS vs. Exact solution on PROTEIN instances

CPLEX-900 VPLS

S tmin tavg tmax ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I

20 0.03 26.83 215.59 100 0.05 7.17 13.77 0.00 0.12 1.12 62 75 0
30 0.09 132.00 856.79 100 0.11 12.54 29.73 0.00 0.20 0.94 19 42 0
40 0.14 575.70 900.52 63 0.19 15.03 29.97 -0.28 0.45 1.53 12 17 2

mixed 0.03 180.36 900.66 96 0.06 12.04 29.95 -2.64 0.16 0.99 23 40 2

Evaluations on PROTEIN database. VPLS parameters values are:
cons_sol_max = 5, total_time_limit = 30s, node_time_limit = 6s,
UB_time_limit = 12s.

Table 5.22 shows the results of this experiment. There is a huge difference between the
average running time of VPLS and CPLEX-900, that reaches more than 500s on subset
40. Yet, the average deviation of VPLS on that subset is 0.45%, which is very small. And
the minimum deviation is −0.28% indicating that VPLS has found better solutions than
CPLEX-900. It is the same case on the other subsets, where the average deviations are very
small showing closeness between the solutions of both methods. However, the difference is
that VPLS was able to compute almost good solutions in a maximum time of 30s, where
CPLEX-900 reaches 900s in most cases.

Conclusion. On PROTEIN database, VPLS was able to compute in 30s the same
and sometimes better solutions than CPLEX in 900s. This proves the closeness of VPLS
solutions from the optimal/best ones.

Additional experiments were conducted on MUTA and HOUSE-REF database, and
the results are discussed in Appendix B, Section B.4.2. Here are the conclusions of those
experiments:

• MUTA database: The solutions computed by VPLS are relatively good compared
to the optimal/best ones found by CPLEX. The average deviations vary between 0%
and 12% as the graph size increases. Even though the running time of VPLS is set
to 900s, the heuristic does not consume all the time. On hard instances the average
time is at 504s.

• HOUSE-REF database: VPLS has computed in 100s better solutions for 3 in-
stances than CPLEX in 900s. The average deviation is relatively small at 4%. In
addition, VPLS is very fast compared to CPLEX, where the tavg = 68s for VPLS
against 417s for CPLEX.

General conclusions based on the evaluations. To sum up and based on the analysis
and the interpretation of the results, VPLS is an effective heuristic that provides good
quality solutions in a short amount of time. The results have revealed the closeness of
the solutions computed by VPLS from the solutions computed by CPLEX in 900s on
PROTEIN and HOUSE-REF databases. However, on MUTA instances where the solutions
were computed during 10 hours, VPLS has an average deviation of 6% from the optimal
and best known ones, which is considerably not high. The results prove that VPLS is
capable of computing solutions very close to the optimal/best ones.
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5.3.2.5 VPLS vs. LocBra

VPLS and LocBra are matheuristics that share features, such as neighborhood def-
initions and intensification. However, each one uses a different approach to define the
neighborhood. In this section, the results obtained in Section 5.3.1.1 for LocBra and Sec-
tion 5.3.2.3 for VPLS are compared together to study the performances of the heuristics.

Evaluations on PROTEIN database. The results in Table 5.23 show that the best
solutions were found by LocBra for all subsets. Yet, the solutions computed by VPLS
are very close with a difference less than 0.1% on average. Moreover, VPLS has the same
average deviation (0.06%) as LocBra on subset mixed, and also it has a better maximum
deviation of 0.56% against 2.90% by LocBra. VPLS is two times faster than LocBra on
the average running time.

Table 5.23: VPLS vs. LocBra on PROTEIN instances

VPLS LocBra

S tmin tavg tmax dmin davg dmax ηI tmin tavg tmax dmin davg dmax ηI

20 0.05 7.17 13.77 0.00 0.05 1.12 88 0.08 14.28 30.08 0.00 0.00 0.00 100
30 0.11 12.54 29.73 0.00 0.08 0.75 68 0.12 24.77 30.11 0.00 0.01 0.30 91
40 0.19 15.03 29.97 0.00 0.14 0.84 55 0.22 26.38 30.31 0.00 0.05 0.55 80

mixed 0.06 12.04 29.95 0.00 0.06 0.56 75 0.12 23.57 30.37 0.00 0.06 2.90 86

Concolusion. VPLS is two times more faster than LocBra, with a deviation gap of
0.1% on average regarding the solutions quality.

The same comparison is done for MUTA and HOUSE-REF databases (see Appendix
B, Section B.4.3). The conclusions are the following:

• MUTA database: LocBra is better than VPLS in solving MUTA instances. The
difference, however, is not that important with a maximum of 5% on the average. In
terms of running time, VPLS is way faster than LocBra with a difference reaching
the 500s on hard instances (subset 60).

• HOUSE-REF database: VPLS was able to compute better solutions than LocBra
for 33 instances. The average running time of VPLS is also better than the average
running time of LocBra.

General conclusions based on the evaluations. Both heuristics are good in solving
GED instances and finding good solutions. They both perform better than the heuristics
available in the literature. However, there is a slight difference in terms of solutions quality
in favor of LocBra over VPLS. This difference comes at a high price paid by LocBra,
because VPLS is two times - and sometimes more - faster than LocBra. On the contrary
to LocBra, VPLS does not consume all the given time when solving the problem. VPLS
tends to stop because of the stopping criterion cons_sol_max. This is, actually, a key
advantage of VPLS over LocBra.
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5.3.2.6 Stress test on heuristics

This experiment aims at testing the limits of the heuristics, by studying the evolution
of their solutions with time. Each heuristic is executed on the same instance with different
range of time values, starting from few seconds to reach thousands of seconds. The results
will show the behavior of each heuristic when pushed to the edge. Which heuristic is the
fastest and yet the most accurate? Which heuristic is the best with high running time?

Methods. The following heuristics are involved in this experiment:

i- VPLS, it has a parameter to control its running time, i.e. total_time_limit.

ii- LocBra, it has a parameter to control its running time, i.e. total_time_limit.

iii- F3, this is the solver CPLEX ran on F3 formulation with a maximum running time.

iv- F2, this is the solver CPLEX ran on F2 formulation with a maximum running time.

v- IPFP, this heuristic does not have a running time parameter, instead it has a pa-
rameter for the maximum number of iterations.

vi- GNCCP, this heuristic has a parameter d that changes ζ the variable to control the
concavity and convexity of the objective function of the QAP model. When ζ reaches
a maximum the heuristic halts. So d parameter controls the speed of the method.

Databases and instances. The instances of this experiment are selected from MUTA
database, because it contains many subsets of graphs with different sizes. The instances
are split into three groups: hard, medium and easy. Table 5.24 presents the details of
instances in each group. There are 15 instances in total, 5 instances per group. The
objective function value of the optimal/best solution is given for each instance. These
values are computed by CPLEX solving JH formulation with a time limit of 10 hours.
Note that, the CPU time reaches thousands of seconds on hard instances. This serves
better the purpose of this experiment and enables reaching thousands of seconds when
executing the heuristics. That is why the instances were picked from MUTA database and
not from other databases.

Comparison indicators and settings. The following indicators are computed for each
heuristic: tavg is the average CPU times in seconds over all instances in a group. davg is the
average deviation of the solutions obtained by one heuristic, from the optimal/best solu-
tions. The deviations are computed based on Eq. 4.11 and are expressed in percentage. All
heuristics with a parameter to control their execution times are launched with the following
values: 1, 2, 5, 10, 30, 60, 120, 180, 300, 900 and 3600 seconds. IPFP is executed with the fol-
lowing values of iterations: 10, 50, 100, 500, 1000, 5000, 10000 and 20000. Finally, GNCCP
is executed with the following parameter values: 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04 and
0.03.
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Table 5.24: Stress test instances details.

G G′ Size Opt/Best Optimal CPU time (s)

Hard

molecule_3450 molecule_4214 70 86.625 FALSE 13499.93
molecule_4018 molecule_4224 70 99 FALSE 24185.26
molecule_3214 molecule_2702 70 68.75 TRUE 10125.29
molecule_1731 molecule_3214 70 38.775 TRUE 17042.60
molecule_4214 molecule_1731 70 105.05 FALSE 10499.79

Medium

molecule_2944 molecule_3210 30 58.025 TRUE 44.27
molecule_3574 molecule_3168 30 45.375 TRUE 1119.13
molecule_3763 molecule_3291 40 42.35 TRUE 2635.34
molecule_3584 molecule_3817 40 57.75 TRUE 2025.58
molecule_4281 molecule_3291 40 91.85 TRUE 1000.18

Easy

molecule_3486 molecule_3601 10 22.275 TRUE 0.16
molecule_3875 molecule_3676 10 22.275 TRUE 0.23
molecule_3131 molecule_3074 20 46.75 TRUE 0.53
molecule_3220 molecule_3146 20 31.075 TRUE 0.80
molecule_3225 molecule_3048 20 47.575 TRUE 0.74

Table 5.25: Stress test on hard instances for MILP-based heuristics

total_time 1 2 5 10 30 60 120 180 300 900 3600

VPLS tavg 0.19 1.18 4.37 9.31 29.32 55.25 102.14 155.96 216.62 500.04 1174.23
davg 1175.68 1175.68 111.68 71.13 37.15 33.12 25.66 23.84 23.86 20.83 16.28

LocBra tavg 1.06 2.05 5.03 10.02 30.03 60.03 120.00 180.00 299.96 894.36 3577.55
davg 1175.68 789.26 88.92 88.92 45.09 29.27 25.60 21.15 13.77 11.30 6.44

F3 tavg 1.14 2.16 5.13 10.16 30.15 60.16 120.18 180.13 300.20 900.88 3606.52
davg 1175.68 94.13 94.13 48.80 40.66 36.43 31.94 26.42 21.95 20.03 13.81

F2 tavg 1.11 2.18 5.14 10.18 30.17 60.17 120.16 180.16 300.19 900.24 3605.42
davg 1175.68 1175.68 767.45 90.16 30.76 30.09 28.67 25.90 24.03 17.79 7.51

Table 5.26: Stress test on hard instances for IPFP and GNCCP

it 10 50 100 500 1000 5000 10000 20000

IPFP tavg 1.28 3.92 7.29 34.47 68.50 312.13 509.27 536.43
davg 24.88 18.93 19.62 19.31 19.31 19.95 19.64 19.95

d 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03

GNCCP tavg 111.90 177.78 179.78 136.70 360.17 249.55 501.71 644.10
davg 26.61 23.94 19.85 27.13 23.41 25.74 21.24 21.56
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Evaluations on hard instances. The results of MILP-based heuristics are presented
in Table 5.25, without IPFP and GNCCP heuristics, because they do not share the same
parameters with other heuristics. IPFP and GNCCP results are shown in Table 5.26. All
MILP-based heuristics have very high davg that reaches 1175% when total_time = 1s.
Increasing the total_time to 2s, F3’s average deviation drops to 94.13%, while deviations
of other heuristics remain high. As the time increases, the deviation starts to decrease
for all heuristics, and LocBra reaches the smallest davg for the range of times between
60s till 3600s. VPLS, F3 and F2 interchangeably switches positions, so VPLS has better
davg when total_times is set to 120 and 180s. F3 is the best (davg = 21.95%) when
total_time = 300s. And F2 has better average deviations after LocBra when total_times
is set to 60s, 900s and 3600s. In terms of average running times, VPLS is the fastest,
because it does not consume all the giving running time like the others. Based on Table
5.26, when tavg between 1s and 68s, IPFP has smaller average deviation than LocBra.
However, for higher running times LocBra starts to compute more accurate solutions than
IPFP. On the other hand, GNCCP seems to be very slow, even when its parameter set to
the default value (0.1), where its tavg = 111s. Also, GNCCP is outperformed by IPFP and
LocBra.

Conclusion. So, IPFP is a very fast heuristic that converges in short amount of time,
which is not the case of MILP-based heuristics. However, LocBra solves more efficiently
hard instances when granting it more time.

Table 5.27: Stress test on medium instances for MILP-based heuristics

total_time 1 2 5 10 30 60 120 180 300 900 3600

VPLS tavg 0.12 1.09 3.99 7.56 16.74 26.20 49.14 65.74 99.65 162.09 259.38
davg 691.68 63.49 37.02 29.28 28.50 27.36 25.29 24.94 24.94 24.57 22.23

LocBra tavg 1.01 1.78 4.17 8.17 24.01 48.15 95.51 144.16 240.19 716.13 2880.15
davg 56.21 54.35 31.99 31.06 23.59 23.80 25.35 23.80 22.51 20.95 19.81

F3 tavg 1.02 1.82 4.21 8.25 24.23 48.26 96.55 144.83 241.43 711.26 1955.51
davg 62.04 36.39 35.82 34.10 29.70 29.34 28.56 27.42 25.86 23.80 20.59

F2 tavg 1.04 1.99 4.35 8.36 24.38 48.39 96.35 144.34 240.44 721.67 2946.42
davg 266.63 60.25 33.98 31.65 25.93 25.93 25.15 25.15 23.43 23.08 19.81

Table 5.28: Stress test on medium instances for IPFP and GNCCP

it 10 50 100 500 1000 5000 10000 20000

IPFP tavg 0.19 0.67 1.26 5.94 11.96 48.60 85.94 93.07
davg 31.93 27.73 27.73 27.73 27.73 27.73 27.73 27.73

d 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03

GNCCP tavg 10.27 9.23 18.30 11.80 31.62 17.94 31.68 56.19
davg 27.89 26.18 27.32 28.09 26.96 30.32 28.25 27.32

Evaluations on medium instances. Based on the results shown in Table 5.27, LocBra
has the smallest average deviations for all total_time values, except for 2s, 10s and 120s.
Clearly, the gap is reduced between the deviations of all heuristics. These instances are
easier to solve than the hard ones. The gap varies between 0% and 2%, so other heuristics
are relatively good as LocBra. VPLS is faster as on hard instances. From Table 5.28, it
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can be seen that IPFP and GNCCP have smaller average deviations than LocBra, when
their running times are less than 12s. Beyond the 12s, LocBra has davg smaller than the
27.73% deviation of IPFP and the deviations of GNCCP. The GNCCP heuristic converges
way faster on these instances than on hard instances, with a maximum tavg = 56.12s.

Conclusion. Similar to the evaluation on hard instances, IPFP is very suitable for
small running times, but LocBra achieves better results with higher running times.

Table 5.29: Stress test on easy instances for MILP-based heuristics

total_time 1 2 5 10 30 60 120 180 300 900 3600

VPLS tavg 0.08 0.71 1.20 1.54 1.61 1.56 1.63 1.58 1.56 1.57 1.60
davg 503.29 5.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LocBra tavg 0.66 1.25 1.45 1.13 1.26 1.11 1.11 1.11 1.08 1.09 1.10
davg 3.17 2.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F3 tavg 0.61 1.01 1.24 1.24 1.24 1.27 1.25 1.22 1.22 1.24 1.26
davg 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F2 tavg 0.63 0.83 0.82 0.83 0.81 0.80 0.78 0.76 0.80 0.81 0.77
davg 4.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.30: Stress test on easy instances for IPFP and GNCCP

it 10 50 100 500 1000 5000 10000 20000

IPFP tavg 0.02 0.05 0.09 0.25 0.44 2.06 4.24 8.51
davg 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40

d 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03

GNCCP tavg 0.95 0.83 1.20 1.49 2.03 2.34 2.41 3.88
davg 3.51 3.52 5.28 3.88 5.28 5.28 4.59 5.28

Evaluations on easy instances. On easy instances and based on Table 5.29, the MILP-
based heuristics have succeeded in finding the optimal solutions all the times, except when
total_time is set to 1s. The maximum of 0.83s was sufficient for F2 formulation to
compute all optimal solutions. So, F2 is the fastest among the heuristics. Note that also
with total_time = 2s, VPLS and LocBra were not able to compute the optimal solutions.
The reason could be the time for computing the UB and exploring the neighborhoods are
very small. Based on Table 5.30, surprisingly IPFP and GNCCP did not find the optimal
solutions no matter how much are the values of their parameters and their running times
increase.

Conclusion. On easy instances, MILP-based heuristics are very effective and better
than IPFP and GNCCP, they are even faster than GNCCP. IPFP is the fastest (with small
it values), but it was not able to find the optimal solutions, and it has found solutions off
by 6.40% from the optimal ones.

To get a better visibility on the performances of the heuristics, especially when their
running time increases, a chart is drawn showing the average deviations trends w.r.t. the
running times (Figure 5.9). The charts show the average deviations of all heuristics on
hard (chart a) and medium (chart b) instances. Chart (a) shows that IPFP stops at a
running time a bit higher than 500s, and at that moment it has better average deviations
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Figure 5.9: Average deviations vs running time for all heuristics, on hard (chart a) and
medium (chart b) instances.

than all heuristics, except LocBra. GNCCP stops at a running time around 600s, but it is
outperformed by all the other heuristics. Then, VPLS stops somewhere between 1000s and
2000s, where its line is slightly lower than F2’s line. The line of F2 goes down faster than
F3’s line, which means F2 is better when the time increase. The yellow line is for LocBra
and it is the lowest for all the time range from 500s till 3600s. This means that LocBra
has smaller deviations and solutions closer to the optimal/best ones. On medium instances
shown in chart (b), VPLS, until it stops, is better than F2 and F3. Then, the line of F2
is lower than F3, until reaching ≈ 1200s. Again, LocBra has the lowest average deviations
because its line is always below the other lines. IPFP and GNCCP are not shown here
because their running times are not in the selected range.

General conclusions based on the evaluations. Three main conclusions can be taken
from the stress test experiment. The first is that IPFP is a very convenient and fast
heuristic when dealing with hard and large instances. LocBra and VPLS are not able
to compute good solutions in a very short amount of time (1 to 2 seconds). The reason
is that CPLEX requires extra time to perform pre-processing steps before solving the
MILP formulations. The second conclusion is that VPLS is a MILP-based heuristic with a
convenient compromise between running time and solutions quality compared to existing
heuristics. The last conclusion, LocBra and VPLS matheuristics are able to compete with
existing heuristics and obtain very good results when solving the GED problem.

5.4 Summary and contributions

This chapter has been focused on solving the GED problem in both exact and heuristic
contexts, answering the main declared objectives in this thesis. The exact methods consists
of designing new MILP formulations, which is the first part of this chapter. The second
part consists of designing matheuristics dedicated to the GED problem.

In the exact context three formulations are proposed: VbM is the first proposed for-
mulation inspired by F2 and based on the idea of reducing the number of binary variables.
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This has led to introducing new constraints in the formulation. VbM has proven experi-
mentally to be poor when compared to the best MILP formulation F2. The main reason of
the poor performance is related to the new constrains that have increased the complexity
of the formulation. The second attempt is founded based on the idea of modeling multi-
ple vertices and edges matchings with a single object. This has resulted in an expanded
formulation, denoted by ObM, which had an exponential number of constraints. Several
attempts are discussed to reduce the number of constraints, but all failed and ObM has
remained a really complex model. Finally, a formulation inspired by F2, denoted by F3,
is proposed. The particularity of F3 formulation is that its constraints are independent
from the number of edges in the graphs. F3 is proven to be very efficient when dealing
with dense graphs, and as a good as F2 formulation in the case of normal graphs. This
concludes the first part of this chapter.

The second part focuses on using F3 formulation in matheuristic methods to provide
heuristics for the GED problem. First, an adapted local branching heuristic is developed
over F3 formulation, as it was done before in Chapter 4. Then, it is evaluated against
existing heuristics and against an exact method. The results have shown very good re-
sults by outperforming the existing heuristics and by computing solutions very close from
the optimal/best ones. These conclusions have led to other questions: how about other
matheuristics? Could another matheuristic perform better?

To find answers, another matheuristic is picked from the literature that is called vari-
able partitioning local search (VPLS) and is proposed by Della Croce et al. (2013). It
works similarly to local branching, by defining neighborhoods and performing intensifi-
cation steps. The neighborhood definition is based on selecting a special set of binary
variables and setting them free, while fixing the rest of the variables to the values as in
a current feasible solution. The intensification focuses the search in that neighborhood
looking for a better solution. The key question is how to select the binary variables to be
freed? A method is proposed to define the set of binary variables, based on the notion
of spheres. It results in selecting binary variables modeling important and costly vertices
in the graph. As for LocBra, VPLS is evaluated against existing heuristics and an exact
method. It outperforms the existing heuristics, except in some cases as on HOUSE-REF
instances where GNCCP heuristic has performed better in the extended version. But in
general, the results are very convenient.

Finally, LocBra and VPLS are tested against each other. It turns out that LocBra is
slightly better than VPLS in terms of solutions quality. However, LocBra requires more
running time than VPLS to compute those solutions. This extra running time can reach
hundreds of seconds between LocBra and VPLS. So, basically LocBra is more accurate
than VPLS. But, VPLS can be seen as a compromise between finding good solutions and
spending too much time.

As a future work, LocBra and VPLS heuristics can be combined somehow, which might
help boosting LocBra without affecting its accuracy. As an example: the neighborhood
definition in LocBra can be modified to use the definition as in VPLS. The fact that VPLS
has a neighborhood definition based on the structure and the characteristics of the graph
instance, could be very useful in improving the intensification phase in LocBra.

Clearly, matheuristics are a good choice to solve the GED problem. So, investigating
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their efficiency on other GM problems is a new line of positive contribution. Of course,
there could be other good metaheuristics and matheuristics that might work well on those
problems. As a matter of fact, this shows that OR field has a lot to offer to PR field.

Some of the works in this chapter were published in the following conferences:

• Darwiche, M., Conte, D., Raveaux, R., & T’kindt, V. (2018, February). Formulation linéaire
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• Darwiche, M., Raveaux, R., Conte, D., & T’Kindt, V. (2018, April). A New Mixed Integer
Linear Program for the Graph Edit Distance Problem. In ISCO18.

• Darwiche, M., Raveaux, R., Conte, D., & T’Kindt, V. (2018, August). Graph Edit Distance
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Chapter 6

Conclusion

Concluding remarks

The contributions of this thesis are split into two Chapters: Chapter 4 which is focused
on the GEDEnA problem and Chapter 5 which is focused on the general GED problem.

In Chapter 4, the first contribution is the distinction made between the GEDEnA

sub-problem and the GED problem. The sub-problem differs in the instances and cost
functions, in which the graphs do not carry attributes. So, their edit operations costs are
0 for substitution and a constant for insertion and deletion. A method (exact or heuristic)
that solves the GED problem, can as well solve the sub-problem, but the opposite does
not hold. This is the case of JH formulation (Justice and Hero, 2006), which is the best
existing one for solving GEDEnA instances, but not GED instances. The sub-problem
can be seen a lighter version, by reducing the difficulty of determining edges operations.
Yet, the sub-problem is still hard as the general one. In fact, GEDEnA is also a NP-hard
problem. Because cost functions are dependent on graph databases, a review to the most
used graph databases is given, with a classification of which databases are suited for both
GEDEnA and GED problems, or only the GED problem.

The second contribution is the experimentation results of comparing the best existing
MILP formulations that solve the GED problem. The formulations are tested, with and
without pre-processing procedure. Pre-processing is an algorithm that extracts information
from the LP relaxation solution. Then, using these information it tries to fix binary
variables in the MILP formulation before giving it to the solver. It aims at simplifying
the formulation and makes it easier to the solver, if it works works well. The results of
both experiments have shown that JH is ultimately, the best formulation. And also, it
turned out that the pre-processing did not help in fixing variables, since the percentage of
fixed variables is too low as shown in the results. The reason is probably because the LP
relaxation solution is too weak.

Because JH is the best formulation, it is selected in the implementation of an adapted
version of local branching heuristic (LocBra) to solve the GEDEnA problem. This is
the third contribution in the thesis. LocBra is a matheuristic designed to perform local
searches in defined neighborhoods in the solution space of a MILP formulation. It combines
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several heuristic techniques (neighborhood definition, intensification and diversification) in
a defined branching scheme by solving small sub-problems using a MILP black-box solver.
The key points of LocBra are:

• Neighborhood definition: it is done by considering only variables modeling vertices
matching, which leads to a better decomposition of the problem.

• Problem-dependent diversification: to improve the diversification, which is considered
as an important step to escape local minima, LocBra adapts a special diversification
based on analysis done over the data of the instance at hand. It determines the
important variables that guarantee very good diversification. It was shown that this
diversification is more efficient than the original one.

• LocBra is very flexible and its performance can be controlled by a set of input pa-
rameters.

Next, this new heuristic is intensively evaluated on reference databases against the best
heuristics available in the literature. The experiments try to capture different points of
view on GM field. They are categorized as follows:

Experiment type Main comparison indicator Application
Distance minimization Deviation Near-optimal quality
Ranking Kendall correlation Similarity search/graph retrieval
Ground-truth matching Hamming Distance Result interpretation

The second and third experiments can be seen as the forth contribution of this thesis.
Despite their importance, they have not yet been considered when evaluating GED heuris-
tics. They study the performance of the heuristic with a more realistic and application-
oriented point of view. The Ranking experiment focuses on the application of the graph
retrieval of an input graph based on a database of graphs. The Ground-truth matching
experiment measures the correlation and closeness of solutions computed by the heuris-
tic to the ground-truth solutions, confirming the relevance of the cost functions defined
for the database. The results of all the experiments have shown that LocBra is a very
competitive and effective heuristic for solving the GEDEnA problem. LocBra’s solutions
are proven to be very close to the optimal and best ones. Also, they have been shown to
be highly correlated with the ground-truth solutions. Moreover, LocBra is shown to be
suitable for chemical graphs (e.g. MUTA and PAH databases) and graphs extracted from
images (HOUSE-NA and HOUSE-A databases). And this concludes the contributions of
Chapter 4.

Chapter 5 is devoted to the GED problem, and the contributions are covering exact and
heuristic methods. In the exact context, many MILP formulations are proposed based on
different ideas and concepts. A first formulation, denoted by VbM (vertex-based model),
is proposed with the aim at reducing the complexity of the models by reducing the number
of binary variables. But, this has come at the price of increasing the number of constraints
in the formulation. The experiments have shown that VbM cannot perform better than F2
formulation (the best one for the GED problem). A second formulation, denoted by ObM
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(object-based model), is designed based on the idea of multiple vertices/edges matchings in
a single compact object. ObM can be seen as an expanded formulation, because it requires
multiplying the input data. However, ObM has suffered from an exponential number of
constraints, which resulted in a bad performance. Many ideas are suggested to reduce the
complexity of the constraints, but none has succeeded in improving the performance of
the formulation. F3 is the third proposed formulation, that is considered one of the main
contributions of this thesis. It is inspired by F2 formulation, and shares the same objective
function. But, it has differences in the sets of variables and constraints. The particularity
of F3 formulation is that its constraints are independent from the number of edges in the
graphs. The evaluations has proven F3 to be very efficient when dealing with dense graphs,
and as good as F2 formulation in the case of normal graphs.

The second part of Chapter 5 starts with the second contribution, which is applying
LocBra heuristic with F3 formulation to solve the GED problem. The core of the heuristic,
as explained in Chapter 4, is kept the same but only JH is replaced with F3 formulation.
This version of LocBra is evaluated against existing heuristics and an exact method. The
results have proven, again, the superiority of LocBra over existing heuristics, and its capa-
bility in computing near-optimal solutions.

The successful application of local branching matheuristic to the GED problem, has
led to the last contribution, which consists in proposing an adapted version of variable
partition local search (VPLS) matheuristic. It is a novel heuristic, and it is similar to local
branching where it performs local searches in defined neighborhoods. The main idea in
VPLS is to define the special set of binary variables, that are required for the neighborhood
definition. Those variables are created in the formulation and kept free, while the rest of
the variables are set to values based on a given feasible solution. To define the set of
special variables, an algorithm is proposed based on the notion of spheres. A sphere is
a subgraph containing neighbor vertices and has a cost that is computed based on the
matching extracted from a given feasible solution. The sphere with the highest cost is
detected and all binary variables modeling vertices belonging to that sphere are put in
the set of special variables. Those are the variables that their matchings cost the highest,
and defining the neighborhood based on them will result in finding a new solution with
better matchings and objective function value. Consequently, the neighborhood definition
in VPLS is strongly based on extracting valuable information and characteristics from the
graph instance. Finally, the experimentation results have confirmed the good performance
of VPLS when compared to existing heuristics. VPLS is compared as well with LocBra,
that showed slightly better results in terms of solutions quality over VPLS. However, VPLS
was much more faster than LocBra heuristic.

All the aforementioned contributions were communicated to scientific conferences and
journals, except the LocBra and VPLS presented in Chapter 5. They will be definitely sub-
mitted soon and shared with the research communities. The summary of the publications
is given in Table 6.1.
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Table 6.1: Summary of publications

Chapter Publications
4 ROADEF’17(Darwiche et al., 2017a)

MIC’17(Darwiche et al., 2017b)
CIARP’17(Darwiche et al., 2017c)
J. of C&OR(Darwiche et al., 2018c)
J. of PRL(Darwiche et al., 2018b)
Matheuristics’18(Darwiche et al., 2018f)

5 ROADEF’18(Darwiche et al., 2018a)
ISCO’18(Darwiche et al., 2018d)
S+SSPR’18(Darwiche et al., 2018e)

Perspectives and future works

This thesis has enforced the bridge between OR and PR fields. It gives an idea about
what OR could offer to GM problems in general and the GED problem in particular. It
opens the door to a new way of seeing the GED problem, and the possibility of applying
efficient modeling and solution techniques that are common in OR field. Also, the thesis
shows how to do the following:

• Apply OR techniques to solve a particular problem.

• Analyze the problem properties and cases to extract useful problem-dependent infor-
mation.

• Make use of these information to enhance the performance of the method, whether
it is exact or heuristic.

Nevertheless, there is no guarantee that following those steps will, for sure, result in a good
method. Sometimes, what makes sense theoretically may not work and achieve good results
experimentally. It is probably due to missing aspects and hidden/unconsidered cases.

In the thesis, both scenarios appear in many places. For instance, the two proposed
MILP formulations VbM and ObM, are both based on interesting ideas trying to simplify
the models. However, what is thought to be a simplification has led to complicating other
aspects, e.g. the constraints in VbM and ObM formulations. On the other hand, F3
formulation has succeeded in accomplishing the objective, which is designing an effective
exact method to the GED problem. Anyhow, whether it is the first scenario or the second,
there is always a room to improve and increase the efficiency of the methods. Due to
the time constraint, it was not possible to invest more time in order to investigate VbM
and ObM formulations problems. Though, this fits exactly in the perspectives and the
directions for future works.

Regarding the LocBra heuristic, it has shown great capability in solving both the
GED and GEDEnA problems. However, few improvements are still needed to boost its
performance:
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1. Parameters tuning: come up with a method to tune the parameters in an adapted
fashion. An interesting idea could be to learn a model over features extracted from all
solved instances and databases. So the model can predict the right parameter values
when executing LocBra on a new instance. Another thing, which is partially done in
this thesis, is to fully study the parameters and their influence on the method, and
if there is a correlation between them.

2. Speed up LocBra: the heuristic as it is, is able to compete with existing heuristics,
but it requires more CPU time than the others. This is drawback in case LocBra
is decided to be used in an application that requires fast solutions computation.
What could be done to boost the solution of LocBra, is to extract more information
from graphs. Then, use these information in the definition of neighborhoods by
considering only a small set of binary variables. This set could be predicted by ML
techniques. This may lead to visit very interesting neighborhoods in the search space
where optimal solutions reside. Another idea is to increase/decrease the size of the
neighborhood and see how this affects the performance of the heuristic.

3. Parallelizing LocBra: the heuristic performs local searches in neighborhoods around
an initial solution. It could be parallelized to use multiple threads and processes to
define neighborhoods around a pool of initial solutions and perform local searches in
all of them in parallel. Only good solutions are kept for next iterations. This may
help in improving the speed of LocBra, without degrading the quality of the solution.

4. Initial solution: instead of computing an initial solution by solving a MILP formu-
lation, which consumes a considerable amount of time, it could be replaced with a
good and fast heuristic such as IPFP. This should be tested to make sure it does not
degrade the quality of the solutions.

Even though, VPLS is notably faster than LocBra, the above raised points for LocBra
are also legitimate for VPLS heuristic. Adding to them the possibility of improving the
procedure of selecting the special variables for neighborhood definitions. Currently, it is
based on computing spheres on one of the input graphs. Other ideas could be tested, such
as computing spheres on both graphs and combine the information to select vertices from
multiple spheres and graphs. Another idea is to include more features when computing the
spheres costs, such as vertices degrees, number of edges in the sphere, etc.

Furthermore, LocBra and VPLS heuristics can be combined somehow, which might
help boosting LocBra without affecting its accuracy. As an example: the neighborhood
definition in LocBra can be modified to use the definition as in VPLS. The fact that VPLS
has a neighborhood definition based on the structure and the characteristics of the graph
instance, could be very useful in improving the intensification phase in LocBra.

Meanwhile, and since the GED problem is a generalization of other GM problems such
as the Maximum Common Subgraph (MCS) problem, all the methods developed in this
thesis can be tested on the MCS problem. This is an objective to be sought at some point
down the road, so new contributions can be added to existing methods and algorithms for
solving the MCS problem.

In the end, this research work has, hopefully, achieved its explicit objectives in enriching
the GM and GED problems arsenal of methods. As well, it has implicitly realized other
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objectives such as shedding the light on a new angle for solving the problems through
matheuristics and OR techniques. Hopefully, this will leave a good impression and a
positive influence in the PR community.
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Appendix A

The GEDEnA problem: Additional
results and evaluations

A.1 Local branching - for the GEDEnA problem - experiments
results

In this section, the results of additional experiments done on different databases to
evaluate the proposed local branching heuristic for solving the GEDEnA problem.

A.1.1 Effectiveness of LocBra w.r.t. competitor heuristics

In addition to the experiment presented in Section 4.4.6.1 on MUTA database, other
databases were used in the evaluation of LocBra. All the results are reported and discussed
here.

A.1.1.1 Evaluations on PAH database

This graph database is constructed from chemical molecules, and contains small to
medium instances of graphs. The total number of instances is 8836. The cost functions
used are detailed in Section 4.2.

Default versions. The parameters are set for each heuristic as follows:

LocBra π = 20, π_dv = 30, total_time_limit = 12.25s,
node_time_limit = UB_time_limit = 1.75s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 12.48
CPLEX_LocBra-t t = 3.5

BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

225



A.1. LOCAL BRANCHING - FOR THE GEDENA PROBLEM - EXPERIMENTS
RESULTS

The results are shown in Table A.1. CPLEX-12.48 has an average deviation of 0.05%
which is the smallest among all the heuristics. Next LocBra comes with 0.31%. Conse-
quently, CPLEX-12.48 has performed better than the proposed heuristic. However, an
important note is that dmax for LocBra is 75% against 190.91% for CPLEX-12.48. This
means that the former provides the closest solutions to the best ones in the worst case.
CPLEX-LocBra-3.5 comes at the third position, with an average deviation less than 1%.
The beam-search based heuristics, IPFP-10 and GNCCP-0.1 are strongly outperformed
by the other MILP-based heuristics with a high average deviations. In terms of CPU time,
the beam-search based heuristics seem to be very fast (tavg < 1s), while the proposed
heuristic is the slowest with tavg = 3.03s.

Table A.1: LocBra vs. heuristics on PAH instances

LocBra CPLEX-12.48 CPLEX-LocBra-3.5 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1
tmin 0.06 0.05 0.05 0.00 0.01 0.00 0.17
tavg 3.03 1.97 1.79 0.01 0.14 0.03 2.08
tmax 12.25 12.48 6.41 0.03 0.37 0.08 6.02
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.31 0.05 0.91 122.65 379.90 127.20 84.43
dmax 75.00 190.91 200.00 2400.00 4200.00 2400.00 1000.00
ηI 8716 8830 8553 433 100 450 1042

Table A.2: LocBra vs. heuristics with extended running on PAH instances

LocBra CPLEX-LocBra-12 BeamSearch-2500 SBPBeam-140 IPFP-2000 GNCCP-0.09
tmin 0.06 0.06 0.01 0.28 0.01 0.24
tavg 3.03 2.59 4.33 4.38 1.45 2.63
tmax 12.25 14.34 11.55 12.71 13.03 12.33
dmin 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.32 0.01 42.70 371.05 117.33 81.01
dmax 75.00 40.00 1600.00 4200.00 1600.00 1800.00
ηI 8712 8833 3593 100 491 1146

Extended versions. The values of heuristics parameters are:

LocBra π = 20, π_dv = 30, total_time_limit = 12.25s,
node_time_limit = UB_time_limit = 1.75s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX_LocBra-t t = 3.5
BeamSearch-α α = 2500
SBPBeam-α α = 140

IPFP-it it = 2000
GNCCP-d d = 0.09

The result of the extended versions are reported in Table A.2. As in the default versions,
CPLEX heuristic with a time limit of 12s has scored the smallest deviation. So, extending
the time for CPLEX-LocBra-t to 12s to compute an UB, has obtained the smallest deviation
with davg = 0.01%. LocBra comes in the second place with davg = 0.32%, very far from
the third heuristic, which is BeamSearch-2500 (davg = 42.7%). The positions are conserved
when looking at ηI values, with a difference of 121 instances between CPLEX-LocBra-12
and LocBra. SBPBeam-140 is very poor with ηI = 100 instances. IPFP-2000 is the
fastest in terms of CPU time, but has davg = 117%, which reflects a weak accuracy. Note
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that LocBra has tavg = 3s, which is better than BeamSearch-2500 and SBPBeam-140
average times.

Conclusion. LocBra, in both default and extended versions, outperforms the existing
heuristics by computing better solutions for PAH instances. However, CPLEX-t heuristic
is also good at solving PAH instances and performs better in the average case. This due
to the presence of very small instances in PAH database, which are very easy to solve by
CPLEX to optimality.

A.1.1.2 Evaluations on HOUSE-NA database

It is the version without attributes of CMU-HOUSE graph database, which makes it
compatible with the GEDEnA problem. More details about the database can be found in
Section 4.2.

Table A.3: LocBra vs. heuristics on HOUSE-NA instances

LocBra CPLEX-10 CPLEX-LocBra-4 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1
tmin 0.59 0.41 0.58 0.06 6.58 0.02 7.28
tavg 4.26 4.18 4.36 0.09 7.14 0.08 8.01
tmax 10.19 10.16 8.27 0.18 8.68 0.25 8.97
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 9.50 45.67 93.67 25.74 1222.67 146.19 98.80
dmax 525.00 716.67 800.00 1000.00 5600.00 850.00 1200.00
ηI 604 584 465 546 144 368 452

Default versions. The parameters of each heuristic are:

LocBra π = 20, π_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 10
CPLEX-LocBra-t t = 4
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

The results obtained are given in Table A.3. In terms of deviation, LocBra has scored
an average of 9.5%, outperforming all the other heuristics. It has the highest ηI with
604 out of 660 instances. Surprisingly, BeamSearch-5 comes in the second place with
davg = 25%. Perhaps, BeamsSearch has found easily good solutions because it starts its
tree with the right vertices, so it converges faster. For this database, the difference between
MILP-based methods and LocBra is considerably big, more than 35% by CPLEX-10 and
more than 80% by CPLEX-LocBra-4. SBPBeam-5 seems to have difficulties in solving
HOUSE-NA instances, with davg = 1222%. With regard to the running time, IPFP-10 is
the fastest with tavg = 0.08s. Followed by BeamSearch-5 with 0.09s. LocBra and MILP-
based methods seems to be faster than SBPBeam-5 and GNCCP-0.1, with tavg = 4s
against 7 to 8 seconds.
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Table A.4: LocBra vs. heuristics with extended running time on HOUSE-NA instances

LocBra CPLEX-LocBra-10 BeamSearch-350 SBPBeam-8 IPFP-800 GNCCP-0.09
tmin 0.59 0.66 2.33 8.99 0.02 8.51
tavg 4.26 6.71 5.53 9.56 1.34 9.80
tmax 10.19 16.13 11.20 10.28 9.88 10.14
dmin 0.00 0.00 0.00 0.00 0.00 0.00
davg 9.20 43.41 83.78 1220.86 131.45 108.91
dmax 525.00 716.67 1100.00 5600.00 850.00 1100.00
ηI 608 585 439 144 372 440

Extended versions. The parameters of each heuristic are set as follows:

LocBra π = 20, π_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-LocBra-t t = 10
BeamSearch-α α = 350
SBPBeam-α α = 8

IPFP-it it = 800
GNCCP-d d = 0.09

Table A.4 presents the results of the extended versions. Basically, the heuristics behaved
the same as in the default versions. A small improvement is noticed for LocBra with 4
more instances added to ηI and it is reflected by davg dropping a little bit to 9.2%. Clearly,
increasing the beam size for BeamSearch did not really help and its davg jumped from 25%
to 83%. As in the default version, IPFP remains the fastest with tavg = 1.34s, followed by
LocBra that is faster than the rest of the heuristics.

Conclusion. The presented results are very interesting and shows that LocBra is better
than all existing heuristics in terms of solutions quality. Moreover, it is also faster than
SBPBeam and GNCCP heuristics on HOUSE-NA instances.

Table A.5: LocBra vs. heuristics on HOUSE-A instances

LocBra CPLEX-2 CPLEX-LocBra-1 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1
tmin 0.30 0.25 0.44 0.02 6.41 0.04 6.55
tavg 0.53 0.40 0.67 0.11 6.84 0.05 6.78
tmax 2.11 2.06 2.26 0.20 7.57 0.17 8.09
dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.01 6.30 0.91 0.03 0.00
dmax 0.00 0.00 3.27 60.45 5.54 1.63 0.50
ηI 660 660 656 313 420 626 656

A.1.1.3 Evaluations on HOUSE-A database

This database contains the same graphs as in CMU-HOUSE database, but it includes
the shape context attributes in the vertices costs calculation. This version of CMU-HOUSE
database is detailed in Section 4.2. Only one test was realized, because the graph instances
are easier and the running time for all the methods are very close even with the default
parameters.
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Default versions. The parameter values assigned to each heuristic are:

LocBra π = 20, π_dv = 30, total_time_limit = 2s,
node_time_limit = 0.5s, UB_time_limit = 1s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 2
CPLEX-LocBra-t t = 1
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

The results are reported in Table A.5. In terms of average deviation, LocBra, CPLEX-
2 and GNCCP-0.1 all have scored 0%. These heuristics were able to solve all the instances
and get the best solutions (except for 4 instances by GNCCP-0.1 ). Next, CPLEX-LocBr-1
has davg = 0.01%, followed by IPFP-10 with davg = 0.03%. It seems that all heuristics
have been able to solve all the instances, except BeamSearch-5 that faced difficulties and
scored a high deviation (6.3%). In terms of running time, IPFP-10 is the fastest with
tavg = 0.05%. LocBra is also fast with only half a second and beat up the other heuristics
(except CPLEX-2 and BeamSearch-5 ). However, GNCCP-0.1 and SBPBeam-5 have the
worse average running time, more than 6s, which makes them really slow on these instances.

Conclusion. For HOUSE-A database, LocBra was able to solve efficiently all the in-
stances and with reasonable running times. It is very suitable for this graph database.

A.1.2 Effectiveness of LocBra w.r.t. an exact method

Besides the experiment presented in Section 4.4.6.2, LocBra is evaluated against PAH,
HOUSE-NA and HOUSE-A databases. The results are discussed here.

A.1.2.1 Evaluations on PAH database

LocBra parameters are set to the following values: π = 20, π_dv = 30,
total_time_limit = 12.25s, node_time_limit = UB_time_limit = 1.75s, dv_max =
5, l_max = 3, dv_cons_max = 2.

Table A.6 shows the obtained results. The optimal solutions are computed for all
instances by CPLEX-∞ (ηI = 8836). LocBra has found the optimal solutions for 8702
instances. The average deviation of LocBra from the optimal solution is of 0.35%, which
is very small. When looking at the 134 instances (out of 8836), for which LocBra failed
to find the optimal solution, the average deviation restricted to these instances is about
23%. Nonetheless, it can be concluded that LocBra provides very good solutions on PAH
instances. For the running time, CPLEX-∞ is on the average faster than LocBra but in the
worst case CPLEX becomes computationally expensive (up to 278.20s), while the heuristic
remains at maximum below than 13s.
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Table A.6: LocBra vs. Exact solution on PAH instances

CPLEX-∞ LocBra
tmin 0.09 0.06
tavg 2.08 3.03
tmax 278.20 12.25
dmin - 0.00
davg - 0.35
dmax - 100.00
ηI 8836 6715
η′I - 8702
η′′I - 0

Conclusion. This experiment shows that PAH instances are easy ones for the JH for-
mulation, so CPLEX is very fast in computing the optimal solutions. In addition, they are
easy for LocBra, which has computed solutions with a deviation of 0.35% from the optimal
ones.

A.1.2.2 Evaluations on HOUSE-NA database

The parameters of LocBra are: π = 20, π_dv = 30, total_time_limit =
10s, node_time_limit = 2s, UB_time_limit = 4s, dv_max = 5, l_max = 3,
dv_cons_max = 2.

Table A.7: LocBra vs. Exact solution on HOUSE-NA instances

CPLEX-∞ LocBra
tmin 0.48 0.59
tavg 20.26 4.26
tmax 2696.80 10.19
dmin - 0.00
davg - 11.01
dmax - 525.00
ηI 660 440
η′I - 602
η′′I - 0

Table A.7 presents the results of the experiment. The average deviation, scored by
LocBra, is of 11% from the optimal. Additionally, LocBra did not find the optimal solutions
for only 58 instances out of the 660 instances. An important remark is that the average CPU
time of LocBra is 5 times smaller than CPLEX-∞ average time. tmax increases drastically
to reach more than 2000s for the optimal method, while LocBra has a maximum of 10s.
The results prove again the closeness, on the average, of LocBra solutions from the optimal
solutions.
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Conclusion. On HOUSE-NA instances, LocBra is 5 times faster than CPLEX on the
average. Also, LocBra reaches a maximum time of 10s, while CPLEX reaches more than
2000s in the worst case. The solutions computed by LocBra are close from the optimal
solutions (davg = 11%).

A.1.2.3 Evaluations on HOUSE-A database

LocBra parameters are set to: π = 20, π_dv = 30, total_time_limit = 2s,
node_time_limit = 0.5s, UB_time_limit = 1s, dv_max = 5, l_max = 3,
dv_cons_max = 2.

Table A.8: LocBra vs. Exact solution on HOUSE-A instances

CPLEX-∞ LocBra
tmin 0.23 0.30
tavg 0.32 0.53
tmax 2.00 2.11
dmin - 0.00
davg - 0.00
dmax - 0.00
ηI 660 656
η′I - 660
η′′I - 0

The results reported in Table A.8, show that LocBra is as good as the optimal with
davg = 0% and η′I = 660. However, since these instances are very easy, CPLEX-∞ is a bit
faster (0.2s) than LocBra.

Conclusion. The instance of HOUSE-A are very to solve by CPLEX and LocBra. The
average deviation is 0%, which means that LocBra has computed solutions equal to the
optimal ones. The CPU times of CPLEX and LocBra are very close, where CPLEX is a
bit faster than LocBra (by 0.2s).
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Appendix B

The GED problem: Additional
results and evaluations

B.1 VbM experiments results

The formulation VbM was evaluated against MUTA instances in Section 5.2.1.2. The
results have shown that F2 formulation is better than VbM formulation. The same experi-
ment is executed again on the three formulations, but this time by adding the pre-processing
procedure explained in Section 4.3.2. It is an attempt to see if pre-processing can help VbM
formulation in solving better the instances.

B.1.1 Evaluation analysis with pre-processing

One evaluation indicator is added to each formulation, that is the average percentage
of fixed variables (%varF ix). Table B.1 shows the results obtained, where F2 formulation
remains at the first position, followed by F1 and VbM at last. F2 is the best formulation
regarding all evaluation indicators, including the %varF ix. The gap becomes smaller as the
size of the graph increases, to reach 0.39% on subset 70 between the %varF ix obtained by
F2 and the values obtained by F1 and VbM formulations. Clearly, pre-processing procedure
did not help any of the formulations in improving its results, especially on hard instances.
As in the above experiment, the results are filtered by keeping only instances where optimal
solutions were found by the three formulations, and they are reported in Table B.2. The
results show that F2 formulation was the fastest for all subsets, except subset 30 where F1
is faster, thanks to the pre-processing.

Conclusion. This experiment with pre-processing has shown that F2 is the best formu-
lation compared to F1 and VbM. F2 was able to compute better solutions than the other
formulations. This is the same conclusion as in the experiment without pre-processing. So,
pre-processing procedure did not help improving the performances of the formulations.
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Table B.1: Comparison of VbM, F1 and F2 formulations with pre-processing

S 10 20 30 40 50 60 70

VbM

tmin 0.03 0.16 0.69 1.57 5.29 11.60 22.84
tavg 0.20 695.97 599.04 778.94 815.74 810.56 839.41
tmax 0.66 902.00 901.29 1087.96 908.59 919.49 936.85

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.53 22.58 37.63 60.37 76.81 87.10
dmax 0.00 6.67 103.45 127.06 142.86 193.22 655.81

η 100 27 10 10 10 10 10
η′ 100 89 10 10 10 10 10

% varFix 42.40 20.46 14.60 10.74 10.00 10.00 10.00

F1

tmin 0.02 0.06 0.23 0.40 2.01 3.63 9.04
tavg 0.14 17.76 735.47 788.75 813.07 817.64 828.86
tmax 0.59 185.24 901.32 904.12 912.90 919.85 977.23

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 2.57 4.58 11.04 13.08 11.22
dmax 0.00 0.00 20.69 26.32 47.85 41.94 85.71

η 100 100 22 14 10 10 10
η′ 100 100 60 33 17 14 23

% varFix 43.08 19.33 14.33 11.18 10.13 10.00 10.00

F2

tmin 0.03 0.10 0.22 0.34 0.96 1.27 2.23
tavg 0.11 1.11 373.14 613.99 776.85 806.35 806.92
tmax 0.29 5.81 900.56 901.54 903.49 905.15 913.03

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.05 0.06 0.29 0.02 0.59
dmax 0.00 0.00 2.76 3.23 12.59 1.55 11.88

η 100 100 75 39 18 11 11
η′ 100 100 98 98 97 99 90

% varFix 48.77 24.94 17.30 13.77 11.49 10.43 10.39

Table B.2: Comparison of VbM, F1 and F2 formulations with pre-processing - optimal
solutions

S 10 20 30 40 50 60 70

VbM

tmin 0.03 0.16 0.69 1.57 5.29 11.60 22.84
tavg 0.20 151.16 0.79 2.30 5.85 13.25 27.05
tmax 0.66 797.99 1.16 2.76 6.84 16.97 32.45

η 100 27 10 10 10 10 10

% varFix 42.40 53.29 100.00 100.00 100 100.00 100.00

F1

tmin 0.02 0.06 0.23 0.40 2.01 3.63 9.04
tavg 0.14 1.00 0.53 1.62 3.14 6.32 13.63
tmax 0.59 15.60 0.78 3.45 4.59 9.39 22.10

η 100 27 10 10 10 10 10

% varFix 43.08 55.08 100.00 100.00 100 100.00 100.00

F2

tmin 0.03 0.10 0.22 0.34 0.96 1.27 2.23
tavg 0.11 0.25 0.59 0.78 1.35 3.10 3.88
tmax 0.29 0.73 1.47 1.594 2.00 6.40 5.89

η 100 27 10 10 10 10 10

% varFix 48.77 58.58 100.00 100.00 100.00 100.00 100.00

234



B.2. F3 EXPERIMENTS RESULTS

B.2 F3 experiments results

In addition to the experiments presented in Section 5.2.3.3, F3 formulation is evaluated
on other databases such as PROTEIN and SYNTHETIC-100. PROTEIN database has a
density of 16% and contains GED instances. So, evaluating F3 with PROTEIN instances
will confirm the conclusions of the experiment on CMU-HOUSE database (both have the
same density). The SYNTHETIC-100 database contains large graph instances, and has
different subsets and densities. Using this database will show the limits of F3 and F2
formulations.

Table B.3: Evaluation of F3 on PROTEIN database

S 20 30 40 mixed

F3

tmin 0.03 0.09 0.14 0.03
tavg 26.83 132.00 575.70 180.36
tmax 215.59 856.79 900.52 900.66

dmin 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.09 0.00
dmax 0.00 0.00 1.40 0.00

η 100 100 63 96
η′ 100 100 82 100

F2

tmin 0.02 0.06 0.09 0.06
tavg 18.92 155.76 647.09 208.50
tmax 330.88 899.99 900.27 900.08

dmin 0.00 0.00 0.00 0.00
davg 0.00 0.01 0.05 0.00
dmax 0.00 0.19 0.42 0.19

η 100 94 40 89
η′ 100 97 74 98

Table B.4: Evaluation of F3 on PROTEIN database - optimal solutions

S 20 30 40 mixed

F3

tmin 0.03 0.09 0.14 0.03
tavg 26.83 120.83 209.89 115.21
tmax 215.59 856.79 737.04 698.46

η 100 94 36 86

F2

tmin 0.02 0.06 0.09 0.06
tavg 18.92 108.26 236.43 105.38
tmax 330.88 728.63 817.30 670.49

η 100 94 36 86
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B.2.1 Evaluations on PROTEIN database

The results of this experiment are reported in Table B.3. The average deviation indi-
cator does not give a clear idea of which formulation is better. Because, F3 has scored 0%
deviations for subsets 20, 30 and mixed, while F2 has the smallest deviations for subsets
20, 40 and mixed. Instead, looking at η indicator shows that F3 has solved more instances
to optimality than F2. The same when looking at η′, F3 has computed best solutions for
more instances than F2 and for all subsets. F2 has found all optimal solutions only on easy
instances (subset 20), but it did not succeed in finding all of them for the other subsets.
Except for subset 20, F3 is faster on the average than F2, with a gap of 100s on mixed
subset.

Table B.4 shows the results after selecting only instances solved to optimality by F2
and F3 formulations. F2 seems to be faster than F3 for subsets 20, 30 and mixed, but the
difference is at most 10s. F3 is faster than F2 for subset 40, with tavg = 209.89s against
tavg = 236.43s.

Conclusion. PROTEIN is a dense graph database (D = 16%) and again the second
hypothesis is confirmed. F3 formulation is more effective than F2 in solving PROTEIN
instances. Mainly, because it has less constraints than F2 formulation.

B.2.2 Evaluations on SYNTHETIC-100 database

The results obtained for subsets 10 and 20 are shown in Table B.5. It was not possible
to run F2 formulation on the other subsets, because CPLEX was not able to compute a
feasible incumbent solution in 900s. F2 has reached its limit, therefore other subsets are
discarded. Anyway, even instances of subsets 10 and 20 are hard enough, so neither F3
nor F2 were able to find an optimal solution for any instance, i.e. η is always 0 for both
subsets and formulations, and tavg is always 900s. However, F3 has always computed the
best solutions, which explains the average deviations at 0% and η′ at 100. F2 has scored
bad average deviations for subsets 10 and 20 (78.53% and 44.66%) compared to F3 average
deviations.

Conclusion. Clearly, F3 has performed better than F2 on very big and high-dense
graphs, which makes it more suitable for solving this kind of instances.

B.3 Local branching experiments results

This section presents the results of the additional experiments conducted on many
databases during the evaluation of the proposed local branching heuristic.

B.3.1 Effectiveness of LocBra w.r.t. competitor heuristics

Besides the results obtained when testing on PROTEIN instances (Section 5.3.1.1), the
same experiments are done on two other databases: MUTA and HOUSE-REF. All the
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Table B.5: Evaluation of F3 on SYNTHETIC-100 database

D 10 20

F3

tmin 900.23 901.44
tavg 900.54 901.78
tmax 900.94 914.35

dmin 0.00 0.00
davg 0.00 0.00
dmax 0.00 0.00

η 0 0
η′ 100 100

F2

tmin 900.44 901.22
tavg 900.68 901.98
tmax 901.11 902.62

dmin 39.00 25.64
davg 78.53 44.66
dmax 897.09 281.12

η 0 0
η′ 0 0

results are presented and discussed in this section.

B.3.1.1 Evaluations on MUTA database

Although, it is a GEDEnA database, it is still a reference database to evaluate GED
methods. Because, it contains different sizes of graphs and the graphs represent chemical
molecules, and there is a real application behind.

Default versions. The following are the values of the parameters set for each method.

LocBra π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 900
CPLEX-LocBra-t t = 180
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

The results of this experiment are reported in Table B.6. They show that LocBra has
obtained the smallest average deviations davg for all subsets. CPLEX-900 and CPLEX-
LocBra-180 come in the second and third place respectively, with davg values better than
the rest of the heuristics. On easy instances, LocBra, CPLEX-900 and CPLEX-LocBra-
180 were able to solve all instances to optimality, that is why their ηI values are equal to
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Table B.6: LocBra vs. heuristics on MUTA instances

S 10 20 30 40 50 60 70 mixed

LocBra

tmin 0.00 0.08 0.48 0.58 1.56 4.38 6.63 0.03
tavg 0.13 3.49 701.94 784.64 810.29 810.94 811.40 463.55
tmax 0.50 28.35 900.64 900.58 900.00 900.63 900.78 900.64

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.58 0.90 1.25 0.73 2.47 0.22
dmax 0.00 0.00 7.14 14.12 10.34 25.42 58.93 6.63

ηI 100 100 87 80 76 85 70 88

CPLEX-900

tmin 0.02 0.08 0.33 0.51 2.29 4.87 8.02 0.05
tavg 0.07 2.90 442.46 634.98 763.79 811.47 813.00 388.83
tmax 0.17 25.82 900.28 901.09 901.50 901.16 902.06 902.04

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.94 1.04 1.89 3.99 4.22 0.59
dmax 0.00 0.00 32.88 15.79 16.11 19.67 19.61 6.59

ηI 100 100 90 85 63 40 47 81

CPLEX-LocBra-180

tmin 0.02 0.08 0.22 0.50 1.53 4.12 6.22 0.03
tavg 0.11 3.18 152.86 159.86 167.37 176.70 183.54 97.40
tmax 0.31 26.49 183.72 190.60 197.29 222.46 284.02 209.56

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 4.21 8.37 10.46 11.81 14.50 2.09
dmax 0.00 0.00 37.97 38.40 28.57 38.85 112.50 21.13

ηI 100 100 59 20 11 11 11 56

BeamSearch-5

tmin 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.01
tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.18 0.09
tmax 0.07 0.02 0.04 0.11 0.09 0.13 0.22 0.21

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 15.17 36.60 46.56 57.30 68.77 55.49 56.28 20.30
dmax 110.00 124.59 147.37 186.67 200.00 138.38 210.71 112.71

ηI 35 10 10 10 10 10 10 12

SBPBeam-5

tmin 0.01 0.08 0.31 1.11 2.69 4.87 9.02 0.05
tavg 0.01 0.10 0.45 1.37 3.19 5.56 10.72 3.38
tmax 0.05 0.14 0.54 1.60 3.71 6.85 12.79 12.05

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 75.70 80.76 95.19 86.02 79.92 26.17
dmax 90.00 127.87 206.90 200.00 314.29 183.05 280.36 130.99

ηI 15 10 10 10 10 10 10 10

IPFP-10

tmin 0.00 0.01 0.02 0.03 0.06 0.10 0.15 0.01
tavg 0.01 0.06 0.20 0.30 0.39 0.66 1.05 0.46
tmax 0.08 0.20 0.35 0.59 0.56 1.01 1.49 1.39

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.84 17.76 20.27 20.23 20.30 18.32 6.72
dmax 30.00 80.77 90.41 93.33 66.67 61.02 88.70 49.72

ηI 69 28 14 11 10 10 11 19

GNCCP-0.1

tmin 0.02 0.12 0.38 0.89 1.68 2.88 4.59 0.15
tavg 0.16 1.30 4.77 11.78 22.08 72.29 111.30 28.53
tmax 0.29 2.52 10.86 31.58 73.46 145.53 255.88 218.99

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 13.29 22.00 26.39 20.66 29.14 16.56 18.87 9.92
dmax 411.43 400.00 188.79 119.12 205.36 174.14 101.79 125.16

ηI 75 35 8 8 5 11 8 17
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100. For subsets 30 (resp. 40), CPLEX-900 has found smaller distances for 3 (resp. 5)
instances than LocBra. But, LocBra’s average deviations are still smaller for these subsets,
which means that CPLEX-900 has found bad solutions when it did not find the best
ones. In addition, for subsets 50, 60 and 70 (hard instances) and mixed, LocBra has the
highest values of ηI , providing all best solutions. The difference is quite important between
CPLEX-900 and LocBra, such as on subset 60, where CPLEX-900 ’s ηI = 40 and LocBra’s
ηI = 85. The rest of the heuristics have scored average deviations worse than LocBra and
CPLEX-based heuristics. IPFP-10 and GNCCP-0.1 are better than BeamSearch-5 and
SBPBeam-5, in terms of solutions quality. The average deviations of SBPBeam-5 reaches
95% on subset 50. Regarding the running time, BeamSearch-5 is the fastest with tavg at
most 0.18s, while other methods such as LocBra and CPLEX-900 reaches 900s.

Extended versions. The parameter values, given here, are set empirically to extend the
running time of the heuristics picked from the literature to reach approximately the 900s
given to LocBra.

LocBra π = 20, π_dv = 30, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-LocBra-t t = 800
BeamSearch-α α = 15000
SBPBeam-α α = 400

IPFP-it it = 20000
GNCCP-d d = 0.03

Table B.7 shows the results of this experiment. Again, LocBra has obtained the best
average deviations for all subsets. As well, LocBra has the best ηI values for all subsets,
except for subset 30 where CPLEX-LocBra-800 seems to have found better solutions for
three instances (91 against 88). Extending the running time of BeamSearch and SBPBeam
did not actually help improving their performances, they still have davg higher than 90%.
It is not the case for IPFP and GNCCP : the additional running time have helped in
improving their results, yet not so much because their average deviations are still far and
reaches more than 20% (on subsets 30 and 50) comparing to LocBra. Considering the
average running time tavg, LocBra is the fastest when solving easy instances of subsets 10
and 20. Then, GNCCP-0.03 becomes the fastest for the rest of the subsets, except for
subset 70 where CPLEX-LocBra-800 is faster.

Conclusion. LocBra heuristic was able to compute better solutions for MUTA instances
than the other heuristics. In both the default and the extended versions, LocBra has
outperformed CPLEX-based methods and the four heuristics selected from the literature.
Yet, LocBra is slower than other existing heuristics, such as BeamSearch and IPFP.

B.3.1.2 Evaluations on HOUSE-REF database

The graphs in this database has attributes on their edges, so it is a GED database.
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Table B.7: LocBra vs. heuristics with extended running time on MUTA instances

S 10 20 30 40 50 60 70 mixed

LocBra

tmin 0.00 0.08 0.48 0.58 1.56 4.38 6.63 0.03
tavg 0.13 3.49 701.94 784.64 810.29 810.94 811.40 463.55
tmax 0.50 28.35 900.64 900.58 900.00 900.63 900.78 900.64

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.53 0.72 0.71 0.30 1.11 0.04
dmax 0.00 0.00 6.67 14.12 8.19 7.06 36.92 2.56

ηI 100 100 88 82 85 92 81 97

CPLEX-LocBra-800

tmin 0.03 0.12 0.51 1.06 2.45 5.34 8.44 0.16
tavg 0.21 3.69 428.55 597.14 716.12 736.40 746.29 367.19
tmax 0.53 28.89 801.66 813.26 818.40 845.85 919.52 828.60

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.56 0.89 2.46 4.96 5.93 0.93
dmax 0.00 0.00 15.79 13.19 14.88 19.63 35.29 9.33

ηI 100 100 91 82 54 28 20 71

BeamSearch-15000

tmin 0.00 0.00 0.03 0.10 0.55 0.24 2.28 0.03
tavg 8.57 80.65 167.48 279.11 439.68 640.29 938.66 828.52
tmax 31.52 118.71 230.63 419.73 771.90 878.89 1385.11 1800.00

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
davg 1.35 26.66 46.70 50.60 60.04 54.41 49.35 -
dmax 30.00 142.31 165.52 180.00 150.00 145.16 181.54 -

ηI 88 12 10 10 10 10 10 -

SBPBeam-400

tmin 0.76 9.02 39.85 116.11 288.38 548.04 1019.35 1.98
tavg 0.84 10.02 47.65 139.75 322.43 590.86 1154.86 326.64
tmax 0.96 11.27 54.11 152.34 360.47 657.26 1309.69 1225.92

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 75.58 80.39 93.88 85.08 77.01 25.68
dmax 90.00 127.87 206.90 200.00 278.26 173.79 227.69 130.99

ηI 15 10 10 10 10 10 10 10

IPFP-20000

tmin 0.00 0.01 0.02 0.03 0.11 0.10 0.18 0.01
tavg 1.20 9.62 48.90 115.14 240.54 528.82 903.00 303.21
tmax 8.52 53.83 165.44 456.93 771.64 1620.19 2838.92 1827.03

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.18 15.85 15.98 16.06 13.30 10.49 5.12
dmax 30.00 80.77 90.41 46.67 39.13 37.50 60.00 38.03

ηI 69 29 15 2 10 12 21 22

GNCCP-0.03

tmin 0.03 0.18 0.58 1.26 2.44 4.33 6.65 0.25
tavg 0.55 6.41 29.80 81.24 195.89 396.37 946.25 185.55
tmax 1.13 16.81 71.94 167.06 450.41 797.39 2330.57 1398.72

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.23 10.67 23.63 20.56 21.42 11.52 13.15 9.24
dmax 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ηI 81 34 4 7 6 15 20 17

Table B.8: LocBra vs. heuristics on HOUSE-REF instances

LocBra CPLEX-10 CPLEX-LocBra-9 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1

tmin 9.91 9.92 25.38 0.03 7.54 0.03 6.85
tavg 10.04 10.01 47.98 0.14 8.50 0.18 9.61
tmax 10.11 10.22 150.57 0.54 9.72 0.32 11.70

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 57.43 212.00 83.05 613.80 317.31 301.50 361.98
dmax 1166.18 1791.69 741.70 4332.69 5502.39 34308.00 32426.89

ηI 332 125 271 133 126 308 439
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Default versions. The default parameters are set to the following:

LocBra π = 20, π_dv = 30, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 10
CPLEX-LocBra-t t = 9
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

Based on the results shown in Table B.8, LocBra seems to have the smallest average
deviation 57.43%, followed by CPLEX-LocBra-9 with davg = 83.05%. CPLEX-10 comes
third with davg = 212%. BeamSearch-5 has the worst average deviation among all the
heuristics with davg more than 600%. The reason why the average and max deviations are
very high for some heuristics is because the optimal solutions values are very small, and the
heuristics did not converge to close solutions. It seems that the heuristics have found either
the optimal solutions, or feasible solutions that are far from the optimal ones. Regarding
the ηI values, GNCCP-0.1 has scored the highest 439, but this is not reflected in its davg
which is very bad compared to LocBra davg. This means that GNCCP-0.1 has found the
optimal or best solutions for 439 instances, but it has found really bad solutions for the
rest of the instances. Again, as in previous experiments, BeamSearch-5 is the fastest with
the smallest average running time.

Table B.9: LocBra vs. heuristics with extended running time on HOUSE-REF instances

LocBra CPLEX-100 CPLEX-LocBra-90 BeamSearch-2500 SBPBeam-48 IPFP-7000 GNCCP-0.01

tmin 99.93 49.44 89.47 0.05 83.19 0.03 94.00
tavg 100.05 99.17 126.90 77.02 93.25 14.87 95.67
tmax 100.40 100.45 179.93 120.38 104.16 113.57 110.27

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 2.69 67.76 56.81 544.12 345.71 221.76 0.00
dmax 88.88 510.39 492.62 3146.84 5502.39 34308.00 0.04

ηI 532 296 298 143 126 370 626

Extended versions. In the extended version, LocBra is set to maximum time limit of
100s. The rest of the heuristics have the appropriate parameter values to reach the same
running time.

LocBra π = 20, π_dv = 30, total_time_limit = 100s,
node_time_limit = UB_time_limit = 30s,
dv_max = 5, l_max = 3, dv_cons_max = 2

CPLEX-t t = 100
CPLEX-LocBra-t t = 90
BeamSearch-α α = 2500
SBPBeam-α α = 48

IPFP-it it = 7000
GNCCP-d d = 0.01
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The results given in Table B.9 show that for the first time GNCCP-0.01 was able to
perform better than LocBra, with davg = 0.00% and the highest ηI = 626. LocBra comes
in the second place with davg = 2.69% and ηI = 532. Extending the running time of
GNCCP was helpful and it performs better than the other heuristics. The same order
as in the default version is maintained, so CPLEX-LocBra-90 comes third, followed by
CPLEX-100, and BeamSearch-2500 at the last position. In terms of average running time,
the best heuristic is IPFP-7000 with tavg = 14.87s, which is way faster than the rest of
the heuristics.

Conclusion. In the default version, LocBra has succeeded in solving efficiently HOUSE-
REF instances. However and remarkably, GNCCP was able to perform better than LocBra
in the extended version. Yet, the difference is pretty much small with 2.7% on average
deviation.

B.3.2 Effectiveness of LocBra w.r.t. an exact method

This section presents the results of additional experiments done to evaluate LocBra
against an exact method. The results obtained on MUTA and HOURSE-REF databases
are reported here.

Table B.10: LocBra vs. Exact solution on MUTA instances

CPLEX LocBra

S ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I

10 100 0.00 0.13 0.50 0.00 0.00 0.00 100 100 0
20 100 0.08 3.49 28.35 0.00 0.00 0.00 100 100 0
30 100 0.48 701.94 900.64 0.00 1.05 11.21 24 80 0
40 100 0.58 784.64 900.58 0.00 1.79 14.12 13 66 0
50 98 1.72 810.56 900.64 0.00 3.33 13.27 10 43 0
60 85 4.38 810.94 900.63 0.00 5.70 25.42 10 15 0
70 35 6.63 811.40 900.78 0.00 10.78 58.93 10 12 0

mixed 91 0.03 463.55 900.64 0.00 0.86 10.29 49 68 0

B.3.2.1 Evaluations on MUTA database

LocBra parameters are set to the following values:
π = 20, π_dv = 30, total_time_limit = 900s, node_time_limit = UB_time_limit =
180s, dv_max = 5, l_max = 3, dv_cons_max = 2. The solutions computed by LocBra
are evaluated based on the optimal/best solutions that were obtained by solving JH formu-
lation (more details in Section 4.4.6.2). Those solutions were obtained after letting CPLEX
solving JH formulation for 10 hours on MUTA instances.

Based on Table B.10, and on very easy instances (subsets 10 and 20), LocBra has found
all optimal solutions as CPLEX. A positive average deviation of 1% starts to appear on
subset 30, and it keeps growing until reaching 10.78% on subset 70. In contrast, the η′I
values decrease with the increase of the size of the graphs. LocBra was not able to compute
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in the 900s solutions better than the best ones computed by CPLEX for all the subsets
(i.e. all η′′I are equal to 0).

Conclusion. Those results show that LocBra in 900s can compute solutions at 10.78%
far from the optimal/best solutions computed by solving JH formulation during 10 hours.
This number is, of course, in the worst case and it is considerably good.

Table B.11: LocBra vs. Exact solution on HOUSE-REF instances

CPLEX-900 LocBra

tmin 66.07 99.93
tavg 416.75 100.05
tmax 900.67 100.40

dmin - -46.91
davg - 2.54
dmax - 88.88

ηI 633 0
η′I - 549
η′′I - 6

B.3.2.2 Evaluations on HOUSE-REF database

LocBra parameters are set to the following values:
π = 20, π_dv = 30, total_time_limit = 100s, node_time_limit = UB_time_limit =
30s, dv_max = 5, l_max = 3, dv_cons_max = 2. For this database, CPLEX was ran
with a maximum time of 900s and not 10 hours. But for this database, the 900s were
enough to find optimal solutions for 95% of the instances.

The results shown Table B.11 reveal that LocBra’s solutions are very close to opti-
mal/best ones (2.5% on average). As well, LocBra has found better solutions for 6 in-
stances, which explains the minimum deviation of −46.91%. Moreover, it has computed
solutions for 549 instances, equal to solutions computed by CPLEX-900. All these results
are achieved in a maximum running time of 100s, while CPLEX-900 needed more than
400s on average to solve the instances.

Conclusion. The results have shown that LocBra was able to compute very good quality
solutions that are far by 2.5% from the optimal/best solutions. LocBra has achieved these
results with a maximum running time of 100s, while CPLEX needed more than 400s on
average. Moreover, LocBra in 100s was able to find better solutions than CPLEX in 900s
for 6 instances.
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B.4 VPLS experiments results

This section presents additional experiments results obtained when evaluating VPLS
on two extra databases: MUTA and HOUSE-REF.

B.4.1 Effectiveness of VPLS w.r.t. competitor heuristics

The results of evaluating VPLS over MUTA and HOUSE-REF are presented in this
section.

B.4.1.1 Evaluations on MUTA database

Although, it is a GEDEnA database, it is still a reference database to evaluate GED
methods. Because, it contains different sizes of graphs and the graphs represent chemical
molecules, and there is a real application behind.

Default versions. The following are the values of the parameters set for each method.

V PLS cons_sol_max = 5, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,

CPLEX-t t = 900
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

The results obtained are reported in Table B.12. CPLEX-900 heuristic has scored the
smallest average deviations for all subsets, except subset 70 where VPLS has a davg smaller
by 1%. The exact same conclusion can be drawn when looking at ηI values. Next, IPFP-10
comes third outperforming GNCCP-0.1, with a small fall back on subset 60 where GNCCP-
0.1 has a better davg of 14% against 17.7% by IPFP-0.1. Beam-search based methods come
at last, with BeamSearch-5 better on the average deviation than SBPBeam-5, but both
are far from CPLEX-900 and VPLS. In terms of average running time, BeamSearch-5 is
the fastest.

Extended versions. The parameter values are set empirically to extend the running
time of the heuristics to reach approximately the 900s as the running time of VPLS.

V PLS cons_sol_max = 5, total_time_limit = 900s,
node_time_limit = UB_time_limit = 180s,

BeamSearch-α α = 15000
SBPBeam-α α = 400

IPFP-it it = 20000
GNCCP-d d = 0.03

The results presented in Table B.13 show that VPLS has performed better than other
heuristics. And it has obtained the best deviations and ηI values for all subsets. Extending
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Table B.12: VPLS vs. heuristics on MUTA instances

S 10 20 30 40 50 60 70 mixed

VPLS

tmin 0.02 0.02 0.16 0.37 0.86 2.98 5.07 0.05
tavg 0.05 2.37 147.92 163.04 297.61 225.00 503.80 123.25
tmax 0.12 20.59 446.07 244.73 883.51 598.67 899.97 899.97

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 3.04 4.63 3.86 2.62 2.43 0.89
dmax 0.00 0.00 51.72 22.06 18.00 20.34 46.96 16.90

ηI 100 100 68 37 44 58 64 76

CPLEX-900

tmin 0.02 0.08 0.33 0.51 2.29 4.87 8.02 0.05
tavg 0.07 2.90 442.46 634.98 763.79 811.47 813.00 388.83
tmax 0.17 25.82 900.28 901.09 901.50 901.16 902.06 902.04

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.36 0.67 0.71 1.80 3.12 0.18
dmax 0.00 0.00 6.59 15.79 11.61 11.76 27.12 4.48

ηI 100 100 92 91 87 67 53 91

BeamSearch-5

tmin 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.01
tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.18 0.09
tmax 0.07 0.02 0.04 0.11 0.09 0.13 0.22 0.21

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 15.17 36.60 45.71 56.70 66.90 52.17 54.50 19.75
dmax 110.00 124.59 124.14 186.67 200.00 138.38 210.71 112.71

ηI 35 10 10 10 10 10 10 12

SBPBeam-5

tmin 0.01 0.08 0.31 1.11 2.69 4.87 9.02 0.05
tavg 0.01 0.10 0.45 1.37 3.19 5.56 10.72 3.38
tmax 0.05 0.14 0.54 1.60 3.71 6.85 12.79 12.05

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 74.68 80.03 92.84 81.79 77.89 25.53
dmax 90.00 127.87 206.90 200.00 314.29 183.05 280.36 130.99

ηI 15 10 10 10 10 10 10 10

IPFP-10

tmin 0.00 0.01 0.02 0.03 0.06 0.10 0.15 0.01
tavg 0.01 0.06 0.20 0.30 0.39 0.66 1.05 0.46
tmax 0.08 0.20 0.35 0.59 0.56 1.01 1.49 1.39

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.84 17.07 19.84 18.85 17.70 17.02 6.27
dmax 30.00 80.77 90.41 93.33 66.67 61.02 88.70 49.72

ηI 69 28 14 11 10 10 10 19

GNCCP-0.1

tmin 0.02 0.12 0.38 0.89 1.68 2.88 4.59 0.15
tavg 0.16 1.30 4.77 11.78 22.08 72.29 111.30 28.53
tmax 0.29 2.52 10.86 31.58 73.46 145.53 255.88 218.99

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 13.29 22.00 25.70 20.24 27.69 14.08 17.64 9.47
dmax 411.43 400.00 188.79 119.12 205.36 160.66 101.79 120.99

ηI 75 35 7 9 5 10 10 18
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Table B.13: VPLS vs. heuristics with extended running time on MUTA instances

S 10 20 30 40 50 60 70 mixed

VPLS

tmin 0.02 0.02 0.16 0.37 0.86 2.98 5.07 0.05
tavg 0.05 2.37 147.92 163.04 297.61 225.00 503.80 123.25
tmax 0.12 20.59 446.07 244.73 883.51 598.67 899.97 899.97

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 0.00 0.00 0.58 0.27 0.40 0.61 0.94 0.05
dmax 0.00 0.00 25.71 5.56 11.39 15.38 27.07 1.39

ηI 100 100 97 92 91 86 82 96

BeamSearch-15000

tmin 0.00 0.00 0.03 0.10 0.55 0.24 2.28 0.03
tavg 8.57 80.65 167.48 279.11 439.68 640.29 938.66 828.52
tmax 31.52 118.71 230.63 419.73 771.90 878.89 1385.11 1800.00

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
davg 1.35 26.66 42.46 43.78 53.47 48.55 47.14 -
dmax 30.00 142.31 147.95 180.00 125.81 120.00 169.12 -

ηI 88 12 10 10 10 10 10 -

SBPBeam-400

tmin 0.76 9.02 39.85 116.11 288.38 548.04 1019.35 1.98
tavg 0.84 10.02 47.65 139.75 322.43 590.86 1154.86 326.64
tmax 0.96 11.27 54.11 152.34 360.47 657.26 1309.69 1225.92

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 20.43 44.90 70.05 71.96 85.91 77.94 74.60 23.91
dmax 90.00 127.87 174.68 200.00 304.76 157.69 227.69 114.57

ηI 15 10 10 10 10 10 10 10

IPFP-20000

tmin 0.00 0.01 0.02 0.03 0.11 0.10 0.18 0.01
tavg 1.20 9.62 48.90 115.14 240.54 528.82 903.00 303.21
tmax 8.52 53.83 165.44 456.93 771.64 1620.19 2838.92 1827.03

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.44 10.18 12.59 10.96 11.55 9.19 9.04 3.96
dmax 30.00 80.77 90.41 46.67 47.62 33.64 52.94 33.57

ηI 69 29 20 19 18 19 21 24

GNCCP-0.03

tmin 0.03 0.18 0.58 1.26 2.44 4.33 6.65 0.25
tavg 0.55 6.41 29.80 81.24 195.89 396.37 946.25 185.55
tmax 1.13 16.81 71.94 167.06 450.41 797.39 2330.57 1398.72

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
davg 3.23 10.67 20.25 15.59 16.97 7.54 11.77 8.12
dmax 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ηI 81 34 7 19 14 24 22 20
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the running time has helped IPFP-20000 and GNCCP-0.03 in finding better solutions and
decreasing their deviations. However, it is not enough and they are still far from VPLS,
with a difference reaching more than 20% on average deviation. In addition, VPLS is faster
than the other heuristics on easy instances (subsets 10 and 20), and very hard instances
(subsets 60, 70 and mixed). GNCCP-0.03 is the fastest heuristic on the rest of the subsets.

Conclusion. VPLS heuristic has achieved better results than existing heuristics in terms
of solutions quality, but it does not outperform the default behavior of the solver when
solving F3 formulation.

B.4.1.2 Evaluations on HOUSE-REF database

Another GED graph database is considered to evaluate VPLS.

Default versions. The default parameters are set to the following:

V PLS cons_sol_max = 5, total_time_limit = 10s,
node_time_limit = 2s, UB_time_limit = 4s,

CPLEX-t t = 10
CPLEX-LocBra-t t = 9
BeamSearch-α α = 5
SBPBeam-α α = 5

IPFP-it it = 10
GNCCP-d d = 0.1

Table B.14: VPLS vs. heuristics on HOUSE-REF instances

VPLS CPLEX-10 BeamSearch-5 SBPBeam-5 IPFP-10 GNCCP-0.1

tmin 5.76 9.92 0.03 7.54 0.03 6.85
tavg 9.24 10.01 0.14 8.50 0.18 9.61
tmax 10.03 10.22 0.54 9.72 0.32 11.70

dmin 0.00 0.00 0.00 0.00 0.00 0.00
davg 13.32 221.91 631.32 330.59 313.55 373.44
dmax 294.41 1791.69 4332.69 5502.39 34308.00 32426.89

ηI 523 120 132 126 300 433

Based on the results shown in Table B.14, VPLS seems to be the best heuristic in
terms of solutions quality, with the best average deviation at 13.32% and ηI at 523. The
second heuristic is CPLEX-10, with a davg = 221.91% which is very far from the davg of
VPLS. In addition, ηI of CPLEX-10 is 120, which is very small compared to GNCCP-0.1
(ηI = 433). Despite the high ηI value of GNCCP-0.1, it is outperformed by IPFP-10 based
on the average deviation with a difference of 60%. BeamSearch-5 is the worst heuristic in
terms of solutions quality, but it is the fastest based on the average running time indicator.
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Table B.15: VPLS vs. heuristics with extended running time on HOUSE-REF instances

VPLS CPLEX-100 BeamSearch-2500 SBPBeam-48 IPFP-7000 GNCCP-0.01

tmin 31.92 49.44 0.05 83.19 0.03 94.00
tavg 68.38 99.17 77.02 93.25 14.87 95.67
tmax 100.04 100.45 120.38 104.16 113.57 110.27

dmin 0.00 0.00 0.00 0.00 0.00 0.00
davg 4.47 67.76 544.12 345.71 221.76 0.00
dmax 181.60 510.39 3146.84 5502.39 34308.00 0.04

ηI 573 296 143 126 370 626

Extended versions. In the extended version, VPLS is set to maximum time limit of
100s. The rest of the heuristics have the appropriate parameter values to reach the same
running time.

V PLS cons_sol_max = 5, total_time_limit = 100s,
node_time_limit = UB_time_limit = 30s,

CPLEX-t t = 100
BeamSearch-α α = 2500
SBPBeam-α α = 48

IPFP-it it = 7000
GNCCP-d d = 0.01

The results given in Table B.15 show that the best heuristic is GNCCP-0.01, with
the best average deviation of 0.00%, and the highest number of best solutions of 626 out
of 660. VPLS heuristic comes next with an average deviation of 4.47% and ηI of 573.
CPLEX-100 comes third with smaller average deviation. The gap between the first three
heuristics and the others starts to grow from 200% with IPFP-7000 to exceed 500% with
BeamSearch-2500. With respect to the average running time, IPFP-7000 is the fastest
heuristic, followed by VPLS which is better than the others.

Conclusion. VPLS heuristic, in the default version with a maximum running time of 10s,
has performed better than all existing heuristics with their default parameters. However, in
the extended version, VPLS came second, right after GNCCP heuristic, which surprisingly
was able to solve HOUSE-REF instances efficiently.

B.4.2 Effectiveness of VPLS w.r.t. an exact method

The results of additional experiments done over MUTA and HOUSE-REF databases
are reported in this section.

B.4.2.1 Evaluations on MUTA database

VPLS parameters are set to the following values:
cons_sol_max = 5, total_time_limit = 900s, node_time_limit = UB_time_limit =
180s.
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Table B.16: VPLS vs. Exact solution on MUTA instances

CPLEX VPLS

S ηI tmin tavg tmax dmin davg dmax ηI η′I η′′I

10 100 0.02 0.05 0.12 0.00 0.00 0.00 100 100 0
20 100 0.02 2.37 20.59 0.00 0.00 0.00 100 100 0
30 100 0.16 147.92 446.07 0.00 4.09 51.72 42 59 0
40 100 0.37 163.04 244.73 0.00 5.95 28.24 16 32 0
50 98 0.86 297.61 883.51 0.00 7.21 31.58 10 16 0
60 85 2.98 225.00 598.67 0.00 9.98 30.51 10 10 0
70 35 5.07 503.80 899.97 0.00 11.90 55.05 10 12 0

mixed 91 0.05 123.25 899.97 0.00 1.96 17.14 51 60 0

Based on Table B.16, and on very easy instances (subsets 10 and 20), VPLS has found
all the optimal solutions as CPLEX. A positive and slightly high average deviation of 4%
starts to appear on subset 30, and it keeps growing until reaching almost 12% on subset
70. In contrast, the η′I values decrease with the increase of the size of the graphs. All η′′I
are equal to 0, which means VPLS did not compute any solution that is better than the
ones computed by CPLEX.

Conclusion. The solutions computed by VPLS are relatively good compared to the
optimal/best ones found by CPLEX. The average deviations vary between 0% and 12%
as the graph size increases. Even though the running time of VPLS is set to 900s, the
heuristic does not consume all the time. On hard instances the average time is at 504s.

Table B.17: VPLS vs. Exact solution on HOUSE-REF instances

CPLEX-900 VPLS

tmin 66.07 31.92
tavg 416.75 68.38
tmax 900.67 100.04

dmin - -46.90
davg - 4.34
dmax - 181.60

ηI 633 0
η′I - 604
η′′I - 3

B.4.2.2 Evaluations on HOUSE-REF database

VPLS parameters values are:
cons_sol_max = 5, total_time_limit = 100s, node_time_limit = UB_time_limit =
30s.

The results shown Table B.17 reveal that VPLS solutions are very close to optimal/best
ones (4.34% on average). As well, VPLS has found better solutions for 2 instances, which
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explains the minimum deviation of −46.90%. All these results are achieved in a average
running time of 68s, while CPLEX-900 needed more than 400s on average to solve the
instances.

Conclusion. VPLS has computed in 100s better solutions for 3 instances than CPLEX
in 900s. The average deviation is relatively small at 4%. In addition, VPLS is very fast
compared to CPLEX, where the tavg = 68s for VPLS against 417s for CPLEX.

B.4.3 VPLS vs. LocBra experiments results

The results of the comparison of VPLS with LocBra for MUTA and HOURSE-REF
databases are presented in this section.

B.4.3.1 Evaluations on MUTA database

The results are reported in Table B.18. Briefly, the smallest average deviations are
scored by LocBra on all subsets. However, VPLS average deviations are not far from them,
with a maximum 4.56% on subset 60. The same conclusion can be seen when looking at
ηI values, where all good values are obtained by LocBra. On the other hand and when
looking at the average running times, VPLS is faster than LocBra on all subsets.

Table B.18: VPLS vs. LocBra on MUTA instances

VPLS LocBra

S tmin tavg tmax dmin davg dmax ηI tmin tavg tmax dmin davg dmax ηI

10 0.02 0.05 0.12 0.00 0.00 0.00 100 0.00 0.13 0.50 0.00 0.00 0.00 100
20 0.02 2.37 20.59 0.00 0.00 0.00 100 0.08 3.49 28.35 0.00 0.00 0.00 100
30 0.16 147.92 446.07 0.00 3.37 51.72 67 0.48 701.94 900.64 0.00 0.35 7.14 91
40 0.37 163.04 244.73 0.00 4.31 22.06 41 0.58 784.64 900.58 0.00 0.21 10.00 96
50 0.86 297.61 883.51 0.00 4.34 21.95 43 1.56 810.29 900.00 0.00 0.54 9.52 87
60 2.98 225.00 598.67 0.00 4.56 24.19 31 4.38 810.94 900.63 0.00 0.47 7.06 88
70 5.07 503.80 899.97 0.00 2.92 27.45 51 6.63 811.40 900.78 0.00 1.83 36.92 71

mixed 0.05 123.25 899.97 0.00 1.14 16.90 74 0.03 463.55 900.64 0.00 0.06 1.26 94

Conclusion. LocBra is better than VPLS in solving MUTA instances. The difference,
however, is not that important with a maximum of 5% on the average. In terms of running
time, VPLS is way faster than LocBra with a difference reaching the 500s on hard instances
(subset 60).

B.4.3.2 Evaluations on HOUSE-REF database

Similarly, and based on the results shown in Table B.19, LocBra is better on the average
deviation, and worse on the average running time. One difference appears when looking at
ηI values, where VPLS has found the best solutions for 617 instances against 584 instances
by LocBra.

Conclusion. VPLS was able to compute better solutions than LocBra for 33 instances.
The average running time of VPLS is also better than the average running time of LocBra.
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Table B.19: VPLS vs. LocBra on HOUSE-REF instances

VPLS LocBra

tmin 31.92 99.93
tavg 68.38 100.05
tmax 100.04 100.40

dmin 0.00 0.00
davg 3.62 1.95
dmax 181.60 62.93

ηI 617 584
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