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Chapter 1

Introduction

The class of multiword expressions (MWEs) contains irregular expressions
with unpredictable properties, crossing boundaries of different linguistic
representations. Some MWEs are irregular already at the level of morphology,
e.g. (FR) grands-mères ’grandmothers’, whose components do not agree in
gender. Others have irregular structure, e.g. (EN) by and large ‘in general’, a
surprising coordination of a preposition by and an adjective large which yields
an adverbial modifier. At the semantic level, MWEs show a varying degree
of non-compositionality, e.g., to pull strings is semantically opaque but can
be understood compositionally if the components themselves are interpreted
in an idiomatic way (to pull as ’to use’, and strings as ’one’s influence’). In
fact, the spectrum of the irregular, MWE-related properties is so wide that it
is hard to pinpoint a unified specification of what MWEs actually are.

However, one thing is clear – MWEs are exceptional and, as such, they
are not always easy to deal with. Even though, globally, they can account for
more than 40% of lexical items in a natural language, individually MWEs
are relatively scarce (Savary, 2014). This makes it difficult to: (i) empirically
investigate their irregular properties, (ii) compile MWE-dedicated lexical
resources, (iii) investigate their distributional characteristics (important for
statistical processing), among others.

A practical NLP application where the influence of MWEs appears as
evident is machine translation. Because of their non-compositional semantics,
MWEs cannot be translated literally, word-by-word, but only as a whole.
For instance, (FR) à la va-vite should be translated to ‘hastily, carelessly’
rather than to (lit.) to the go-quickly, while (PL) wystawić [kogoś] do wiatru
means to ‘fool somebody’ rather than to (lit.) put [somebody] to wind. Before
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10 CHAPTER 1. INTRODUCTION

MWEs can be translated, though, they have to be identified, and MWEs
are often hard to detect due to their fine-grained, non-trivial idiosyncratic
requirements and, often, discontinuous nature. Moreover, MWEs can be
ambiguous with either literal readings or accidental co-occurrences of their
component words (Nasr et al., 2015; Constant et al., 2017). For instance,
(FR) Est-ce ainsi que les hommes vivent? ‘is it so that people live’, might, at
first sight, seem to contain the MWE (FR) ainsi que (lit. so that) ‘as well as’,
but the co-occurrence of the words ainsi and que in this sentence is accidental
and the syntactic relation between them is different than in their true MWE
occurrences.

Interpretation-oriented NLP tasks, such as semantic calculus or translation,
call for MWE-dedicated procedures. In this work, we focus on syntactic
parsing, which often underlies such tasks. MWEs exhibit properties of both
words and syntactic expressions, hence it is not clear what is an appropriate
model to handle them in parsing, nor how they should be represented in
syntactic treebanks (Rosén et al., 2015). The crucial issue is at which point the
MWE identification should take place: before (Nivre and Nilsson, 2004; Arun
and Keller, 2005; Constant et al., 2013a; Korkontzelos and Manandhar, 2010),
after (Constant et al., 2012; Nagy T. and Vincze, 2014), or during syntactic
parsing (Green et al., 2013; Candito and Constant, 2014; Le Roux et al., 2014;
Nasr et al., 2015; Constant and Nivre, 2016). The last, joint approach deals
best with the circular dependencies between MWEs and syntax, but it is also
the most challenging one to implement, because it requires extending the
existing methods with MWE-dedicated mechanisms.

Statistical parsing approaches typically focus on robustness more than
on precision. High precision, indispensable to account for the idiosyncratic
properties of MWEs, is achievable in symbolic parsing approaches. Within
this context, MWEs challenge the traditional grammar/lexicon distinction,
adopted to different extent in different symbolic frameworks. When syntactic
rules are distinguished from lexical entries, as e.g. in Lexical Functional
Grammar, LFG (Dalrymple, 2006), it is unclear to which of these two levels
MWEs should belong. In some frameworks, e.g. in Combinatory Categorial
Grammar, CCG (Lewis and Steedman, 2014), MWEs can be only mod-
eled compositionally, which is counter-intuitive from the lexicographic point
of view. MWEs are modeled compositionally also in Head-Driven Phrase
Structure Grammar, HPSG (Sheinfux et al., 2015; Bargmann, 2015). Fi-
nally, it is non-trivial to model the idiosyncratic properties of MWEs and
to account for their various restrictive and defective properties, syntactic
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configurations, subcategorization requirements, etc., even within the context
of formalisms which provide a first-class support for MWEs, such as Tree
Adjoining Grammar, TAG (Joshi and Schabes, 1997). Existing solutions to
these issues are typically based on grammar engineering methods – macros
(LFG), meta-grammars (TAG), type-hierarchies (HPSG), etc. – and often rely
on MWE-aware lexicons, difficult to compile due to the scarcity of MWEs.

In the domain of symbolic parsing, a growing interest is dedicated to
parsing strategies which allow to compute the most plausible parse tree(s)
without having to generate the space of all the grammar-compliant solutions
in advance. Such strategies enable efficient parsing within the context of
large grammars and/or complex symbolic formalisms (Angelov and Ljunglöf,
2014). They were also shown to finely combine with probabilistic supertag-
ging methods, which can be used to pre-score the individual solutions and,
hence, guide the parser to quickly find the most probable one(s) (Lewis and
Steedman, 2014). Bangalore and Joshi (1999) claim that, once supertagging
is correctly performed, the remaining step of determining the corresponding
syntactic structure is trivial (Nasr and Rambow, 2010). Using a parsing
strategy in combination with supertagging allows then to backtrack from
eventual mistakes made by the supertagger. However, the existing symbolic
parsing strategies rarely pay attention to MWEs, even though the latter
are ubiquitous and potential MWE occurrences can help the parser to make
better disambiguation decisions (Wehrli, 2014).

One of the main goals of this thesis is to remedy this deficiency by
investigating the question of how to express the idea of promoting MWEs
(Wehrli, 2014) in terms of a parsing strategy (Lewis and Steedman, 2014),
as well as to verify the impact of such a strategy, applied to several types
of MWEs, on the accuracy and speed of symbolic TAG parsing. Having the
goal of efficient, MWE-aware TAG parsing in mind, we design an architecture
which allows to benefit from standard grammar compression techniques, thus
making it less sensitive to MWE-induced changes in grammar size. It also
allows us to investigate the usefulness of promoting MWEs in a context closer
to a real-world situation where, clearly, different parsing optimizations should
ideally combine to provide an optimal solution.

The remainder of this document is structured as follows. In Ch. 2, we
summarize the main approaches to representing structural relations – namely,
dependencies and constituencies. In Ch. 3, we look more closely at MWEs
and at the types of their defining characteristics. In Ch. 4, we investigate the
relations between MWEs and syntax by looking at how MWEs are represented
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in the existing MWE-aware syntactic treebanks. In Ch. 5, we look at the
particular issues and challenges MWEs introduce in the domain of syntactic
parsing, as well as at how MWEs are accounted for in the existing parsing
systems, both purely statistical and symbolic ones.

Ch. 6 includes a description of TAG, the formalism we chose as the
basis for our work due to its first-class support for MWEs, and a range
of TAG-related definitions which we rely on in the following chapters. A
description of our TAG parsing architecture, followed by a formalization of
the A?-based TAG parsing strategy which enables promoting MWEs, can be
found in Ch. 7. An experimental evaluation of the benefits and drawbacks
of the MWE-promoting strategy is described in Ch. 8. All the experiments
are performed with ParTAGe,1 a parser for TAGs which extends the above-
mentioned architecture with facilities enabling real-world applications, such
as grammar compression and feature structures (detailed in Sec. 7.5). Finally,
we describe our ideas for future work in Ch. 9 and conclude in Ch. 10.

1Available at https://github.com/kawu/partage under an open license.

https://github.com/kawu/partage


Chapter 2

Syntactic structure

2.1 Constituents
Words in natural languages can be characterized by grammatical classes (i.e.
as nouns, verbs, adjectives, etc.) and one can empirically observe that words
belonging to the same class will often appear in similar contexts. In English,
for instance, an adjective often precedes a noun, but not a verb; an adverb
can be often found in the company of a verb, but it is not so likely to follow
a preposition.

The idea of constituency emerges from the observation that the above
behavior can be generalized from words to word groups, also called phrases
or constituents. They also can be classified – roughly, on the basis of the
grammatical classes of the main words they contain – as noun phrases, verbal
phrases, adjectival phrases, etc., and they also exhibit preferences regarding
the company they tend to keep. Moreover, phrases are to a lesser or a greater
extent inseparable. While a noun phrase can very well precede a verb (cf. Ex
2.1), it is not true for each of its components separately (cf. Ex. 2.2), nor
can one split a noun phrase and put half of it before the verb and the other
half behind (cf. Ex. 2.3, see (Jurafsky and Martin, 2008, ch. 12, p. 421) for
other examples).

(2.1) [All the particularly black cats]NP [bring]V misfortune.

(2.2) *Particularly bring misfortune.

(2.3) *All the particularly bring black cats misfortune.

13
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In free-word-order languages, e.g. Polish, such constraints seem to play a less
important role. For instance, it is possible to separate, by a verb, an adjective
from the noun it modifies (cf. Ex. 2.4), since their relation is morphologically
marked (through case and number, in this particular case). Nevertheless, hard
word-order constraints also occur – the preposition must obligatorily precede
its noun complement, which renders the sentence in Ex. 2.6 ungrammatical.

(2.4) Zgubę
Affliction.sg.acc

czarne
black.pl.nom

przynoszą
bring

koty
cats.pl.nom

(PL)

(2.5) Myślę
Think.sg.1

[o
[about

niebieskich
blue

migdałach]PP

almonds]PP

(PL)

‘I think about nothing in particular, I idle’

(2.6) *Myślę
Think.sg.1

niebieskich
blue

migdałach
almonds

o
about

(PL)

This empirical behavior of word groups leads to the idea of representing
syntactic relations in natural languages not as dependencies between words, as
is the case in dependency grammar (see Sec. 2.2), but rather as dependencies
between both words and phrases. Phrases can compose together to build
up complex, recursively embedded structures, which calls for an appropriate,
sufficiently expressive formal representation. A formal representation typically
adopted in constituency grammars is a tree. Fig. 2.1 shows an example
constituency-based analysis of the sentence from Ex. 2.1, in which phrasal
nodes constitute internal nodes of the tree and words of the sentence are
placed in its leaves.

Figure 2.1: A constituency-based analysis of the sentence from Ex. 2.1.
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An important property of syntactic structures – both dependency-based
and constituency-based – is the so-called projectivity.

Definition 1 (Projectivity). Let w1, w2, . . . , wn be a sequence of words, where
n is its length, and < be a binary transitive relation representing their ordering
in the sentence. A constituent structure is said to be projective if it satisfies
the property that, for any two words wi and wj which are in the yield1 of a
given phrasal node, every word wk such that wi < wk < wj also belongs to its
yield. Fig. 2.1 provides an example of a projective constituent tree.

It is sometimes argued that constituency trees are inevitably projective.2
It is clearly true for trees which can be expressed in context-free grammars
(CFGs), one of the first constituency-based formalisms used for syntactic
analysis. CFG has been nevertheless shown to be too weak to account
for certain syntactic phenomena in natural languages, precisely because it
does not allow to construct non-projective structures which are required
to model certain sentences, e.g. the one in Ex. 2.4, where any reasonable
constituency-based analysis should group czarne ‘black’ and koty ‘cats’ under
a single constituent NP, which, at the same time, should not contain the verb
przynoszą ‘bring’ in its yield (otherwise it would have to be a VP because it
is the noun koty which is bound by the verb przynoszą).3

One possible solution to this issue is to use formal representations which
exceed the modeling power of CFGs, e.g., which relax the assumption that a
syntactic structure must be projective, and which therefore allow a certain
degree of crossing dependencies. Fig. 2.2 (a) shows an example of a non-
projective tree which could be assigned to the sentence from Ex. 2.4. It is
also possible to relax the assumption that the syntactic structure is a tree
whatsoever, in order to account for the so-called gapping constructions, an
example of which can be found in Fig. 2.2 (b).

Another solution, used in formalisms like LFG or HPSG – which adhere to
the projective, tree-based representations of constituents – consists in repre-
senting non-projective relations between words by using a dual representation

1A word is in the yield of a phrasal node if it is reachable from this node via a transitive
closure of the parent-child dominance relation. For instance, in Fig. 2.1, the word black is
in the yield of the phrasal node S, but not in the yield of the node VP.

2Kahane (2012, p. 269) claims this indirectly by writing “the boy is not a constituent
[in the little boy] because these two lexical items are not adjacent.”

3See (Kallmeyer, 2010, p. 19) for more general arguments relying on the properties of
the string languages which can be generated with CFGs.
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Figure 2.2: (a) A constituent analysis with non-projective constituents. (b)
An example of a gapping construction where broccoli is analysed as an element
of two VPs, one over likes, the other over hates (example (b) borrowed from
(Kallmeyer, 2010, p. 5))

based on the so-called feature structures. More information on such structures
can be found in Sec. 2.3.

Finally, constituent structures inform about groupings of words, but they
do not, by default, inform about head-dependent relations between them,
which are nevertheless closer to semantic representations than constituents.
For instance, both the verb likes and the proper noun John are in the yield
of the left-most sentential node in Fig. 2.2 (b). In the standard approach to
semantic modeling, likes is considered a predicate and John its argument, but
this relation is not present in the constituent structure. The simplest way
to add this kind of information is to use the so-called head annotations, i.e.,
mark selected edges of the graph as heads. Fig. 2.3 (a) presents a headed
version of the constituent tree shown in Fig. 2.1, while Fig. 2.3 (b) presents
the corresponding graph of head-dependent relations. This latter structure
is, in fact, a dependency graph, an example of the alternative approach to
syntactic modeling.

2.2 Dependencies
While the constituency-based approach dominated during the second half
of the 20th century, in recent years the trend appears to be reversed. The
dependency-based approach is now appreciated as an appropriate way to
represent syntactic structures (Kahane, 2012) and it has been also shown
to provide an effective backbone for syntactic parsing models. Nivre (2005)
postulates that the latter may be related to potential usefulness of bilexical
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Figure 2.3: (a) A head-annotated version of the tree from Fig. 2.1, with the
head annotations highlighted in bold; phrasal nodes directly dominating words
were omitted for clarity. (b) The corresponding graph of head-dependent
relations between words (arcs lead from heads to their dependents), which
can be obtained using the procedure described e.g. in Kahane (2012).

relations4 in syntactic disambiguation, as well as to a more restricted search
space when processing a given sentence. Indeed, from a formal point of view,
the same dependency tree can be obtained from many different (headed)
constituency trees (Kahane, 2012). A constituency parser needs to learn to
distinguish all these trees, while from a dependency-oriented perspective they
all represent the same set of syntactic relations and the work performed to
differentiate them appears futile. Other reasons may be that the constitutency-
based approach was popularized together with context-free grammars, known
to be too weak for syntactic modeling, and that vanilla constituent structures
do not represent head-dependent relations, which are closer to semantic
representations than constituent structures, and which are emphasized in the
dependency grammar approach (Kahane, 2012, p. 260).

The common core of assumptions underlying the various approaches to
dependency grammar is that a syntactic structure consists of lexical nodes
linked via asymmetric binary relations called dependencies (Nivre, 2005). The
goal of dependency analysis consists therefore in determining the connections
between lexical units, their types, and their directions. Formally, the resulting
structure is a labeled directed graph, which is typically required to be connected
(so that the analysis covers the entire sentence) and, especially in practical
applications like parsing, it is assumed to be a tree rather than a general
graph (which cuts down the number of possible structures per sentence).5 We
have already seen an example of a dependency tree in Fig. 2.3 (b). Fig. 2.4
shows the same tree enriched with labels specifying the types of the individual

4Relations occurring between words associated with each other through a direct syntactic
relationship, e.g., of one word being a subject or an object of the other one.

5Another property mentioned in (Nivre, 2005) is acyclicity.
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head-dependent relations.

Figure 2.4: Tree from Fig. 2.3 (b) enriched with labels consistent with the
Universal Dependencies tagset: nsubj for nominal subject, obj for object,
amod for adjectival modifier, etc.

Directions specify the head-dependent relations between words and are not
always easy to ascertain. The choice is particularly problematic in exocentric
constructions, where syntactic properties emerge from either none or more
than one of its lexical elements.6 For instance, there is no consensus on how
to model grammatical function words (articles, complementizers, auxiliary
verbs) or prepositional phrases (Nivre, 2005, p. 6).7 Coordination, even
though endocentric8, poses a similar problem, because neither the choice of
the conjunction (which cannot syntactically replace the entire construction)
nor one of its complements (both coordinated elements have the same status)
is linguistically satisfactory (Nivre, 2005, p. 11). Fig. 2.5 shows an example
of two possible coordination analyses in the dependency framework.

There are many extensions of dependency grammars. Some approaches
allow underspecification of directions, which may help to better represent
exocentric structures. One can relax the by-default assumption that depen-
dency structure is a tree, and use dependency graphs to allow a given lexical
unit to be governed by several heads, as exemplified by the plain and the
dashed arcs in Fig. 2.5 (b). Other extensions propose to distinguish different
types of relations – semantic from syntactic and morphological, endocentric
from exocentric – or the use of stratified structures, where several dependency

6Note that this issue emerges not just in dependency grammars, but, in general, in
formalisms which rely on the notion of headedness.

7Although recent efforts – e.g. the collaboration around the Universal Dependencies
project (Nivre et al., 2016) – strive to provide a unified answer to these questions.

8As opposed to exocentric constructions, syntactic properties of an endocentric contrac-
tion emerge from one of its lexical components, called its head.
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Figure 2.5: (a) An analysis which assumes that conjunction and is the head of
the coordinated verbs. (b) The first of the coordinated verbs, likes, constitutes
the root of the entire construction, while both the conjunction and and the
second verb hates are its direct dependents. The second analysis is consistent
with Universal Dependencies. Moreover, (b) contains an additional, dashed
arc highlighted in green, which represents the verb-object relation between
hates and broccoli, but whose addition makes the structure a general graph
rather than a tree.

layers are constructed over a given sentence.9 An example of the former is the
theory of Tesnière (1959), where connections10 play the role of dependencies,
transfer relations connect elements of exocentric constructions (often of a
more morphological nature, e.g. a case marking preposition with its noun
complement), and junction relations link coordinated elements (Nivre, 2005,
p. 7).

The stratified methodology has been used in designing and constructing
the Prague Dependency Treebank (PDT) (Bejček et al., 2012). It follows
the theory of Functional Generative Description (FGD) (Sgall and Hajicová,
1986), where the analytical layer is used to represent more surface-oriented
syntactic relations and the tectogrammatical layer can be considered as a deep
syntactic/shallow semantic representation (Nivre, 2005, p. 7). In this theory,
for instance, an exocentric prepositional phrase is headed by its preposition
in the analytical layer, but this very same preposition is not present in the
tectogrammatical layer, where the entire construction is represented by its
semantic head (noun) directly dependent on the verb (Nivre, 2005, p. 11).

Extensions allow to solve many of the issues emerging in the basic de-
pendency grammar approach. As we will see, some of them turn out useful
within the context of MWEs. However, while most dependency theories are
expressive, most parsing frameworks adopt only the basic set of assumptions

9Some stratified dependency theories are even more complex, e.g. in the bubble depen-
dency grammar lexical nodes form hierarchical structures and dependencies can connect
more than two nodes at the same time (Kahane, 2012).

10Kahane (2012) designates by connections undirected binary relations.
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and do not handle multi-stratal representations, general graph structures, or
non-projective trees.11

2.2.1 Dependencies vs. constituents
The apparent difference between dependency- and constituency-based ap-
proaches is the lack of phrasal nodes in the former (Nivre, 2005). On the
other hand, lexical relations inherently present in dependency structures are
specified in constituency structures only if the latter contain appropriate head
annotations (Kahane, 2012). Moreover, while phrasal nodes are typically
annotated with phrase type annotations (VP for verbal phrase, NP for noun
phrase, S for sentence etc.), arcs in dependency structures are typically anno-
tated with grammatical functions (SUBJ for subject, OBJ for object, MOD
for adjunct, etc.) or thematic roles as in PDT. Thus, these two approaches
to syntactic modeling differ not only in the hierarchical structure they use to
represent syntactic information, but also in the domain of the corresponding
type annotations, which play different roles in both approaches.

According to Kahane (2012), the main reasons to prefer dependency
grammars over constituency grammars include the following: (i) dependency
structures do not imply implicit ordering constraints, thus they may be better
adapted for free-word-order languages,12 and (ii) constituency structure alone
(i.e., without important extensions) does not allow to represent non-projective
relations. Apparently, Kahane (2012) refers to structures stemming from the
Chomskian family of constituency-based formalisms. Non-projective struc-
tures can be easily represented by allowing the yields of the individual phrases
to be interleaved with each other, as exemplified in Fig. 2.2. This approach is
adopted in the family of TAG-related formalisms, e.g. in linear context-free
rewriting systems (Kallmeyer, 2010, p. 4, fig. 1.2). It is nevertheless true that
formalisms like LFG or HPSG adopt a dual syntactic representation with a
projective, constituency-based backbone,13 additionally enriched with feature
structures, which allow to represent potentially non-projective, functional
dependencies between words (subject, object, etc.).

11Projectivity for dependency structures follows Def. 1 under a slightly modified definition
of yield which includes all the words reachable from a given lexical node by means of a
reflexive transitive closure of the head-dependent relation.

12For example, FGD assumes that tectogrammatical structures are projective, while
analytical structures not necessarily (Nivre, 2005).

13More precisely, a context-free-grammar backbone.
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It seems therefore that the crucial question in the dependency vs. con-
stituency debate is simply whether dependency structures are not only neces-
sary but also sufficient to model syntactic structures of natural languages
(Nivre, 2005, p. 8). According to Rambow (2010), constituencies and de-
pendencies can be both seen as syntactic content-independent approaches to
syntactic modeling, in the sense that the same syntactic content (transitive
verbs, multiword expressions, control constructions, etc.) can be representated
using either of these representation types. Still, phrasal nodes – even if
not necessary – could turn out simply too convenient for syntactic modeling
to be abandoned. And while the dependency approach gains in popularity
both in linguistics and in parsing, the constituency approach is still more
widespread as far as symbolic grammars and symbolic parsing are concerned,
which may confirm the above intuition. Besides, it is sometimes claimed
that constituent structures allow to support compositional semantics more
naturally than dependency structures (Crabbé, 2014).

2.3 Composite representations (LFG)
Syntactic approaches which rely on more elaborate linguistic theories – and
thus adopt more assumptions, but also provide richer descriptive devices – also
exist. In this section we will focus on one of them, called lexical functional
grammar, or LFG (Dalrymple, 2006), which combines the properties of
the constituency and dependency approaches to syntactic modeling. Note,
however, that similar arguments apply to other formalisms: HPSG (Sheinfux
et al., 2015), TAG (Joshi and Schabes, 1997), CCG (Lewis and Steedman,
2014), etc.

Constituent structure. The syntactic analysis of a given utterance is
represented in LFG by a heterogeneous construction consisting of a constituent
structure and a functional structure. A constituent structure (c-structure) is
a regular constituency tree, a structure representing groupings of words into
phrases and of phrases into more complex phrases. Constituent trees in LFG
are required to be projective. As we have seen before, for certain expressions
non-projective trees are arguably more appropriate, which can be experi-
enced especially within the context of free-word-order languages. However,
c-structures in LFG are sometimes seen as performing a secondary role – they
are only needed to build a scaffolding over which the functional structures
can be conveniently defined. Within the scope of functional structures, much
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more expressive than constituent trees, the constraint of projectivity does not
apply.

eats → V :


LEX eat

SUBJ
[
NUM sg
PERS 3

]
OBJ

[
CASE acc

]


mice → N :

 LEX mouse
NUM pl
PERS 3



Tom → N :

 LEX Tom
NUM sg
PERS 3



a → D :
[
LEX a
NUM sg

]

Figure 2.6: Potential part-of-speech and AVM representations of selected
analyses of several English words. Each AVM consists of a list of feature-value
pairs, where the value is either an atomic value (e.g. sg or acc) or a nested
AVM. The verb’s lexical analysis specifies grammatical requirements over its
arguments – subject and object. Verification of these requirements should be
handled by grammar rules. Note that, in LFG, lexical entries are described
by functional descriptions rather than feature structures. The latter are only
used to represent their analyses.

Functional structure. From the technical point of view, functional
structures (f-structures) are represented with the so-called feature structures
(FSs) and they constitute the source of the high expressiveness of LFG
grammars. FSs in LFG are defined in a similar way as in general unification
grammars (Francez and Wintner, 2012). In particular, a feature structure
can be seen as a directed (potentially cyclic) graph in which two types of
nodes can be distinguished:

• Frontier nodes with atomic feature values,

• Empty internal nodes, from which edges labeled by features may lead
to other internal or frontier nodes14.

14An internal node with no outgoing edges can be seen as a frontier node, but – because
it does not contain any feature value – it can unify both with internal and with frontier,
value-saturated nodes.
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S → N VP
(↑ SUBJ) = ↓ ↑=↓

VP → V N
↑=↓ (↑ OBJ) = ↓

Figure 2.7: A simple LFG grammar consisting of two CFG-like rules.

Feature structures are often represented graphically as the so-called attribute-
value matrices (AVMs), well-known within the domain of linguistics, in which
re-entrancies are represented with coreference identifiers. Figure 2.6 shows
how feature structures could be used to represent grammatical interpretations
of several English wordforms.

The correspondence between c-structures and f-structures is ensured by
CFG-like grammar rules, as the ones shown in Fig. 2.7, which specify that
(the upper rule) a sentence can be composed of a noun and a verb phrase, and
that (the bottom rule) the latter can be composed of a verb and a noun. The
annotations placed below the rules’ right-hand side elements specify that in
this particular word-order configuration the first noun provides a subject for
the verb, while the second noun provides its object. Technically, ↑ designates
the f-structure of the resulting construction (constituent), while ↓ refers to
the f-structure of the corresponding subconstituent (of the verb phrase if it is
placed under VP, of the noun if placed under N, etc.). Thus the ↑=↓ equation
used in both rules specifies that the same f-structure is assigned to the verb,
to the verb phrase, and to the entire sentence – in other words, that the verb
is the head of this construction. The annotation (↑ SUBJ) = ↓ attached to
the noun element of the upper rule, on the other hand, specifies that this
noun (here: Tom) is the subject of the verb. Similarly, the relation between
the verb and its direct object is specified in the bottom rule.

Application of these two rules to the sentence Tom eats mice, assuming the
lexical interpretations taken from the above lexicon, leads to the composite
syntactic representation illustrated in Fig. 2.8. To emphasize the relationship
between f-structures and dependency structures, grammatical functions are
represented as arcs, while the morphosyntactic attributes are depicted using
the AVM notation.

LFG grammars can thus produce composite constituency/dependency
structures, and the latter, represented by FSs, can form potentially cyclic
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Figure 2.8: An LFG-based analysis of the sentence Tom eats mice based on
the lexicon from Fig. 2.6 and the grammar from Fig. 2.7. The tree on the
left represents the c-structure resulting from the application of the grammar
rules. The dependency-like tree on the right depicts the resulting f-structure,
constructed according to the f-structure-related annotations placed below the
rules’ body elements. The gray arrows between the two structures show to
which constituent nodes the individual dependency nodes correspond. These
relations also stem from the head-annotations, shown in bold.

graphs and are not restricted to projective relations, which attests the high
expressive power of LFG and other related formalisms. Incidentally, this also
shows that the role of dependencies in formal grammars and in syntactic
parsing, even if somewhat implicit, has been significant at least since the
beginnings of LFG in the late 1970s.



Chapter 3

Multiword expressions

This chapter is dedicated to a general description of multiword expressions
and their various irregular properties. In Sec. 3.1, we first try to define what
multiword expressions (MWEs) are. In Sec. 3.2, we describe the various
idiosyncratic properties which motivate their special treatment. In Sec. 3.3,
we propose an extended definition of MWEs and finally, in Sec. 3.4, we show
an approach which satisfies the requirements of this definition and which
consists in describing MWEs in the form of MWE-aware syntactic lexicons.

3.1 Basic definition
A question of what exactly a multi-word expression (MWE) is doesn’t seem
very hard to answer at first sight. Numerous examples of MWEs are known
and certain types of expressions are widely acknowledged to be a part of this
broad family. On the other hand, the family of MWEs is a large one – it
contains idiomatic expressions, noun compounds, verb-particle constructions,
light verb constructions, fixed expressions, etc. This heterogeneity does not
make it easy to design a minimal and consistent set of requirements which
could be used to unambiguously recognize MWEs among other, more regular
objects of the language.

A seminal work on multi-word expressions by (Sag et al., 2002) defines them
rather roughly as "idiosyncratic interpretations that cross word boundaries
(or spaces)". While very short, this definition evokes three important points –
MWEs are defined here as interpretations and not as linguistic objects per se.
Furthermore, these interpretations are meant to be idiosyncratic, which is the

25
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key property of MWEs – idiosyncratic expressions exhibit properties which
are inconsistent with what would be the result of their regular, compositional
treatment. The third point brings up the multi-word characteristic – MWEs
need to span over multiple words, typically interleaved with spaces.

In this work, we start with a tentative definition similar to the one adopted
by Mel’čuk (2012), where MWEs are lexical objects defined on top of lexemes.

Definition 2 (lexeme, following (Woliński, 2014)). A lexeme is a model of
a word which groups together its various grammatical forms. Moreover, it
provides information about the morphological features of its individual forms.

For example, cat and cats can be analysed as two different grammatical
forms, with different morphological features (singular and plural number,
respectively), of the single English lexeme cat.

Definition 3 (multiword expression). A multiword expression is a model of
a linguistic expression which is formed by several (at least two) lexemes and
which exhibits some idiosyncratic properties.

The above definition does not specify which expressions should be con-
sidered as idiosyncratic and which should not – we will focus to this issue in
Sec. 3.2. Let us only note here that, in the extreme case where no linguistic
properties are deemed as regular, any given linguistic expression formed by
several lexemes can be considered a MWE.

In contrast to (Mel’čuk, 2012), we do not assume that the individual
components of a MWE are formed in a syntactically regular way. Such
definition would leave out all the various syntactically irregular MWEs, whose
components cannot be reasonably linked using standard dependency relations,
such as by and large.

3.2 Different flavours of idiosyncrasy
The definition of MWEs (see Def. 3) relies on a somewhat blurred notion
of idiosyncrasy, which assumes an underlying distinction between what is
regular in the language and what is not. The goal of this section is to show
several examples of idiosyncratic properties of MWEs which motivate their
special status and treatment in linguistic modeling and NLP applications.

Following Lichte et al. (2017), we divide (most of the) idiosyncratic
properties into two broad categories of restrictive and defective properties.
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The former restrict the number of the possible surface realizations with respect
to the corresponding literal interpretations, while the latter relax some of the
normally occurring linguistic constraints, thus blocking literal interpretation
in certain configurations. Defective properties in particular can lead to quite
unexpected surface realizations and syntactic configurations, and we will thus
call MWEs which exhibit such properties (syntactically, morphologically, etc.)
irregular.

The first type of MWE-related idiosyncrasy is the lexical idiomaticity
(Baldwin and Kim, 2010). It occurs when one of the components of a MWE
does not function in the language model as a rightful lexical unit (lexeme) on
its own, as is often the case with foreign expressions such as (EN) ad hoc.1

Definition 4 (multitoken word). Let e be an expression such that one of its
components does not function in the underlying language model as a lexeme.
Then, we call e a multitoken word.

Multitoken words are not strictly speaking MWEs, since they do not
satisfy Def. 3. They are, nevertheless, interesting from the NLP point of view
and exhibit common properties with syntactically irregular MWEs such as
all of a sudden.

The property which motivates the very definition of MWEs as sets of
lexemes is the restrictive lexical selection, which imposes particular lexical
realizations of certain syntactic arguments (which we will also call lexically
constrained), e.g. (EN) to pull someone’s leg requires the head verb pull
with a direct object headed by leg: #to pull one’s arm/member. Mel’čuk
(2012) defines free phrases as expressions whose individual lexical components
are chosen by the speaker in an unconstrained way – “each [component] is
selected strictly for its meaning and in conformity with its linguistic properties
but independently of the lexical identity of other components”. MWEs are
not free in this sense, hence the need to describe them as lexeme sets.

Morphological idiosyncrasy is a property of MWEs which do not
behave as regular units at the level of morphology, e.g. yield only a limited
set of surface forms by constraining certain grammatical categories to specific
values, for example in the morphologically restrictive MWE (PL) krokodyle
łzy (lit. crocodile tears) ‘superficial sympathy’ which does not occur in

1Each example is preceded by its language code in parentheses. The hash (’#’) character
signals the loss of the idiomatic reading due to a missing property, while the star (’*’)
means ungrammaticality.
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a singular form. While this type of idiomaticity occurs in English, it is
more diverse in languages with richer morphology in which the number of
grammatical categories which can be potentially constrained is higher. The
nominal compound (PL) czerwony pająk (lit. red spider) ‘post-communist’ is
morphologically defective – it may occur either in the masculine inanimate or
in the human masculine gender form (and, consequently, inflect differently
within certain contexts), even though pająk ‘spider’ alone does not occur in
the latter (unless used metaphorically) (Czerepowicka and Kosek, 2011).

The MWE (PL) zjadłbym konia z kopytami (lit. I would eat a horse with
its hooves) ‘I am very hungry’ can only occur in conditional mood and is thus
morphosyntactically idiosyncratic (more precisely, morphosyntactically
restrictive): #zjem konia z kopytami ‘I will eat a horse with its hooves’.
MWEs often require additional agreement, e.g. (EN) to cross one’s fingers
imposes agreement in person, number and gender between the possessive
pronoun and the subject: #I cross his fingers. Finally, the pragmatic MWE
(PL) Bóg (ci za to) zapłać (lit. Godnom (yousg for this) payimpt.sg.2) ‘God
bless you’ is morphosyntactically defective, since Bóg occurs in nominative
even though the expression has the imperative mood, which normally entails
the vocative case of the subject.

Yet another flavor of idiosynrasy is the syntactic idiosyncrasy. MWEs
are quite often syntactically restrictive: they can (i) constrain the choice of
determiners or modifiers, e.g. (FR) avoir raison (lit. to have reason ) ‘to be
right’ allows neither a determiner nor a modifier of the nominal component:
#avoir (une) raison évidente ‘to have an obvious reason’, (ii) constrain the set
of the corresponding syntactic configurations, e.g. (EN) to kick the bucket ‘to
die’ cannot be passivised while (FR) les carottes sont cuites (lit. the carrots
are cooked ) ‘the situation is hopeless’ only allows passive voice: #on cuit les
carottes (lit. one cooks the carrots), (iii) exhibit linearization constraints, e.g.
(EN) drink and drive requires the strict order of its coordinated verbs and
violating this constraint leads to the loss of the idiomatic reading: #drive
and drink, etc.

The class of syntactically defective expressions includes, e.g., (EN) by
and large ‘roughly’, which is an irregular coordination of a preposition and
an adjective, and (EN) attorney.N general.A, where the adjective follows
the noun it modifies. Another interesting syntactic property is the defective
subcategorization, i.e. imposing a subcategorization frame which the MWE
headword does not admit outside MWEs, e.g. (PL) dobrze mu z oczy patrzy
(lit. well him looks from eyes) ‘he looks like a good person’ prohibits a subject:
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*uczciwość dobrze mu z oczy patrzy (lit. honesty well him looks from eyes),
while patrzy ‘looks’ as a standalone verb always requires one.

A prevalent property of MWEs is the semantic non-compositionality.
The standard definition of semantic compositionality in linguistics states that
“a compound expression is compositional if its meaning is a function of the
meanings of its parts and of the syntactic rule by which they are combined”
(Savary, 2014). Expressions such as to kick the bucket, whose meaning is
completely opaque and is not related to the meaning of any of its components,
are therefore regarded as non-compositional.

Not every occurrence of semantic idiosyncrasy manifests itself as non-
compositionality. Certain idiomatic expressions, such as (EN) to spill the
beans ‘to reveal (a) secret(s)’, are widely considered as semantically decom-
posable. Once the individual components of this expression are assigned
the corresponding figurative meanings – reveal and secret(s), respectively –
the meaning of the entire phrase can be obtained compositionally. It doesn’t
change the fact that the required figurative meanings of spill and beans are
not readily available without the full lexical context of this particular MWE.

Another, even more subtle type of semantic idiosyncrasy can be exemplified
by a seemingly trivial (EN) bus driver ‘a person driving a bus’ but not e.g.
‘a piece of software which enables computer to communicate with a bus’.
While here again the meaning of the compound can be derived from the
appropriate meanings of its components and thus is perfectly compositional,
this particular compound could be theoretically analysed in several different
ways using the compositional methodology. The alternative meanings should
be probably blocked in a linguistically precise semantic model.

The above definition of semantic compositionality should be taken with
a grain of salt. It relies on the assumption that simplex wordforms are
equipped with sets of their potential meanings – it is notoriously the case
that a wordform can be analysed as many different lexemes and that a lexeme
has several possible semantic analyses. The choice of how the set of the
potential meanings for a given simplex wordform should be constructed is, in
fact, quite arbitrary. If we choose all its possible meanings, regardless of the
context it occurs in, even the idiomatic expression to kick the bucket could be
modeled compositionally, as presented by Bargmann (2015). However, such a
treatment can lead to a significant increase in the number of potential semantic
interpretations of the individual occurrences of simplex wordforms, most likely
to an overgeneration of semantic interpretations of complex expressions and,
finally, does not seem to model very well the mental process of a native
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English speaker who, most likely, does not think about dying every time he
utters or hears the word kick.

Pragmatic idiosyncrasy is a property exhibited by expressions related
to specific situations or real-life contexts, outside of which they are not
typically used. Pragmatically idiosyncratic expressions include greetings,
e.g. (EN) Good morning, politeness formulas, e.g. (FR) Veuillez recevoir,
Monsieur, l’expression de mes sentiments distingués (lit. please receive, sir,
the expression of my sentiments distinguished), etc.

The last and possibly the weakest flavor of idiocynrasy mentioned in
the definition of MWEs presented above is the statistical (also called dis-
tributional) idiosyncrasy. Certain word combinations tend to co-occur
significantly more often than other possible formulations of the same message
and/or more often than the assumption of statistical independence between
their individual components would make us believe. In fact, most of the
MWEs which exhibit any symptoms of the idiosyncrasies described above
tend to be also statistically idiosyncratic, but the implication doesn’t work
the other way around. An example of an expression which can be classified
as idiosyncratic only at the level of statistics is (EN) immaculate performance
(Baldwin and Kim, 2010). There is nothing special about its morphology,
syntax or semantics, yet its two component words occur together with a
marked frequency. Expressions idiosyncratic at the statistical level are called
collocations.

3.3 Extended definition
Def. 3 abstracts away from the details of the idiosyncratic properties of MWEs,
even though such properties provide the very motivation to model MWEs
as objects of a lexical nature. A lexeme tells us what are the morphological
features of its individual grammatical forms – by analogy, is seems reasonable
to expect that a MWE tells us what are the properties of its individual forms.
Since MWEs are syntactic expressions, such forms can be expected to have a
syntactic nature as well.

Definition 5 (multiword expression). Following Def. 3, a multiword expres-
sion is a model of a linguistic expression which is formed by several (at least
two) lexemes and which exhibits some idiosyncratic properties. Moreover, a
MWE groups together its various syntactic forms – i.e., syntactic structures
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built on top of the corresponding lexemes – and, for each of these forms,
provides information about its morphological and syntactic properties.

The above definition does not specify the nature of the syntactic structures,
nor does it determine the form in which information about the properties of
the individual syntactic forms should be given. Concerning the structure, the
underlying linguistic theory could rely on either dependencies or constituencies.
Concerning the methodology of description, the individual syntactic forms and
their properties could be explicitly listed one-by-one, they could be described
in a higher-level generative meta-language, or they could be expressed in
terms of constraints which have to be satisfied by the individual syntactic
forms. In any case, any precise answer to these questions would clearly have
to commit to a certain linguistic theory of morphology and syntax. The
following section, Sec. 3.4, describes a possible answer to these questions,
based on the notion of MWE-aware syntactic lexicons.

3.4 MWEs in syntactic lexicons
We now focus on two related (even if independently developed) formalisms
which serve to describe MWE-aware syntactic lexicons: PDT-Vallex and
Walenty. Their extensive comparison with respect to phraseology can be
found in (Przepiórkowski et al., 2017).

PDT-Vallex is a valency dictionary accompanying the development of the
Prague Dependency Treebank, PDT (Bejček et al., 2012). PDT and PDT-
Vallex are strongly related – each occurrence of a predicate word (mainly
verbs, but also nouns, adjectives, and a few adverbs) in the tectogrammatical
(shallow semantic) layer of PDT is expected to be annotated with its “word
meaning”, represented by the corresponding valency frame. A valency frame
essentially describes all the expected complements of a given word, each
complement potentially enriched with the corresponding morphosyntactic or
lexical constraints. The dependents of the individual complements can be
further specified in a recursive way.

PDT-Vallex includes two classes (dependency labels) dedicated to phrase-
ological complements. CPHR (Compound Phraseme) is used to represent
dependent objects of light verbs, while DPHR (Dependent Phraseme) is used
for verbal idioms in general. An example of two valency frames assigned to
the verb (CZ) uzavřít ‘to close’ can be found in Fig. 3.1. The first one, in
particular, represents the light verb (CZ) uzavřít smlouva ‘to close a contract’.
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Figure 3.1: (Below) Two valency frames assigned to the Czech verb uzavřít ‘to
close’. The individual complements are marked with functors which designate
the corresponding dependency labels. ACT stands for actor and is typically
realized by the subject, PAT is the patient which is usually a direct object, and
CPHR is the direct object of a light verb. The complements are also decorated
with numbers 1 and 4 which designate the nominative and the accusative case,
respectively. (Above) The links leading from the tectogrammatical nodes
in PDT to the corresponding frames. Frame-specified complements can be
determined on the basis of the dependency labels which should correspond
to functors described in the valency entries. Figure borrowed from (Urešová,
2009, p. 7).

The PDT-Vallex lexicon is in fact related to both the tectogrammatical
(TL) and the analytical layers (AL) of the PDT treebank. An occurrence of a
given valency entry is a flat subtree on the TL level, a subtree whose individual
children are annotated with the corresponding functors (actor, patient, etc.)
coming from the lexicon. On the AL level, the same TL subtree can be
represented by several different AL subtrees, of depth potentially greater than
1. AL subtrees can contain morphosyntactic and lexical constraints in their
nodes, and can be obtained using various globally defined transformations
(passivisation, for example) (Hajič and Urešová, 2003).

Walenty is a Polish large-scale valence dictionary of about 50000, 3700,
3000, and 1000 subcategorization frames (in its 2015 version) for Polish
verbs, nouns, adjectives, and adverbs respectively. Its encoding formalism is
probably more theory-neutral than PDT-Vallex, since the latter is strongly
coupled with PDT and both PDT and PDT-Vallex are based on the Func-
tional Generative Description framework (Sgall and Hajicová, 1986). Walenty
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includes an elaborate phraseological component (Przepiórkowski et al., 2014).
Thus, above 8,000 verbal frames contain lexicalized arguments of head verbs,
i.e. they describe verbal MWEs. For instance the idiom highlighted in ex-
ample (3.1) is described in Walenty as shown in Fig. 3.2. Each component
separated by a ’+’ represents one required verbal complement with its lexical,
morphological, syntactic, and (sometimes) semantic constraints. Here, the
subject is compulsory and has a structural case (subj{np(str)}), which
notably means that it normally occurs in nominative, but turns to genitive
when the head verb is nominalized. The subject being a required argument in
a verbal frame does not contradict the fact that it can regularly be omitted
in Polish2, as in (3.1).

(3.1) Nie
Not

umiem
knowsg.1

w
in

tych
these

sprawach
affairs

trzymać
holdinf

języka
tonguesg.gen

za
behind

zębami.
teeth.

(lit. I cannot hold my tongue behind my teeth in such cases) ’I cannot
hold my tongue in such cases’

The second required argument is a direct object realized as a nominal
phrase in structural case, i.e. normally in accusative but turning to genitive
when the sentence is negated, as in (3.1). The lexicalized object’s head has
the lemma język ’tongue’, should be in singular (sg) and does not admit
modifiers (natr). The third complement is a prepositional nominal phrase
(prepnp) headed by the preposition za ’behind’ governing the instrumental
case (inst) and a lexicalized non-modifiable (natr) noun with the lemma
ząb ’tooth’ in plural (pl).

trzymać: subj{np(str)}+
obj{lex(np(str),sg,’język’,natr)}+
{lex(prepnp(za,inst),pl,’ząb’,natr)}

Figure 3.2: Description of trzymać język za zębami ’hold one’s tongue’ in
Walenty

The theoretical underpinnings of Walenty and PDT-Vallex are quite simi-
lar. Both provide a description language which allows to describe, roughly,

2This property is to be distinguished from impersonal verbs, which prohibit a subject,
as in dobrze mu z oczu patrzy (lit. looks him from eyes well) ’he looks like a good person’.
The same applies to Czech; however, elided arguments are restored in the tectogrammatical
level of PDT, the level where PDT-Vallex frame occurrences are annotated.
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connected dependency subtrees whose nodes can be potentially enriched with
morphosyntactic and lexical constraints. Each valency frame encodes, there-
fore, a set of the corresponding, underspecified dependency tree fragments,
even though Walenty descriptions encode also information about constituent
structures. An occurrence of a fragment in a particular dependency structure
can be then seen as a potential instance of the corresponding valency frame.3

While entries of either Walenty or PDT-Vallex can be seen as dependency
subtree descriptions, their interpretation is not 100% formalized. Especially
in case of Walenty, this can be seen as a by-product of the intentional theory-
neutrality of the formalism. Walenty should be in principle usable with
many different dependency-related formalisms which can, e.g., adopt dif-
ferent accounts of coordination (see also Sec. 2.2 for a short description of
different issues related to dependency-based representations). A particular
interpretation function, which relates valency entries with the corresponding
dependency fragments, can be then defined within the context of a particular
grammatical formalism. Patejuk (2015) showed that Walenty entries can be
automatically transformed into the corresponding lexical entries of POLFIE,
the LFG grammar for Polish. More precisely, the individual Walenty de-
scriptions map into definitions and constraints over the corresponding LFG
f-structures.

Przepiórkowski et al. (2017) describe certain limitations of the two for-
malisms with respect to the representation of MWEs. One of the challenging
examples they provide is the idiom (PL) biec swoim torem ‘run its course’,
where the dependent object torem ‘course’ must be modified by either an
adjectival modifier or a genitive NP but, even though any number of adjectival
modifiers is allowed, there can be at most one genitive NP in this idiom.
Neither Walenty nor PDT-Vallex allows to express such a complex constraint.
As a general solution to this and other issues, they propose to enrich the
respective description formalisms with regular expression operators – Kleene
star, Kleene plus, and optionality.

3One of the reasons why such instances are only potential is that two different valency
frames can possibly match one and the same dependency fragment.
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MWEs in treebanks

According to Rosén et al. (2015), there is currently little agreement on how
MWEs should be annotated in treebanks. This may be a striking observation,
given that structures present in treebanks should provide a paragon of how
they should be represented in the output of parsing systems. This shows that
the question of “how to parse MWEs” is a doubly complicated one, since it is
not only unclear how to handle MWEs in parsing, it is not even clear how to
represent them in its results.

Constant et al. (2017) distinguish several main representations of MWEs
in treebanks1, some of which also emerge from the comparative study carried
out by Rosén et al. (2015) who looked at the most commonly annotated types
of MWEs – prepositional MWEs, verb-particle constructions and multiword
named entities – and their representations in 18 different treebanks.2

In this work we propose our own typology, presented in Tab. 4.1, in which
we divide MWE-dedicated representations into classes depending on their
MWE-related characteristics: structural restrictions and the type of interface
between MWEs and the morphosyntactic/syntactic layers. More specifically,
we consider four different MWE-related characteristics:

• internal structures take two possible values, depending on whether
the given approach allows (yes) to represent the internal structure of
MWEs or not. If yes, we do not assume any specific constraints over

1Among which, the choice of not representing MWEs at all, which we omit here.
2Many of the examples shown in this section originate from the overview of MWE

annotation in treebanks carried out by the working group 4 of the PARSEME action, see
http://clarino.uib.no/iness/page?page-id=MWEs_in_Parseme.
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Classes of MWE internal discontinuous mwe/morphosyntax mwe/syntax
representation approaches structures structures interface interface

Words with spaces no no embedded below
Chunks yes no above below
Subtree yes yes above embedded

Asynchronous yes yes above parallel
Overlay yes yes above above

Bidirectional yes yes above intertwined

Table 4.1: Main classes of MWE representation approaches in treebanks
(rows) and their MWE-related characteristics (columns).

the type of the corresponding structure, even though it tends to be flat
in some approaches and recursive in others.

• On top of that, the approach can either allow (yes) or not to represent
discontinuous structures.

• We also consider two flavors of the mwe/morphosyntax interface:
MWEs can be either directly embedded in the morphosyntactic layer
– essentially meaning that MWEs are represented as tokens, just as
regular words – or constructed above this level.

• With respect to the mwe/syntax interface, MWEs can be (i) placed
below the layer of syntactic structures, which is equivalent to saying
that MWEs form lexical nodes on top of which syntactic structures are
constructed, (ii) embedded in syntactic trees, meaning that connections
between MWE components are described as syntactic, (iii) put above
syntactic structures, meaning that they refer to syntactic nodes but
not the other way around, (iv) intertwined with syntactic structures,
meaning that they form a separate layer of representation but references
in either direction – from syntax to MWEs (and elements of their internal
structure) and from MWEs to syntax – are allowed, and finally (v)
parallel to syntactic structures, in the sense that their correspondence
with syntactic structures is not guaranteed.

It is mainly on the basis of the two last characteristics – mwe/mor-
phosyntax interface and mwe/syntax interface – that we define six
different classes of MWE representations, presented as rows in Tab. 4.1. The
classical words-with-spaces approach relies on the token-based representation
of MWEs. Since individual component words are not distinguished in this
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approach, it is not possible to describe relations between them (i.e., the
internal structure) either. The chunks class of representations is similar to
words-with-spaces in the sense that chunks are placed below syntactic struc-
tures. However, this approach allows to represent the internal structure of
MWEs, thanks to the fact that it keeps the individual MWE component words
separated. The remaining four representation classes – subtree, asynchronous,
overlay, and bidirectional – correspond to the embedded, parallel, above, and
intertwined types of the syntax/mwe interface, respectively.

It is also mainly the syntax/mwe interface characteristic which distin-
guishes our typology from, e.g., the one described in (Constant et al., 2017).
One of the clear differences is that we consider an approach to be an instance
of the chunks family of approaches only if chunks provide lexical nodes over
which syntactic structures are constructed. The more traditional point of
view on chunks does not put up such requirement. We think, however, that
the question of the MWE-syntax interface is crucial, not only from the point
of view of treebanking but also of MWE-aware parsing, which is the origin
of this slightly less orthodox typology presented here. Approaches which
represent MWEs independently from syntactic structures – whether they use
chunk-like structures or recursive graphs – are thus of lower interest to us
and we classify them all as asynchronous.

4.1 Words with spaces
The first approach, typically called the words-with-spaces approach, consists
in concatenating together (using a special character as a separator, e.g. a
space) all the components of a given MWE to form a single graphical word. It
is motivated by the fact that certain continuous MWEs have a clearly atomic
interpretation. MWEs represented with this methodology are essentially
indistinguishable from simplex tokens. In constituency treebanks, words with
spaces are thus represented as terminal leaves, while in dependency treebanks
– as lexical nodes on top of which dependencies are defined.

This approach is e.g. used to represent prepositional MWEs in the
NorGramBank (Rosén et al., 2015) (see Fig. 4.1 (a)), based on the motivation
that prepositional MWEs are typically fixed and thus undergo neither internal
modifications nor morphological variations. Constant et al. (2017) mention
several drawbacks of this approach related to its limited expressiveness –
it cannot be used to represent discontinuous MWE, and it hinders semi-
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Figure 4.1: The words-with-spaces and chunking approaches in practice:
(a) A constituent tree with words with spaces representation of the complex
preposition sammen med ‘together with’ in the NorGramBank. (b) A chunking
representation of the named entity Sofija Amundsena in the Latvian treebank.
The MWE-related subtree can be seen as a chunk because its root does not
refer to any lexical item, as nodes in dependency trees normally do, but rather
groups together MWE components in a chunking-like manner. (c) A complex
preposition na podstawie ‘on the basis of’ represented as a syntactic word on
top of which a prepositional group is defined (an example from the National
Corpus of Polish).

compositional semantic analysis since it makes it impossible to retrieve internal
structure of MWEs. From this one can conclude that the words-with-spaces
approach may be appropriate to represent the so-called multitoken words
(cf. Def. 4, p. 27), written accidentally with spaces (or other separators)
inside but otherwise semantically non-compositional, continuous, and (up to
morphosyntactic variations) fixed, but it is inappropriate for the representation
of other types of MWEs.

4.2 Chunking representation
The chunking representation consists in representing MWEs as chunks, i.e., as
simple, continuous phrases constructed directly over words. In the chunking
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approach MWE representation is typically flat (we, however, do not require
this property in our typology) and, as defined in Tab. 4.1, chunks form lexical
nodes of syntactic structures, which makes it akin to the words-with-spaces
approach. On the other hand, it allows the individual component words
to be assigned e.g. part-of-speech information. One could also imagine
discontinuous chunks to form lexical nodes of a syntactic tree, but such design
is rarely used in practical applications or treebanks.

An example of this approach is the Latvian Treebank, which is essentially
dependency-based but employs special, phrase-style constructions for person
names and, in general, multiword named entities without clear syntactic
structure (Rosén et al., 2015) (see Fig. 4.1 (b) for an example).3 A superficially
similar solution is used in the ssj500k Dependency Treebank for Slovene, where
multiword named entities are also marked as chunks but, in contrast to the
Latvian Treebank, they are internally analysed at the syntactic level, as any
other nominal group, which to our eyes makes it rather an instance of the
asynchronous approach.4

Another treebank which employs the chunking approach is the National
Corpus of Polish (NCP). It models prepositional MWEs as syntactic words, i.e.,
in a layer on top of which syntactic groups are defined (see Fig. 4.1 (c)). The
same approach is used for continuous adverbial (e.g. na czczo ‘on an empty
stomach‘) and conjunctive (e.g. a zatem ‘therefore’) MWEs. Interestingly,
discontinuous conjunctive MWEs – as the one shown in Ex. 4.1 – are also
joined to form single syntactic words in NCP, in spite of their discontinuity.
This suggests that some forms of discontinuous MWEs could also be treated
as chunks (or words-with-spaces) in parsing systems, even if we are aware of
no experiments performed in this direction so far.

(4.1) zarówno
both

wczoraj,
yesterday,

jak
how

i
and

dziś
today

(PL)

‘both yesterday and today’

The chunk-based approach is also used in the French Treebank (FTB),
where continuous MWEs are (by default) uniformly represented as flat trees,

3Similar representation is sometimes used in dependency parsing systems. For instance,
irregular MWEs form lexical nodes in the transition-based dependency parser of Constant
and Nivre (2016).

4There seems to be no mechanism to ensure that multiword named entities actually
form nominal groups in this annotation scheme.



40 CHAPTER 4. MWES IN TREEBANKS

both in the constituency version (Le Roux et al., 2014) and in the dependency
version (Candito and Constant, 2014).5 While it can be classified as an
instance of the subtree approach (Constant et al., 2017), covered in the
following section, it exhibits all the properties of the chunk-based approach
as defined in Tab. 4.1, even if MWEs following it are represented directly in
the syntactic layer.

According to Constant et al. (2017), a standard way of representing chunks
in tagging systems is the IOB encoding method. While straightforward in
its basic formalization – tag B(egin) is assigned to the chunk’s left-most
token, tag (I)nside to other tokens covered by the chunk, and tag (O)utside
to the remaining tokens – this approach is in general quite powerful and
allows to represent not only discontinuous (Schneider et al., 2014), but also
recursively embedded (Waszczuk et al., 2013) MWEs. Ex. 4.2 shows how
the discontinuous zarówno jak i from Ex. 4.1 can be encoded as a single,
discontinuous chunk in this approach.

(4.2) zarówno
B

wczoraj,
O

jak
I

i
I
dziś
O

(PL)

While IOB encoding is used in tagging and chunking systems, it is not
used in treebanks, thus it can be seen as a practical encoding rather than an
annotation scheme. Finally, even if it were used as an annotation scheme,
we would rather classify it as an instance of the asynchronous approach,
since typically IOB encodings are not guaranteed to correspond to syntactic
structures.

4.3 Subtree analysis
The subtree analysis essentially consists in representing MWEs as connected
subtrees (or substructures, in general) in the corresponding syntactic struc-
tures (either phrasal or dependency-based, depending on the character of the
underlying treebank). A subtree should be understood here in its mathemati-
cal sense – as a tree whose graph vertices and edges form subsets of the sets
of vertices and edges of the underlying tree, respectively.

The defining characteristic of this approach is that MWEs are not explicitly
marked but rather distinguished from regular syntactic structures through

5Even though in the first version of FTB, as mentioned by Constant et al. (2017),
continuous MWEs were represented using the words-with-spaces approach.
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Figure 4.2: An analysis of the verb-particle construction (EE) piilus sisse
(lit. peekpst.3.sg inparticle) ‘to peek’ in the Estonian treebank. Both words are
connected using a dedicated @Vpart dependency.

the use of special phrasal or dependency labels. In other words, labels must
join the syntactic and the MWE-dedicated pieces of information. It allows
to represent the internal structure of MWEs, which is especially convenient
within the context of syntactically regular, semantically compositional MWEs.

This approach is sometimes used to model verb-particles, e.g. by using
a special dependency label connecting a particle with its head verb (as e.g.
in the Estonian and Hungarian dependency treebanks, see Fig. 4.2 for an
example), or a special phrasal label for the nodes directly dominating the
corresponding particles (as e.g. in the German TIGER constituency treebank,
see Fig. 4.3). In NorGramBank, based on the LFG formalism, the relation
between the verb and its particle is marked in the f(unctional)-structure,
which essentially describes functional dependencies between the individual
lexical units of the sentence. More specifically, information about the particle
is integrated into the predicate of the resulting verb-particle construction,
provided that the construction is effectively semantically non-compositional.

This last point brings up an important property of verb-particles – some of
them can be, in fact, analysed as semantically compositional. The expression
put up, for example, can have both idiomatic and compositional occurrences,
exemplified by Ex. 4.3 and Ex. 4.4, respectively6.

(4.3) To put up a flag

(4.4) To put up a friend for the night

To properly annotate verb-particle MWEs in treebanks one should therefore
use a dedicated label to distinguish the idiomatic from the compositional

6Example borrowed from the PARSEME shared task annotation guidelines, see http:
//parsemefr.lif.univ-mrs.fr/guidelines-hypertext/.

http://parsemefr.lif.univ-mrs.fr/guidelines-hypertext/
http://parsemefr.lif.univ-mrs.fr/guidelines-hypertext/
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Figure 4.3: An analysis of the verb-particle construction (DE) bringe um (lit.
bring1.sg at/for/aroundparticle) ‘to kill’ in the German TIGER treebank. The
particle is marked using a dedicated SVP label, reflecting its relation with the
head verb of the entire construction.

Figure 4.4: Analysis of the light-verb construction (HU) döntést hoznunk
(lit. decisionacc bringinf.1.pl) ‘make decision’ in the Hungarian treebank.
Dependency label OBJ relating both words is enriched with the -LVC suffix.

occurrences. Technically, such a solution is used by Vincze et al. (2013)
to annotate light-verb constructions (LVCs) in the Hungarian dependency
treebank. More precisely, their representation consists in enhancing the
corresponding dependency relations with information about such constructions
(e.g., OBJ → OBJ-LVC).

Candito and Constant (2014) experimented with the subtree approach
in order to represent continuous yet syntactically regular MWEs in the
dependency version of the French Treebank. In this representation dependency
labels are enriched with a suffix containing information about the MWE
status of a given expression and its part-of-speech. They also considered an
alternative representation where information about MWEs is not preserved
in labels but rather as values of dedicated features attached to the individual
lexical nodes.

This approach is also sometimes used to model prepositional MWEs (e.g.
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in the SQUOIA Spanish treebank or in the Dutch LASSY Small Treebank),
but in this case – prepositional MWEs are typically fixed – annotations
are flat and information about the MWE is marked in the root of the tree
encompassing the entire expression. Similar approach is used in the French
Treebank, where continuous MWEs are (by default) uniformly represented as
flat trees. As mentioned in Sec. 4.2, such a solution exhibits all the properties
of the chunk-based approach but, in fact, it also satisfies the properties of the
subtree approach as defined in Tab. 4.1. Flat MWE-dedicated subtrees can
be seen as placed below syntactic trees proper, or as embedded in syntactic
trees.

The subtree method can be thus seen as an amalgam of three more
specific MWE-representation approaches. If the subtrees used to represent a
given MWE are also subtrees in the information-science sense – i.e., all the
nodes reachable from the MWE’s nodes via the parent-child relation form
a part of this MWE – then such MWE can be represented using chunks.
Alternatively, if by stripping away the MWE-related markings valid, purely
syntactic structures are obtained, then such a representation can be seen as
an instance of the overlay approach. Finally, if the relations between MWEs
and syntactic structures are intertwined, then we may be dealing with the
bidirectional approach.

4.4 Asynchronous annotation
The main property of the asynchronous approach, as defined in Tab. 4.1,
is that MWE annotations are independent from syntactic structures and, if
they even actually overlap with them, they are not formally required to. This
approach does not allow to reuse structures present at the syntactic level when
describing MWEs, which entails additional and potentially unnecessary (since
already carried out) work, nor does it allow to reuse MWE annotations (related
to fixed, irregular MWEs, in particular) in syntactic structures. Another
pitfall of the asynchronous approach in general is that it makes it non-trivial
to search for patterns involving several annotation layers (Bejček et al., 2012).
On the other hand, this design choice has the advantage of making the process
of annotating MWEs independent from the process of annotating syntactic
structures, which on the one hand simplifies it, and on the other hand allows
later to update the two layers independently. It also allows to annotate one of
the layers even when the other layer is not even present. Finally, synchronic
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(as apposed to asynchronous) annotation can cause suboptimal representation
choices: wrong decisions concerning the structures adopted in one layer can
negatively influence the corresponding representations in the other layer, a
phenomenon which can be seen as related to the issue of error propagation in
the pipeline-based parsing systems. Thus it seems that in the short term the
asynchronous approach can be advantageous, but in the long run it fails to
represent potentially important connections between MWEs and syntax.7

Figure 4.5: Graph-based analysis of two coordinated named entities, Ewa
Piasecka and Edward Piasecki, in the National Corpus of Polish. Note that
the family name Piaseckich occurs only once on the surface.

Yet, due to its practical advantages, it is commonly used to annotate
MWEs in treebanks. It is used, e.g., in the ssj500k Slovene Dependency
Treebank to annotate multiword named entities at the morphological level.
These annotations take the form of chunks, which are nevertheless given
an independent, internal analysis at the syntactic level, as any other nomi-
nal group. Another example is provided by the National Corpus of Polish
(NCP), in which multiword named entities are represented in a separate
layer, independent from the (shallow) syntactic layer, and which allows to
describe recursively embedded structures. Moreover, the NCP annotation
scheme allows to represent coordinated named entities (see Fig. 4.5), which
are formally characterized by graphs rather than trees (Savary and Waszczuk,

7Note that we do not advocate at this point any of the alternative representation
approaches, but rather suggest that relations between syntactic objects and MWEs exist
and should be ideally represented in treebanks, on the one hand, and also that syntactic
structures and MWEs should “align”, which is not guaranteed in the asynchronous approach,
on the other hand. Otherwise, the task of semantic analysis – which in principle should
take place over both the syntactic structures and MWEs – would be impossible to perform.
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2012, p. 141). This also shows that the asynchronous approach does not
enforce any particular structure of the MWE representations – they can be
represented by chunks, as in the Slovene Treebank, or by recursive constituent
graphs, as in the National Corpus of Polish.

Finally, the asynchronous approach is used not only in treebanks, but also
in MWE-aware syntactic parsing systems. In (Constant et al., 2016), MWEs
are represented as dependency trees independent from syntactic trees, and
the parser does not guarantee any alignment between them. In (Le Roux
et al., 2014), continuous MWEs take the form of IOB-encoded chunks, which
the parsing system attempts (but does not guarantee) to keep synchronized
with the corresponding syntactic structures.

4.5 Overlay

The main characteristic of the overlay approach, as defined in Tab. 4.1, is that
MWE annotations are defined on top of syntactic structures. Clearly it is
appropriate only for MWEs with regular syntactic structures. Its advantage, in
comparison with the subtree approach, can be seen in the fact that it provides
a conceptual separation between syntactic and MWE annotations. Both
approaches can sometimes lead to equivalent representations, as exemplified
by LVC annotations in the Hungarian treebank (see Fig. 4.4) which, even
though annotated directly in syntactic dependency trees, could be very well
removed from this layer by stripping the appropriate LVC-related suffixes and
putting them in a separate layer containing references to the corresponding
LVC-related dependencies.

A notable example of the overlay approach is the Prague Dependency
Treebank (Bejček et al., 2012) (PDT). PDT annotates multiword named
entities, foreign and numerical expressions, etc., on top of tectogrammatical
(deep syntactic/shallow semantic) trees. More specifically, MWE annotations
take the form of subtrees enriched with information about the corresponding
MWE type. As shown in Fig. 4.6, the annotated MWEs can be internally
modified, even though they are required to be continuous. This is possible
because lexical units – even when discontinuous on the surface or in the
shallow analytical level – become continuous in the semantic layer. On top of
that, the tectogrammatical layer can contain nodes not present on the surface
at all, thus facilitating the analysis and annotation of ellipsis-stricken MWEs.
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Figure 4.6: A dependency tree assigned in the Prague Dependency Treebank
to the sentence shown in Ex. 4.5. It contains two multiword annotations –
the named entity Bayern Mnichov and the numerical expression 4.8 millión
‘4.8 million’ – highlighted in red and orange, respectively, over the continuous
tectogrammatical subtrees.

As explained in Sec. 3.4, PDT contains valency annotations which specify,
for a given tectogrammatical node – in particular, for every occurrence of a
verb – which of its direct dependents are bound (or required) in this particular
context8 and which are optional.9 There is a valency lexicon, called PDT-
Vallex (Hajič et al., 2003; Urešová, 2009), accompanying the development of
the PDT treebank, and its individual entries – valency frames – can be seen
as flat tectogrammatical subtrees whose annotation consists in finding their
individual occurrences in the tectogrammatical layer of the treebank. This
point of view reveals certain similarities between MWEs and valency frames,
since both apply to continuous substructures at the tectogrammatical layer.

8The context determines the word sense, which in turn determines the number and
character of the bound terms.

9Let us note that certain arguments – e.g. subjects – are commonly omitted in Czech
on the surface level, but they are restored in the tectogrammatical level.
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Moreover, MWEs of an important subtype – verbal idioms – are actually
described in PDT-Vallex and thus annotated in PDT in a different way than
e.g. named entities, which raises the questions of whether (i) the methodology
of valency annotations in PDT could be applied to different types of MWEs,
and (ii) annotations of MWEs and valency frames should (or could) not be
represented in a unified manner.

(4.5) Bayernu
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‘They will pay a gratuity 4.8 million marks to Bayern Munich, where
the Colombian has operated.’

4.6 Bidirectional
The bidirectional approach is based on the intertwined syntax/mwe in-
terface, in which syntactic structures and MWEs rely on each other. This
type of MWE representation can be often observed in treebanks based on
specific, more elaborate linguistic theories. Fig. 4.7 shows an LFG-based
analysis of the sentence from Ex. 4.6, which contains a verbal idiom, in the
NorGramBank. Information about the verbal MWE (VMWE) is marked in
the PRED feature of the f-structure, which represents the predicate-argument
relations between the main verb and its complements. In this particular case,
the predicate is complex and it is composed of the component words of the
VMWE (holde#øye*med), in order to distinguish it from other predicates
whose main verb is holde. Between the <. . . > brackets the SUBJ and the
OBL-TH arguments are specified. The direct object is indicated outside of
the brackets, signifying that it is subcategorized for but semantically void
(the semantics it brings is already accounted for in the complex predicate).

(4.6) Samtidig
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‘At the same time he furtively kept a close eye on the girl.’

In the so-called “PRED-only” view, where only predicate words and rela-
tions between them are preserved, f-structures take the form of dependency
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Figure 4.7: The c-structure and the f-structure (simplified) assigned to the
sentence from Ex. 4.6. Both the example and the figure borrowed from Dyvik
et al. (2017).

graphs whose nodes are either simplex words or MWEs, and whose arcs
are annotated with grammatical functions (subject, object, adjunct, etc.).
Looking from this perspective, MWEs can be seen as lexical nodes of syntactic
structures, which reveals the similarities between the LFG-based representa-
tion of MWEs and the chunks approach and, consequently, the bidirectional
character of the former.

4.7 Conclusions
Various MWE characteristics can influence the choice of an appropriate MWE
representation approach. In this work, we introduce a novel typology of MWE
annotation in treebanks, based mainly on the MWE/syntax interface and,
consequently, the issue of syntactic irregularity emerges as a factor with a
dominant impact on this decision.

Two representation approaches stand out as particularly appropriate in
dealing with syntactically regular MWEs – overlay and bidirectional. The
choice between the two seems to lie in the underlying linguistic theory. In LFG,
for example, predicate-argument structures are accounted for at the syntactic
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layer (in f-structures, more precisely) and since it is not possible to describe
them properly without describing MWEs, too, the intertwined interface turns
out indispensable. In PDT, MWE and valency annotations are put on top
of tectogrammatical trees and this solution seems to satisfy all the desirable
properties of a MWE representation approach with respect to syntactically
regular MWEs. On the other hand, tectogrammatical descriptions and PDT-
Vallex entries are mutually constrained, which brings the question whether it
is not really an instance of the bidirectional approach.

Conversely, even if a given syntactically irregular MWE could be formally
described using the regular syntactic objects (dependencies, labels, phrases,
features) underlying a given syntactic formalism, the subtree solution has
certain disadvantages. In particular, it may lead to abuse of syntactic notation
in inappropriate contexts which, in turn, may lead to less clear interpretation
of the meaning of the syntactic objects. For instance, while by and large
could be modeled as a coordination of a preposition and an adjective, such
an interpretation is unconvincing. Moreover, one may deduce from it (and
this is highly probable in case of automatic syntactic analysis methods) that
prepositions can actually coordinate with adjectives, which obviously is not a
viable generalization. Another example is (PL) do rany przyłóż (lit. to wound
apply) ‘gentle’, which performs a function of a predicative adjective, which is
not immediately obvious – and should not be deduced in general – from its
internal preposition-noun-verb structure.

It therefore follows that amongst the methods presented in Tab. 4.1, it is
the chunks approach which seems best equipped to represent syntactically
irregular MWEs. Of course, in both dependency and constituency frameworks,
the words-with-spaces approach could substitute the chunking approach.
The former is very restrictive, though, and should be probably used with
caution. Nevertheless, it seems safe to apply it to totally frozen expressions
whose elements cannot be individually co-referenced from outside – complex
prepositions (e.g. together with), particularly irregular MWEs (e.g. all of a
sudden), foreign expressions (ad hoc), etc.
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Chapter 5

MWEs and parsing

In this chapter we look at the particular issues and challenges MWEs introduce
in the domain of syntactic parsing, as well as at how MWEs are accounted
for in the existing parsing systems, both purely statistical and symbolic ones.

5.1 Selected issues in parsing
In this work we understand the notion of parsing as a process which leads
from an unstructured text – a sequence of characters – to a structured
representation which includes:

1. Division of the unstructured text into paragraphs and sentences

2. Segmentation of the individual sentences into tokens

3. Morphosyntactic structure which provides, for each token, information
about its grammatical class (or part-of-speech – verb, noun, adjective,
etc.) and grammatical categories (number, gender, person, case, etc.)
within the context of the sentence

4. Syntactic structure of the sentence, which may represent relations
between its words (dependencies) or their groupings (constituents)

5. Semantic structure of the sentence, in correspondence with its syntactic
structure

MWEs, as linguistic objects with idiosyncratic properties, interfere with
all these levels of linguistic representation (perhaps apart from the first one
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– division into paragraphs), and especially with the level of the semantic
structure. Semantic non-compositionality is a quasi-universal property of
MWEs and, therefore, semantic structures cannot be properly handled without
an appropriate account of MWEs – i.e., if MWEs are not recognized and their
structure linguistically represented.

In this work we are mainly concerned with the layers of segmentation,
morphosyntactic structure and syntactic structure, with a particular focus
on the latter. An example of a division into layers is the Prague Depen-
dency Treebank, where the morphological layer provides information about
morphosyntactic structures of individual sentences in the underlying cor-
pus, the analytical layer provides surface-syntactic relations between lexical
(morphosyntactic) units, and the tectogrammatical layer – defined directly
on top of the analytical layer – provides deep syntactic (shallow semantic)
representations.

5.1.1 Pipeline architecture
An important property of the division into linguistic layers shown above is that
each representation layer depends on (i.e., is constructed on top of) the layer
immediately below. Thus segmentation relies on the division into sentences,
since it is performed within the context of a sentence. Morphosyntactic
structure can be determined only if a particular segmentation is chosen,
since grammatical classes and categories are assigned to particular segments.
Syntactic structure is built over lexical nodes, and if segmentation is unknown
one cannot tell what fragments of the sentence should play their (i.e., the
nodes’) role. Similarly, the syntactic structure provides a scaffolding for a
semantic layer.

This conceptual separation of linguistic representations into layers and
their sequential ordering leads to the idea of pipeline approaches to parsing.
Such approaches basically consist in constructing the individual layers one
by one, in a sequential manner, starting from the lowest level – division into
paragraphs and sentences – and gradually moving up the stack, to semantic
analysis. One of the main ramifications of this processing architecture is that,
once a given layer is constructed, it is not possible to change one’s mind
and revise the decisions made before. For instance, in Ex. 5.1, assuming
the words-with-spaces MWE representation approach (cf. Sec. 4.1), if the
tokenizer decides that both by and large occurrences are MWEs, then the
syntactic parser will not be able to reassess their classification as MWEs and,
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consequently, to correctly analyse the sentence.

(5.1) While we were passing by and large clouds were gathering over our
heads, my daughter said that this is by and large a nice place.

The main advantages of the pipeline approach are that it simplifies the
parsing architecture and that, while focusing on one representation layer at
a time, the parser can consider a significantly restricted space of possible
structures. For instance, when the module of syntactic parsing is employed
to determine the syntactic structure of the given sentence, already tokenized
and tagged morphosyntactically, it only has to consider the possible syntactic
structures which can be built on top of the lexical units given in advance,
and it can limit the possible syntactic structures to those consistent with
morphosyntactic information present in the previous layer. The main disad-
vantage of the pipeline approach is that, as already mentioned above, it does
not allow to recover from errors made in the already processed layers, and
sometimes information from the following layers needs to be considered in
order to properly process the current one.

5.1.2 Symbolic vs. probabilistic parsing
Syntactic parsing techniques are often considered to be divided in two broad
families of symbolic and probabilistic parsing. They can be characterized by
the following set of contrastive descriptions.

Symbolic parsing is mainly concerned with syntactic analysis, the pro-
cess of determining all the syntactically valid structures of a given sentence.
Probabilistic parsing, on the other hand, is mainly concerned with syntactic
disambiguation, i.e., the process of determining the most plausible syntactic
analysis of a given sentence1. At first glance, this distinction may not seem
very clear – one may wonder why there should be more than one syntacti-
cally valid structures for a given sentence. However, this is often the case in
symbolic approaches, and at least for two reasons. Firstly, syntactic analysis
methods are often ignorant of semantics and pragmatics, without which it is
often impossible to correctly disambiguate between two different syntactic
interpretations (as in the famous Ex. 5.2).

1The term probabilistic actually fits rather poorly to this description, since machine-
learning methods in general can be used to perform syntactic disambiguation, and not all
machine-learning methods are based on probabilities.
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(5.2) One morning I shot an elephant in my pajamas. How he got into
my pajamas I’ll never know.

Secondly, symbolic methods can sometimes overgenerate, i.e they can produce
more syntactic structures than a syntactic oracle (e.g. a native speaker and
expert in linguistics) would deem as syntactically valid. This issue is related
to several factors: the expressive power of the underlying symbolic formalism
(it may not be powerful enough to express certain syntactic relations) or
robustness (a robust parser should be able to parse sentences even when they
violate some of the syntactic rules), among others.

Symbolic systems are typically based on the notion of a syntactic grammar,
which determines which syntactic analyses are valid and which are not. Prob-
abilistic systems typically make out without any explicit notion of syntactic
grammar, which also means that they typically cannot be used for syntactic
analysis (as defined above), just as purely symbolic systems cannot deal with
the task of syntactic disambiguation. However, this apparent weakness of the
probabilistic approaches is often seen as their main strength, since it makes
them more robust.

The third axis differentiating these two approaches is related to the notion
of constraints. Symbolic methods can be seen as constraint-oriented in the
sense that the parser is supposed to retrieve all and only the structures satis-
fying certain constraints, typically stemming from the underlying grammar.
In probabilistic parsing, the role of constraints is less apparent. Of course
probabilistic parsers also adopt assumptions which delimit the space of per-
mitted structures. An example from dependency parsing is the assumption
that dependency structure is often required (i) to be a tree, and (ii) to be a
projective tree (see Sec. 2.2). This kind of global constraints is clearly present
also in symbolic approaches, which nevertheless make use of additional, local,
grammar-driven constraints.

Nevertheless, it is worth noting that the two approaches are far from
being contradictory. Indeed, even if the ultimate goal in the context of
a particular application is to perform syntactic disambiguation, one can
easily (theoretically speaking) use a syntactic analysis module to delimit
the set of permitted structures in order to, for example, make the parsing
disambiguation either faster or more accurate (or both). Conversely, even
if syntactic analysis is to be regarded as the core function of the syntactic
parser, practical NLP applications typically prefer to obtain only a single,
most plausible syntactic structure for a given sentence, and one can regard
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syntactic disambiguation as a subsidiary process which allows to satisfy this
technical constraint. For instance, Dyvik et al. (2017) note that, because
of the lexical and the syntactic ambiguity in the NorGram LFG grammar,
parsing often results in many different syntactic analyses, which renders the
step of syntactic disambiguation necessary. Finally, symbolic grammars
can be typically enriched with probabilities. For instance, CFGs can be
extended to probabilistic CFGs by (i) assigning to each rewriting rule a
particular probability and (ii) making sure that the probabilities of all the
rules rewriting a particular non-terminal sum up to 1. Other symbolic
frameworks – TAGs, CCGs, HPSGs, etc. – can be similarly enhanced (Resnik,
1992; Clark and Curran, 2007; Miyao and Tsujii, 2008). Such probabilistic
extensions lead to hybrid systems, which can be used for both syntactic
analysis and disambiguation.

5.2 MWE-related issues in symbolic parsing

This section is dedicated to some of the MWE-related issues which interfere
with the grammar-based view on syntactic parsing and, in particular, with the
task of syntactic analysis, i.e., the task of determining all syntactic structures
consistent with the underlying grammar and with the given input sentence.
Below we describe several properties of MWEs which play an important role
within this context.

5.2.1 Semantic non-compositionality

While often not related to syntactic analysis at first sight – semantic analysis
takes place, conceptually, on top of syntactic structures – semantic non-
compositionality actually provides the very motivation for including the
MWE recognition results in the results of symbolic parsing. If MWEs are not
accounted for, it is not possible to carry out correct semantic analysis, since
MWEs are (almost universally) semantically non-compositional.

Conversely, if semantically compositional exressions are described as
MWEs in a given symbolic grammar, the problem of spurious derivations
may arise. Namely, it may be then possible to analyse a given sentence using
two structures identical on both the syntactic and the semantic level.
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5.2.2 Manifold linguistic status of MWEs

The linguistic status of MWEs is manifold – they exhibit properties of both
words and expressions. It is thus not clear whether they should be handled
in parsing with a mechanism dedicated to words, or rather to expressions.
The manifold linguistic status of MWEs is first and foremost a challenge with
respect to their representation in treebanks and Ch. 4 deals with this issue
in detail. But, of course, this issue is related to the task of the syntactic
analysis too – a wrongly chosen representation will, in principle, prohibit an
appropriate analysis of MWEs in symbolic grammars.

5.2.3 Extended domain of lexical dependencies and mor-
phosyntactic constraints

MWEs exhibit a property which can be called an extended domain of lexical
dependencies.2 Each MWE binds together, within a single semantic predicate,
lexical nodes which can be quite far from each other in the corresponding
dependency structure. Fig. 5.1 shows a surface syntactic dependency subtree
which can be assigned to the expression (PL) poruszyć niebo i ziemię żeby
‘move heaven and earth (to do something)’, assuming the UD-based treatment
of coordination and that the complementizer żeby ‘so that’ is analysed as a
dependent of the main verb of the subordinate clause it introduces (which is
also consistent with the UD scheme). The extended domain of dependencies
can be further aggravated by the so-called long-distance dependencies which
may involve, depending on the underlying linguistic theory, syntactic relations
across an unbounded number of dependency arcs.

Just as MWEs can entail lexical dependencies in the corresponding de-
pendency fragments, they can enforce morphosyntactic constraints on their
elements. An example of this is (FR) casser sa pipe (lit. break one’s pipe) ‘to
die’, where the possessive pronoun must agree in number and person with
the subject, even though the pronoun is not connected with the subject by a
direct dependency relation.

2Note that this is a MWE-related property, to be distinguished from the (loosely related)
extended domain of a locality, which is a property of linguistic formalisms (cf. Sec. 5.5.2).
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Figure 5.1: Possible dependency subtree for the MWE poruszyć niebo i ziemię
‘move heaven and earth’ assuming UD-based treatment of coordination. The
conjunction i ‘and’ is not represented in the tree since it is not obligatory – it is
possible to use other conjunctions (e.g. correlative conjunction ani nieba ani
ziemi ‘neither heaven nor earth’ under the scope of negation (Przepiórkowski
et al., 2017)), or to simply use a comma to separate the coordinated objects. In
contrast to other lexically specified nodes, the complementizer is constrained
to be a member of a specific lexical class, which includes not only żeby but
also aby, by, po to by, etc., all meaning roughly ‘so that’.
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5.2.4 Discontinuity
Many MWEs can be discontinuous, which can be seen as a subcase of the
issue of the extended domain of lexical dependencies. The challenge of
discontinuity with respect to symbolic parsing is that discontinuous MWEs
cannot be analysed as words (i.e., words-with-spaces or chunks). Therefore, in
formalisms which adopt the grammar/lexicon separation, their idiosyncratic
properties need to be accounted for in the lexical entries corresponding to
their individual components words. In different terms, it can be non-trivial to
describe a given potentially (or obligatorily) discontinuous MWE in a lexicon
because the description may need to be split between several lexical entries
rather than to be put within the scope of a single lexical description.

5.2.5 Irregular syntax
The property of irregular syntax applies to MWEs whose internal syntactic
structure does not follow the regular grammar rules of the language. Such
a property can be difficult to handle directly in syntactic formalisms which
assume a distinction between syntactic and lexical rules, the latter originating
from simplex words only. Modeling irregular syntax via generic syntactic
rules can be inconvenient, in the best case, and impossible in the worst case.
Alternatively, syntactically irregular MWEs can be modeled as chunks (pro-
vided that the underlying symbolic system allows it), which should alleviate
the problem to some extent.

5.2.6 Variability
The issue of variability of MWEs within the context of syntactic analysis
is mainly of a technical nature, but it is not negligible. A MWE can be
often expressed in a multitude of different syntactic and morphosyntactic
configurations. For instance, to spill the beans can be passivised (the beans
he has spilled) without losing its idiomatic interpretation. This particular
VMWE can be transformed as freely as regular verbal expressions, but MWEs
which block some or all syntactic transformations are not uncommon. The
MWE casser sa pipe mentioned above cannot be passivised, for example.

All the admissible configurations should be represented in the correspond-
ing grammar/lexicon entries. This brings up a challenge related to the task
of lexicon engineering. Appropriate factorization methods should be used to
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capture similar syntactic/morphosyntactic behavior of different MWEs, so
that a grammar/lexicon developer does not have to enumerate all the different
configurations of a given MWE separately, a task which would clearly be
tedious and inefficient given the large quantity of MWEs and their complex
behavior on various linguistic levels.

On the other hand, when all the lexical, morphosyntactic, and syntactic
variants of a given MWE are accounted for in a given symbolic grammar,
issues related to parsing efficiency may arise.

5.3 MWE-related issues in statistical parsing

The same MWE-related issues which impact the task of syntactic analysis
and symbolic parsing also influence the task of syntactic disambiguation and
statistical parsing. We start our description by those and provide information
specific to syntactic disambiguation. Then we follow with a couple of other
issues which seem particularly relevant with respect to statistical parsing.

5.3.1 Semantic non-compositionality

Just as within the context of symbolic parsing, semantic non-compositionality
provides one of the major motivations to perform MWE recognition (MWER)
in the first place. The fact that semantics and syntax are often modeled
jointly entails that MWEs, often placed somewhere between these two layers,
need to be accounted for and modeled jointly as well.

5.3.2 Manifold linguistic status of MWEs

The manifold linguistic status of MWEs raises the issue of their representations
in treebanks, which are major resources used to train probabilistic parser,
and different representations may entail different parsing strategies. While
different representation approaches can be more or less adapted to different
types of MWEs, no general guidelines which would address this issue exist.
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5.3.3 Extended domain of lexical dependencies and mor-
phosyntactic constraints

The issue of the extended domain of lexical dependencies is even more promi-
nent in statistical parsing than in symbolic parsing. This is related to the
fact that statistical systems often adopt strong assumptions, thus sacrificing
expression power for the sake of a more reliable parameter estimation and
more efficient parsing. For instance, the dependency subtree presented in
Fig. 5.1 exceeds the expressive power of the practical state-of-the-art graph-
based dependency parsing methods which, in practice, can take into account
at most three adjacent dependency arcs at once (Carreras, 2007). This makes
it impossible to express a predicate which would check all the corresponding
lexical and morphosyntactic constraints expressed in this subtree, which
contains six arcs.

An ensemble of the lexical, morphosyntactic, and syntactic constraints
enforced by a given MWE cannot be typically checked in case of more
complex MWEs. Statistical methods can bypass this problem by factorizing
the predicate corresponding to a given MWE by a set of local3 predicates
which can be expressed in the underlying system as model features. While
the factorized representation is not equivalent to the original predicate, it has
its advantages – notably, it may be more robust because it allows to capture
MWE occurrences which do not satisfy all the prototypical constraints.

In case of syntactically regular MWEs, it is reasonable to check com-
plex lexical and morphosyntactic constraints over an already constructed
dependency tree – i.e. to perform MWE post-recognition after syntactic dis-
ambiguation. However, this excludes the possibility of exploiting information
about possible MWE occurrences during syntactic disambiguation. Such
information can be helpful in choosing the correct syntactic structure for a
given sentence.

5.3.4 Discontinuity
The issue of discontinuity may play an even more important role within the
context of statistical parsing than it plays in symbolic parsing. Symbolic
parsing methods exhibit, in principle, no preferences between long-distance
(in the sense of the surface distance between the words) and short-distance

3In the sense that they apply to smaller dependency fragments than the dependency
representation of the entire MWE.
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analyses. What matters in syntactic analysis is their syntactic validity.
The situation is different in statistical methods which, by nature, learn to
disambiguate between long-distance and short-distance dependencies. In
particular, the former are typically harder to capture using statistics, hence
MWEs which often occur in discontinuous surface configurations can turn
out more difficult to deal with.

5.3.5 Irregular syntax
In practice, irregular syntactic structures are often represented in treebanks
in the same layer as regular structures (cf. Sec. 4.3), which may confuse a
statistical parser. Because of such irregular fragments, the parser may fail to
learn useful syntactic generalizations (e.g. that two adjectives can very well
coordinate but a preposition and an adjective – not necessarily). As in the case
of symbolic parsing, an alternative is to use chunks to represent syntactically
irregular MWEs. This, in turn, may require from the statistical parser to
effectively deal with segmentation ambiguities (if chunks are represented as
single segments) or the adaptation of the parsing algorithm to jointly model
chunks and regular syntactic structures.

5.3.6 Variability and scarcity
Variability of MWEs within the context of statistical parsing methods is
inseparably related with the issue of scarcity of MWEs. The latter issue is a
real challenge for statistical methods, which typically require large annotated
data to achieve high performance. It stems from the distributional nature of
MWEs which, taken as a group, are quite frequent in many languages, but
individually many of them are rare and thus they may be under-represented
in training data. The issue of scarcity is further aggravated by the afore-
mentioned variability. MWEs can often take many different syntactic and
morphosyntactic configurations, which makes it difficult to automatically
learn to recognize all their occurrences.

A potential solution for the issue of scarcity is provided by lexical resources
which contain descriptions of MWEs. Such resources can be either used to
pre-identify certain word combinations as possible MWE candidates4 or as a
source of model features.

4This applies mainly to continuous MWEs, since identifying discontinuous MWEs
typically requires syntactic information.
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5.3.7 Ambiguity
Pre-recognition of MWEs based on lexical resources does not solve the problem
of MWE recognition in a particularly accurate way. This is related to one of the
major MWE-related issues in statistical parsing – the task of MWER is highly
interconnected with the tasks of tokenization and syntactic disambiguation.

For instance, by and large is generally used as a MWE and, thanks to the
fact that it is fixed, it can be easily recognized before syntactic disambiguation
(or even analysis) takes place. Such a strategy will most likely lead to an
efficient MWER with respect to this particular sequence of words. However,
it may fail to recognize its non-idiomatic occurrences, as the one in Ex. 5.3,
despite the fact that contextual, syntactic information which allows to reject
the MWE interpretation is easily accessible in this particular sentence.

(5.3) And it was a fantastic protest – lots of interest from people passing
by and large numbers of conversations which were uplifting and
positive in the main.

Provided that irregular MWEs are represented as words-with-spaces5 (see
Sec. 4.1), similar interactions apply between the task of tokenization and
MWER. A decision of representing a given by and large occurrence as a single
token is then equivalent with admitting that this occurrence is a MWE. By
extension, interactions between MWER and morphosyntactic analysis and
disambiguation also arise: MWER impacts syntactic disambiguation, while
the latter impacts morphosyntactic analysis and disambiguation.

The by and large example is particular because it belongs to the class of the
syntactically irregular MWEs, but similar reasoning extends to syntactically
regular MWEs and, in particular, to discontinuous MWEs. Let us consider
the expression (EN) to make a good leader/programmer/husband/etc. The
fact that the two underlined lexical components of this MWE occur in a given
sentence does not mean that it is present there (cf. Ex. 5.6 vs. Ex. 5.5) or
that the syntactic relation between the two words is of the same nature (cf.
Ex. 5.6 vs. Ex. 5.7). It is also possible that the sentence contains another,
partially overlapping MWE, e.g. (EN) make money (cf. Ex. 5.4).

(5.4) You can make some pretty good side money working nights and
weekends.

(5.5) You can make some pretty good NLP applications working nights
and weekends.

5Or using any other approach in which MWEs are placed below syntactic structures.
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(5.6) You can make a pretty good husband working nights and weekends.

(5.7) If I make it myself, I’m good to go.

Ex. 5.7 illustrates what can be called an accidental co-occurrence of
the lexical components of this MWE, while Ex. 5.5 can be seen as an example
of its literal occurrence (Constant et al., 2017). The former are particularly
relevant within the context of the ambiguity issue because accidental co-
occurrence of words, if recognized as MWEs, can induce wrong syntactic
analyses (cf. Ex. 5.7).

5.4 Handling MWEs in statistical parsing
MWEs exhibit properties of both words and syntactic expressions, hence it
is not clear what is an appropriate model to handle them in parsing. The
goal of this section, heavily inspired by the work of Constant et al. (2017),
is to describe the existing techniques of dealing with MWEs in statistical
parsing, as well as to take the view on the so-called orchestration question –
at which point the MWE identification should take place: before, after, or
during syntactic parsing.

5.4.1 Pre-recognition approach
The first possibility is to perform MWER before syntactic parsing. It is an
approach which fits into the so called pipeline architecture, where the output
of each module provides the input for the following one (see also Sec. 5.1.1).
Pre-recognition entails certain constraints on the representation of MWEs –
it is mostly compatible with the representation approaches which assume that
MWEs are placed below the syntactic layer, i.e., that MWEs (just as regular
words) constitute lexical nodes of syntactic structures. In our typology of
MWE representations in treebanks (see Ch. 4), this constraint is satisfied by
the words-with-spaces approach and the chunks approach.

In the words-with-spaces approach MWEs are pre-identified and their
components concatenated before the stage of syntactic parsing. For instance,
given the sentence The prime minister made a few good decisions, the MWEs
prime minister and a few are supposed to be identified first, then concate-
nated to yield a re-tokenized sentence The prime_minister made a_few good



64 CHAPTER 5. MWES AND PARSING

decisions,6 which is then provided as input for a syntactic parser, both for
learning and parsing (Constant et al., 2017).

Seminal studies on the impact of the perfect MWE pre-recognition on
statistical parsing have been carried out with the words-with-spaces approach
used to represent pre-recognized MWEs (Nivre and Nilsson, 2004; Arun and
Keller, 2005). They have shown significant improvements in parsing quality,
involving not only MWEs themselves but also the surrounding structures.

Later works, e.g. Constant et al. (2013a) for dependency parsing and Ko-
rkontzelos and Manandhar (2010) for (shallow) constituency parsing, proved
that improvements can be also observed in a realistic setting where MWEs
are identified and concatenated by the parsing system itself.

Only continuous MWEs can be easily handled using this approach, thus
for the sake of consistency it seems reasonable to apply it exclusively to
fixed MWEs and semi-fixed MWEs which do not allow internal modifiers.
Discontinuous MWEs, such as made decisions in the example above, remain
separated in the re-tokenized sentence. At the same time, the words-with-
spaces approach deals with the issue of syntactic irregularity – which applies
mainly to continuous expressions – reasonably well, because it handles such
irregular MWEs in isolation from syntactic structures. Irregular morphosyn-
tactic properties can be easily expressed at the level of the concatenated
segments. With respect to the issue of ambiguity, this approach is imperfect
even within the context of fixed MWEs which can coincide with word com-
binations that cross phrase boundaries, as in after [all the preparation], we
finally left. Nasr et al. (2015) emphasize the difficulty of committing to a
single segmentation at the stage when the syntactic structure of the sentence
is not yet explicit. They provide arguments that non-trivial morphological,
lexical and syntactic clues (e.g. subcategorization frame or mood) must be
taken into account in order to correctly spot occurrences of the continuous
ADV+que and de+DET constructions, very frequent in French.

The issue of the extended domain of lexical and morphosyntactic con-
straints does not apply to the types of MWEs which can be reasonably
handled using this approach, since such dependencies remain local. Variabil-
ity of contiguous MWEs can be very high in morphologically rich languages
and concatenations can increase the scarcity of the resulting lexical models

6The character _ can be indeed used as a separator, with a tacit assumption that using
it will not cause conflation of concatenated MWEs with existing, simplex words. However,
this is just a technical trick which is not necessary when tokens are allowed to contain
spaces.
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significantly. One can imagine replacing the individual components by their
base forms, which nevertheless provides only a partial solution to the problem
of scarcity.

Another pre-recognition approach is the substitution approach, which
consists in replacing the recognized MWEs by their lexical heads, for instance
(FR) alors que (lit. then that) ‘while’ by que ‘that’ or multiword expression
by expression. Weeds et al. (2007) obtained positive results by using this
technique in the domain of biomedical research, where gene and protein
names are often MWEs (Constant et al., 2017). The advantage over the
words-with-spaces approach is the reduced scarcity, which makes it easier for
a statistical parser to learn relations between lexical units. This advantage
comes with a price of decreased linguistic precision, because substitution can
conflate expressions with different lexical attachment preferences and make
them indistinguishable from the parsing point of view. Already alors que
mentioned above is an example of this phenomenon – it performs a different
function than que alone. The substitution approach also deals poorly with
syntactically irregular MWEs (what could be the head of all of a sudden?)
and with exocentric constructions in general. While the words-with-spaces
method aggravates the issues of scarcity and variability, the substitution
method seems to go too far in trying to alleviate it. With respect to other
MWE-related issues both methods exhibit similar characteristics.

Yet another pre-recognition technique is based on the chunking ap-
proach, which relies on the chunk representation of continuous MWEs. As
explained in Ch. 4, the main advantage of chunks over words-with-spaces is
that chunks allow to represent the internal structure of continuous MWEs
and can be thus used to represent numerical expressions, addresses, etc.,
whose common property is that they follow rules of a subgrammar which
does not necessarily correspond to regular syntactic rules. From the parsing
point of view, this approach allows to handle irregular continuous MWEs in
a particularly appropriate way, and at the same time it is better in dealing
with the issue of scarcity and variability than the substitution approach.
Since chunks have an internal structure, their individual components can be
exploited as model features separately or jointly, thus they provides flexibility
not present in either the words-with-spaces or the substitution approaches.

The capability of the pre-recognition techniques in general to reuse lexical
resources – particularly those focused on continuous MWEs – should be high.
Continuous MWEs, together with their inflected forms, can be represented
using e.g. finite-state approaches (Savary, 2005), which allow to search for
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potential MWE occurrences in untokenized texts. Al-Haj et al. (2014) describe
a morphological processing strategy which allows to pre-recognize occurrences
of discontinuous MWEs. Such occurrences can be subsequently used in a
form of dedicated model features to support and possibly improve the MWE
recognition decisions (Constant et al., 2013b).

5.4.2 Post-recognition approach
The alternative pipeline architecture consists in identifying MWEs after
syntactic parsing. It relies on the observation that most MWEs follow the
rules of regular syntax and therefore their syntactic structures can be safely
identified using standard parsing machinery. MWE recognition, on the other
hand, is greatly simplified when the syntactic structure of a sentence is
already known, because (i) in constituency parsing, an MWE generally covers
a syntactic constituent, and (ii) in dependency parsing it generally constitutes
a continuous path in the dependency tree (Constant et al., 2017). While
the opposite observation is also true – it is easier to parse a sentence once
MWE occurrences are known (cf. Sec. 5.4.1) – one can point out that strong
lexical relations exist between the individual components of MWEs and that
statistical parsers are often designed to model and efficiently recognize such
relations. This approach is therefore especially appropriate for syntactically
flexible MWEs and naturally predisposed to handle MWEs with potential
internal modifications – components of discontinuous expressions, difficult to
recognize using pre-processing methods, become closely related in syntactic
trees.

In comparison with the preprocessing approaches, MWE post-recognition
should be more helpful in resolving the cases of the MWE-related idiomatic
vs. compositional ambiguity, in recognizing discontinuous MWEs, and in
capturing connections between the different variations of a given MWE. The
post-recognition approach certainly makes it easier to exploit rich morpholog-
ical and syntactic information which can be found in MWE dictionaries, thus
it provides a reasonable way to overcome the scarcity issue. When syntactic
trees are known in advance, searching for syntactic nodes satisfying the con-
straints described in the corresponding dictionary entries is greatly simplified
(due to reduced search space) and it can lead to satisfactory MWER results,
as shown in (Savary and Waszczuk, 2017), where we obtained the MWE
post-recognition precision of 85%. In contrast, Candito and Constant (2014)
experimented with a simple MWE pre-recognition method – choosing the
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maximum number of non-overlapping MWEs in the given sentence according
to the lexicons – and obtained precision of barely 50%7.

MWE post-recognition shows advantages not only with respect to the
MWE pre-recognition approach, but also in comparison with the methods
where the task of MWE recognition is embedded into the task of syntactic
parsing, a family of approaches which we consider in Sec. 5.4.5. Nagy T.
and Vincze (2014) found out that the Bohnet dependency parser was able to
correctly recognize only 58.16% of the verb-particle constructions (VPCs) in
the Wiki50 corpus. Other particle occurrences were often incorrectly tagged as
prepositions or adverbial modifiers of the verb. By using a machine learning-
based post-processing recognition method over the candidates selected among
the verb-particle, verb-preposition and verb-adverbial modifier pairs, they
were able to improve recall from 58.16% to 76.79%, with the accompanying
drop in precision from 89.04% to 85.7%, which, to sum up, increased the
resulting F-score by more than 10%.

On the other hand, the post-recognition method seems poorly adapted to
handle the cases of syntactic irregularity, as in by and large, which cannot
be reasonably analysed using regular syntactic rules and can be expected to
cause syntactic analysis errors propagating to subsequents processing phases.
A related disadvantage of the post-processing approach is that the syntactic
parser cannot benefit from information about MWEs in general, not only
those which are fixed. Potential occurrences of MWEs can help the parser to
make correct disambiguation decisions, which has been shown to improve the
results of symbolic parsing (Wehrli, 2014) as well as statistical parsing (cf.
Sec. 5.4.1).

5.4.3 Word-lattice approach
Certain versions of the pipeline approach allow to represent ambiguity through-
out the parsing process and, therefore, defer the MWER and/or syntactic
disambiguation decisions. At the interface between tokenization and syntactic
parsing, this can be achieved through the use of the so called word-lattices. At
the interface between parsing and MWE post-recognition, this can be accom-
plished by looking at n-best trees produced by the parser and selecting the

7Note that these two numbers are not really comparable, since they relate to different
types of MWEs, different MWE resources, different treebanks, and the corresponding recall
values are not given, but the large gap between the two numbers is suggestive all the same.
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Figure 5.2: A word-lattice (DAG) representation of 4 different possible
segmentations of the sentence the prime minister made a few good decisions,
with two potential MWEs. Possible tokens are represented by DAG edges,
and possible token break sites by DAG node.

most plausible one using re-ranking methods. The latter method is described
in Sec. 5.4.4.

The word-lattice approach consists in representing the tokenization result
in the form of a directed acyclic graph (DAG), which allows to preserve
tokenization ambiguities (Woliński, 2006) and to delay their resolution to later
processing stages. This is also a standard approach in speech processing, where
transformation of the audio signal to a written representation is already too
complex to perform it without contextual (syntactic, semantic) information,
hence the need to express segmentation ambiguities under the form of a DAG
(Nasr et al., 2011). Such a pre-processing architecture is also suitable to deal
with noisy textual corpora which contain spelling errors and thus are not
trivial to tokenize, and can be used to perform a non-deterministic recognition
of continuous MWEs (Sagot and Boullier, 2005).

Within the context of MWE processing this approach is typically seen as
an extension of the words-with-spaces approach, where MWEs are represented
as separate tokens, i.e., as distinct edges in the segmentation ambiguity graph.
Fig. 5.2 shows an example of such a graph for the sentence the prime minister
made a few good decisions, in which 2x2 different paths can be taken from
the left-most node to the right-most node, which represents the possibility of
analysing both prime minister and a few either as MWEs or compositionally.
In other words, in the word-lattice approach, MWER decisions are completely
determined by tokenization decisions, but these decisions can be deferred
virtually indefinitely in the processing pipeline, provided that the subsequent
processing modules can handle and preserve such ambiguities. It is worth
noting that the word-lattice approach could be very well adapted to the
chunks representation of MWEs, although we are aware of no work within
the context of MWE processing which would test this possibility.
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Constant et al. (2013b) tested a variant of the word-lattice method in which
n most probable paths – according to an underlying, sequential probabilistic
model – are selected from the segmentation DAG, thus yielding a sub-DAG
which is then processed by a syntactic parser. However, they obtained poor
results using this approach, mainly due to their syntactic parser systematically
preferring the shortest paths in the segmentation DAG, regardless of their
probabilities. The PCFG-LA parser they used was preferring shorter paths
due to its generative nature – intuitively, each additional segmentation arc was
a source of an additional multiplier decreasing the resulting total probability.
They obtained more satisfactory results when ambiguous segmentation was
represented using the IOB-encoding, but this solution did not outpeform the
baseline system working on the single-best segmentation either.

Constant et al. (2013b) relied on the sequential conditional random field,
CRF (Sutton and McCallum, 2011) model to obtain the most probable
paths in the segmentation DAG. Individual edges in this graph could be
enriched with marginal probabilities – while CRFs assign probabilities to the
individual paths, marginal probabilities of the individual edges – tokens – can
be easily computed, too.8 It seems plausible that they would have obtained
much better results if they had used a discriminative syntactic parser, with
no segmentation-length preferences, especially if such a parser could take
advantage of the probabilities provided by the statistical tokenization module.

The word-lattice method deals with most MWE-related issues in a very
similar way as the words-with-spaces approach. The notable difference is a
potentially much better support for the MWE-related ambiguities, which is
also the main drawback of the words-with-spaces method w.r.t. fixed MWEs.
Thus, the word-lattice approach seems to provide a very promising way of
handling fixed MWEs, since it allows to perform the more straightforward
segmentation decisions early in the parsing pipeline, thus reducing unnecessary
ambiguity early, while leaving the more difficult ambiguity cases for later
processing units. Even for the latter cases, a tagger can provide information
about the probabilities of different segmentation paths, thus simplifying the
postponed disambiguation tasks.

8We implemented this functionality in a development version of Concraft, a morphosyn-
tactic tagger for Polish (Waszczuk, 2012), thus verifying that it is not difficult to obtain.
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5.4.4 Re-ranking approach

The re-ranking method consists in asking a statistical parser to produce the
n most probable syntactic trees instead of the single best tree. Afterwards,
a generic re-ranker is used to score the n best trees again, based on a more
elaborated statistical model, and to choose the most plausible one. The
advantage of this method is precisely that, in contrast to syntactic parsers,
it works on a significantly pruned search space and can thus make use of
more advanced statistical or machine learning machinery. It can be thus
seen as an intermediate solution between performing MWER during syntactic
disambiguation and MWE post-recognition. A potential disadvantage of
this approach is that it may be hard to find the optimal value of n, and
that the simpler parsing model can fail to include the correct solution in the
heavily pruned output. Constant et al. (2012) employed this technique in their
experiments, using a MWE-specific re-ranking strategy, and in comparison
with other methods they tested – namely, a vanilla Berkeley parser and
the Berkeley parser trained on concatenated (words-with-spaces) compounds
obtained with a SOA CRF classifier – it turned out to be the best method
for improving syntactic parsing accuracy using MWE-specific information.

Re-ranking performs the same function with respect to syntactic disam-
biguation as word-lattices with respect to tokenization. Looking from the
perspective of MWE-related issues in parsing, both methods provide two
different solutions to deal with MWE-related ambiguity (and ambiguity in
general, in fact). The word-lattice method seems to be a reasonable approach
for handling fixed, continuous MWEs, while re-ranking can be used to deal
with attachment ambiguities arising within the context of flexible, possibly
discontinuous MWEs. However, especially in case of re-ranking, the choice of
the proper value of n is unclear. Syntactic ambiguity, especially in case of
long sentences, can exclude the possibility of generating all the more plausible
syntactic analyses, making the re-ranking approach either insufficiently accu-
rate or impractical. An alternative could be to represent syntactic ambiguity
in a compressed form – for example, a parsing hypergraph or a dependency
shared forest – and to subsequently disambiguate thereupon.

Villemonte De La Clergerie (2013) uses the latter approach in the disam-
biguation step of syntactic parsing – possible derivations are first transformed
into the corresponding shared dependency forest and, then, weighted rules are
used to score the individual possible dependency structures encoded in the
forest. While there is nothing MWE-specific in this solution, it can be seen
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as an extension of the re-ranking approach, on the one hand, and it seems
possible to adapt it to use MWE-related information to score the individual
dependency trees, on the other hand.

5.4.5 Joint off-the-shelf parsing models
Yet another possibility is to recognize MWEs together with syntactic structures
– neither before, nor after, but (conceptually) at the same time. This approach
is taken up by the various so-called joint methods. It is motivated by the two
previously mentioned observations – that MWER can improve parsing results
and, the other way around, that knowledge about syntactic structures can
improve MWER – from which one can conclude that neither of the simple
pipeline approaches is sufficiently well adapted to efficiently perform MWER
and syntactic disambiguation at the same time.

The easiest way to incorporate MWEs into statistical parsing is to directly
add MWE annotations into a syntactic treebank used to train the parser.
This solution is based on the subtree approach to MWE representation (see
Sec. 4.3). Statistical parsers provide the output in the form they see in and
learn from the training data. By adding MWE annotations, invisible from
the parser’s point of view in the sense that the parser is ignorant of their
meaning, yet present in the same form as syntactic annotations, one can
obtain a MWE-aware parser by simply training an off-the-shelf syntactic
parser on syntactic data appropriately marked with MWEs. This approach
was tested by Vincze et al. (2013); Candito and Constant (2014); Nasr et al.
(2015), among others.

By adding a light-weight structure to treebank labels (without changing
the syntactic trees themselves), so as to separate MWE-related information
from syntactic information, it becomes possible to use MWE-dedicated model
features and thus possibly handle MWEs more efficiently. However, we are
aware of no work where this possibility would be investigated within the
context of MWEs. Candito and Constant (2014), for instance, experimented
with a structured representation where information about MWEs is preserved
not within the labels but rather as values of dedicated features attached
to lexical nodes. While convenient from the representation point of view,
the graph-based dependency parser they used did not provide support for
such features and thus it could not recognize regular MWEs for which this
representation was used.

While the choice of using the existing parsing methods and algorithms to
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jointly model syntax and MWEs comes with certain restrictions – notably,
with the restriction that the internal structure of MWEs has to be represented
according to the rules of syntactic representations, not necessarily well adapted
to model all kinds of MWEs – it also enables the use of the common, generic
and relatively powerful methods of feature-based engineering. The underlying
idea of these approaches is that the score of the different parsing derivations
can be factorized as a combination of the scores applying locally to their
individual parts. For example, SOA graph-based dependency parsers adopt
the following definition of the most probable dependency tree for a given
sentence W = w1 . . . wn (Nasr et al., 2015):

T̂ = arg max
T∈T (W )

∑
F∈F(T )

s(F ), (5.8)

where:

• T (W ) is the set of all possible dependency trees which can be constructed
over sentence W ,

• F(T ) is the multiset of the model features9 which together represent
all the relevant properties of the given tree T , and

• to every feature the corresponding score s(F ) is assigned, which repre-
sents its impact (positive if s(F ) > 0, negative if s(F ) < 0, and neutral
otherwise) on the probability of tree T , and which can be estimated
during the parser’s training.

This framework (which can be applied also to constituency parsing, see
e.g. (Finkel and Manning, 2009) or (Le Roux et al., 2014)) allows to express
relatively complex MWE-related predicates (under the form of model features),
provided that they do not exceed the expressive power of the particular
statistical model.

Nasr et al. (2015) show that occurrences of the construction alors que ‘while’
can be sometimes distinguished from the occurrences of the complementizer
que ‘that’ which just happens to be placed next to alors ‘then’ (see Ex. 5.9)
by looking at subcategorization of the governing verb. Some verbs (e.g.
manger ‘to eat’) do not take as arguments subordinate clauses introduced

9In (Nasr et al., 2015) elements of F(T ) are called factors and to individual factors
many model features can apply. The definition we give here is thus its more abstracted
version.
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by the complementizer que. However, they can be very well modified by a
subordinate clause introduced with alors que, as shown in Ex. 5.10. Such
a rather complex correspondence can be expressed by binding – within the
scope of a single, dedicated model feature – subcategorization information
corresponding to a given verb together with the form of its direct complement.
Based on training data, the parser should learn that, if the verb does not
accept arguments introduced by que, it cannot be connected by a dependency
link with que alone (see Ex. 5.11), but – on the contrary – it can very well
govern a subordinate clause introduced by alors que.

(5.9) Je
I

croyais
believed

alors
then

que
that

cela
this

ne pourrait
could

pas
not

arriver
happen

à
to

moi
me

(FR)

(5.10) Je
I

mange
eat

alors que
while

je
I

n’ai
have

pas
no

faim
hunger

(FR)

‘I eat even though I’m not hungry’

(5.11) *
*
Je
I

mange
eat

que
that

je
I

n’ai
have

pas
no

faim
hunger

(FR)

As mentioned in Sec. 5.3.3, statistical parsing models typically take up
strong assumptions regarding the form of model features, mainly for the sake
of efficiency and reliability of the parameter estimation process. The latter
is strongly related to the size of the feature space – the more parameters
the model contains, the easier it is to fit it to the training data, but this
typically leads to less robust models which work poorly on out-of-domain
texts. In graph-based dependency parsers, efficiency depends roughly on
the number of the adjacent dependency arcs (possibly disregarding their
directions) a given model feature can bind. This number is called the order of
the parser. For instance, the parsing time complexity is O(n3) for 1st order10
dependency parsing11 and O(n4) for 2nd order dependency parsing (Carreras,
2007). Practical graph-based dependency parsers are typically of the 2nd
order. As a result, it is not possible to express all the lexical, morphosyntactic,
and syntactic constraints of certain more complex MWEs (see e.g. Fig. 5.1)
under the form of atomic model features. Again, as mentioned in Sec. 5.3.3,

10A 1st order parser can look at, at most, two adjacent dependency arcs at once.
11It goes down to O(n2) if dependency trees are not required to be projective (McDonald

et al., 2005), but this somewhat surprising behavior does not extend to higher-oder
dependency parsing algorithms.
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the totality of such constraints can be simulated in a factorized way, using
a set of smaller constraints which together add up to roughly (even if not
100% faithfully) represent the characteristics of a given MWE, and such a
factorized solution also has its advantages – notably, it should exhibit higher
robustness.

In terms of the parsing quality, none of the MWE-related works mentioned
above, based on the off-the-shelf approach to MWE processing, actually
confirmed the intuition that MWEs can help syntactic parsing. The depen-
dency parsing results of Vincze et al. (2013) were slightly worse, in terms
of labeled attachment score (LAS), when LVCs were marked in dependency
labels, doubtlessly due to increased scarcity. Nasr et al. (2015) did not observe
important gains when evaluating their dependency parser on FTB, which had
a very small number of the constructions they focused on. Finally, in (Candito
and Constant, 2014), the joint solution was only slightly (i.e., insignificantly
in most of their experiments) better than the system where regular MWEs
were post-recognized. Interestingly, the latter approach was better in terms
of MWER in general, while the fully joint approach performed better in
recognizing irregular MWEs.

With respect to MWE-related issues, the subtree approach does not seem
to be particularly well adapted to deal with syntactically irregular MWEs.
Firstly, such MWEs should not be accounted for in syntactic structures in a
fully regular way. Secondly, doing so may confuse statistical parsers, which
may draw invalid conclusions from idiosyncratic structures seen in training
data. It is possible to use special labels to distinguish idiosyncratic, non-
syntactic dependencies (e.g., dep_cpd in (Candito and Constant, 2014) or
morph in (Nasr et al., 2015)). This, however, can aggravate scarcity-related
issues. All this can be alleviated to some extent by the use of appropriate
feature engineering methods but, as we have seen, not all MWE-related
properties are easy to express in the form of model features in statistical
parsers, notably because of the extended domain of constraints exhibited by
MWEs.

The subtree approach deals naturally with MWE-related ambiguities. Its
big advantage is that it allows the two tasks of MWER and syntactic disam-
biguation to influence each other. The issue of MWE-related discontinuity
disappears in syntactic structures where, most of the time, MWEs become
continuous fragments.

Finally, the issues of variability and scarcity may be hard to deal with in
this approach. Training data on which statistical syntactic disambiguation
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methods rely are limited and can be expected to contain only a small portion
of MWEs occurring in a given natural language. And even those which occur
in the training treebank may occur only in a limited number of morphological
forms and syntactic configurations. In some of the works mentioned above, the
joint models suffered from the scarcity issues resulting from the concatenations
of the syntactic dependency labels with the MWE-related annotations. A
potential response to that is the use of lexical resources – MWE-aware lexicons,
in particular – but, as mentioned above, it is restricted by limitations of the
expressive power typically adopted in statistical parsers.
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5.4.6 MWE-aware parsing models

This section contains a description of another family of joint solutions which, in
contrast to the strategies described in Sec. 5.4.5, allow to use a representation
of MWEs separate from syntax (or even several different representations for
different types of MWEs). This strategy does not enforce any particular
MWE/syntax interface, but it implies (as joint methods generally do) that
the two levels are processed synchronously. In contrast to pipeline-oriented
solutions, this strategy assumes that both syntactic and MWE structures
should be modeled jointly. This approach is more challenging than the one
described in Sec. 5.4.5 – since syntax is structurally separated from MWEs,
dedicated algorithms for parsing and learning need to be designed in order
to use it in practice. On the other hand, it allows to use structures better
adapted to represent MWEs.

Three recent works adopt this approach to joint MWE/syntax modeling.
In terms of representation, Le Roux et al. (2014) (who focus on continuous
MWEs only) propose to use a MWE representation completely decoupled
from syntactic structures. MWER takes the form of MWE-aware tokenization
decisions and continuous MWE segments are represented via a dedicated IOB
encoding (see also Ex. 4.2, p. 40). The system of Constant et al. (2016) also
assumes that syntax is decoupled from MWEs, but it adopts a representation
where lexical segmentation takes the form of a dependency tree, independent
from the syntactic dependency tree. This representation allows to capture deep
lexical analyses like nested MWEs, e.g. I will (take a (rain check)), and it can
handle discontinuous MWEs, as shown on Fig. 5.3 (a). Such a representation
is in fact equivalent to a phrase-structure forest-based representation where
the individual, potentially embedded and potentially discontinuous MWEs are
represented using phrasal nodes (see Fig. 5.3 (b)). The dependency tree-based
representation can be seen as an encoding of such a phrase-structure forest.

Constant and Nivre (2016), in contrast, propose a mutually linked repre-
sentation in which the syntactic dependency tree is built over lexical nodes,
the latter representing either simplex words or irregular, continuous MWEs.
Regular MWEs, on the other hand, remain decoupled from the syntactic
structure. This representation can also handle discontinuous and nested
MWEs. Its main difference in comparison with the representation of Constant
et al. (2016) is that (i) irregular, continuous MWEs form lexical nodes of
the corresponding syntactic structures, and (ii) lexical segmentation is not
represented as a dependency tree, but rather as a phrase-structure forest
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Figure 5.3: On the left (a), lexical segmentation represented as a dependency
tree using the method of Constant et al. (2016). Adjacent lexical units (either
MWEs or simple tokens) are connected with left-to-right arcs labeled with
lex. Each dependency subtree corresponding to a MWE is rooted in its
left-most token and arcs from this token, labeled with mwe, lead to all its
lexical subtrees (either embedded MWEs or simple tokens). A special submwe
label (not shown here) is used to allow the left-most token to be embedded in
a subtree itself. On the right (b), an equivalent phrase-structure forest-based
representation of the same lexical segmentation.

similar to the one shown in Fig. 5.3 (b). Point (i) means in particular that,
while Constant et al. (2016) use the parallel MWE-representation approach
to all types of MWEs, Constant and Nivre (2016) reserve it to syntactically
regular MWEs, while fixed MWEs are represented using chunks.

Different mechanisms can be used to ensure the correspondence between
the MWE-dedicated and the syntactic structures. One of the more elegant and
extensible approaches consists in designing NLP modules in a way which makes
them conceptually separated and which, at the same time, allows to plug
them together in order to obtain a joint system. When parsing, such a system
strives to find a joint solution which satisfies interface constraints between
the individual modules. A prominent example of this strategy being applied
to MWE-aware parsing can be found in (Le Roux et al., 2014). Their method
is based on several MWE-aware tokenization modules, which individually
allow to recognize continuous MWEs, part-of-speech tagging modules, and
parsing modules. All these modules are implemented within the framework
of conditional random fields (CRFs) and the choice of a unified framework
allows to combine them together using a method called dual decomposition.12

More precisely, the individual models are plugged together within a joint
parsing (decoding) iterative algorithm which mutually constrains the models

12The authors observe that the use of a linguistically rich model for a given task may lead
to data sparseness problems, while simpler models may suffer from insufficient linguistic
precision, hence they propose to use several models, with different fine-grainedness levels,
per task.
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by promoting solutions which satisfy well-formedness constraints – in this
particular case, the MWE-related segmentation constraints. For instance, if
the MWE-aware tokenization module proposes a segmentation assuming that
bien que is a MWE, than the parser should also adopt this choice. Otherwise,
the method imposes scoring penalties on joint solutions in which differences
in the segmentation choices exist. Importantly, the individual models are
trained independently, which means that only the decoding algorithm needs
to be adapted to model MWE-segmentation and syntactic structure jointly in
the dual decomposition strategy, while the learning algorithm remains intact.

In the system proposed by Constant et al. (2016) no priority between the
tasks of lexical (MWE-aware) segmentation and syntactic parsing is assumed.
Both linguistic layers are parsed at the same time and features from both are
available at any step of the parsing process, which allows the tasks to help
each other mutually. An atomic parsing action takes the form of combining
two adjacent dependency trees – or rather, their corresponding roots – which
can be linked by the relation of dominance in two possible ways. At each step
of the parsing process several actions can be applied, and the parser chooses
the most plausible one (with the highest score). The subsequent decisions are
constrained by the previous ones. The idea underlying this parsing strategy,
called easy-first, is that the actions easier to determine should be performed
early, and the more difficult ones should be performed later, hoping that the
easy actions will help to resolve the difficult ones as a by-product. The exact
flow of information is to be learned by the system itself. The disadvantage of
the method is that it does not guarantee any correspondence between the two
dimensions and the resulting lexical and syntactic layers can be out of sync.

In the solution proposed by Constant and Nivre (2016), irregular MWEs
(which form lexical nodes together with simplex words) and syntactic trees
are directly linked with each other, in the sense that the latter build up on the
former. Regular MWEs do not directly correspond to syntactic structures, but
the authors propose to model them jointly in the hope that recognizing them
side-by-side with syntactic structures will have positive impact on syntactic
parsing results.

In terms of MWER, in the experiments carried out by Le Roux et al. (2014),
the system combining several CRF-based MWER modules outperformed all
the CRF-based modules used individually, as well as a simple majority-wins
voting system based on these modules. By adding the parsing component
to the system, MWER results were increased even further, supporting the
claim that syntactic information is needed to correctly handle ambiguity of
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continuous MWEs. The findings of the other two works were less positive in
this respect. Neither Constant et al. (2016) nor Constant and Nivre (2016)
observed positive impact of the syntactic dimension on the predictions in the
lexical, MWE-aware layer. Constant et al. (2016) postulated that this might
be related to low frequency of discontinuous MWEs in their treebanks, and
those which were present in the treebanks mostly had a gap of one token only.

In terms of syntactic parsing accuracy, Le Roux et al. (2014) obtained
a very competitive parser out-performing the best system submitted to the
SPMRL 2013 shared task. It was better than all the other architectures they
tested in their experiments, including the pipeline-based ones. The authors
believed that their system was more accurate overall because their method is
more resilient to an error from one of its components. Constant et al. (2016)
observed that lexical information tends to help syntactic prediction, but they
observed no significant improvement when using the joint approach over the
pipeline approach where the lexical dependency tree is constructed first and
supplied to the syntactic parser in the form of model features. While Constant
and Nivre (2016) observed significant improvements over a baseline, a joint
system in which MWE information is concatenated with dependency labels,
their dependency parsing results were significantly below those obtained with
the state-of-the-art parsing systems. The authors noted, however, that their
system could be potentially improved through the use of several advanced
techniques related to transition-based parsing in general.

Concerning the MWE-related issues, the MWE-aware parsing models
deal with them in a similar way as the joint, off-the-shelf parsing models
described in Sec. 5.4.5, since both strategies adopt the joint point of view on
syntactic parsing and MWER. The main differences between them are that
the MWE-aware parsing approaches (i) allow to use separate data structures
to represent MWEs, and (ii) promote conceptual separation of the two tasks.
The latter is also important because one can not forget that syntactic parsing
and MWER are not the only two tasks existing in the domain of NLP. They
are also not the only ones which influence each other in a kind of a feedback
loop either. It is hard to imagine that off-the-shelf syntactic parsers could be
universally used to solve all kinds of NLP processing tasks, considering that
such tasks can entail a virtually unlimited number of smaller sub-tasks which
need to be solved. This is why the use of joint methods which assume some
level of conceptual separation between the individual sub-modules seems very
important in the long run. This is also why such methods, applied to the
particular task of joint MWER and syntactic parsing, seem very promising
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– they can be potentially reused in larger NLP systems, including not only
MWER and syntactic parsing but also subsequent processing tasks.

MWE-parsing models can also provide a more adapted approach to deal
with different types of MWEs. For instance, the treatment of regular and
irregular MWEs in (Constant and Nivre, 2016) differs entirely, which is well
motivated by the fact that they are very dissimilar on several linguistic levels.

Finally, concerning the issues of variability and scarcity, separation of
the MWE layer from the syntactic layer permits to imagine joint, MWE-
aware methods in which the MWE-dedicated component provides an extended
domain of locality13 with respect to MWE-related lexical and morphosyntactic
constraints. While MWEs are often complex in this respect, individually
they are also relatively infrequent and their potential occurrences are easy to
spot. The latter is important because it allows to pre-filter potential MWEs
present in the given sentence using simple, supertagging-like techniques, and
thus significantly prune the search space of the MWE-dedicated parsing
component. Handling MWEs with higher-order parsing models could be thus
potentially tractable and could lead to both more efficient and more accurate
MWE-aware parsing systems.

5.4.7 MWEs in statistical parsing: conclusions
Tab. 5.1 compares the different strategies of handling MWEs in statistical
parsing based on their capabilities of dealing with the individual MWE-related
issues introduced in Sec. 5.3.14

The methods described in the 4 top rows of the table do not provide
appropriate mechanisms for dealing with the issue of discontinuity and, by
extension, they cannot deal with the extended domain of dependencies in
general either. In contrast, the post-recognition and the re-ranking approaches
cannot deal with the issue of irregularity.

The immediate conclusion is that dedicated, MWE-parsing methods can
13To be understood here as a property of models (see also Sec. 5.5.2) which, among others,

allows to account for the extended domain of MWE-related dependencies (cf. Sec. 5.3.3).
14We omit two of the issues mentioned in Sec. 5.3. The semantic non-compositionality

provides a motivation for including MWEs in parsing results, but investigating the con-
nections between parsing approaches and semantic modeling is beyond the scope of this
section. As to the manifold linguistic status of MWEs, it is a challenge related primarily
to the question of the MWE/syntax interface (cf. Ch. 4), and interacts with the tasks of
MWER and syntactic parsing via the other issues considered in Tab. 5.1.
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MWE-handling
strategies in

statistical
parsing

extended
domain of

dependencies
discontinuity

irregular
syntax or

morphosyntax

variability,
mitigating
scarcity

ambiguity

Words-with-spaces - - + - -
Substitution - - - + -

Chunking - - + + -
Word-lattice - - + + +

Post-recognition + + - + ~
Re-ranking + + - + +

Off-the-shelf ~ + ~ ~ +
MWE-aware + + + + +

Table 5.1: Comparison of different strategies of handling MWEs in statistical
parsing based on their capabilities of dealing with the various MWE-related
issues. To each strategy/issue pair one of the following values is assigned: +
if it deals with the issue reasonably well, ~ if it is able to handle it but not
as well as other comparable strategies summarized here, and - if it does not
provide an appropriate mechanism to deal with the issue.

potentially deal with MWEs in the most optimal way. A less apparent
conclusion is that by joining the word-lattice approach with the re-ranking
approach we could also obtain an optimal system. However, it seems that only
the MWE-aware parsing models can conveniently deal with the (arguably rare)
examples of discontinuous and yet (morpho-)syntactically irregular MWEs,
such as (PL) Bóg zapłać (see Sec. 3.2). It is also only the MWE-aware class
of parsing solutions that allows to give a unified account to different types of
MWEs, both regular and irregular.

5.5 Handling MWEs in symbolic parsing
As we have seen in Sec. 5.1.2, the main points of divergence between symbolic
and statistical parsing methods are (i) syntactic grammars, not present in
purely statistical systems, and (ii) the focus on syntactic analysis in symbolic
sytems and on syntactic disambiguation in statistical systems. In this section
we are going to see a couple of symbolic approaches to syntactic parsing and
to MWE-aware syntactic analysis in particular.

The different goals of syntactic analysis and syntactic disambiguation entail
different MWE-related issues. While within the context of disambiguation
we are mostly concerned with the question of which methods work best in
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discriminating more plausible from less probable syntactic analyses, in the
symbolic setting we want to answer a more clearly defined question – which
analyses are syntactically valid and which are not. While this question seems
easier to answer, it entails that the focus is put on precise and linguistically
motivated grammar-based descriptions of morphology, syntax, and other
layers. Thus, from the perspective of MWEs, the goal of symbolic methods is
to give a precise account of the various idiosyncratic properties of MWEs, a
goal which is often beyond the scope of interest of statistical methods.

5.5.1 Mechanisms of marking MWEs
To begin with, it is important to note how different symbolic frameworks actu-
ally mark MWEs, i.e. inform about their occurrences in syntactic structures
assigned to a given sentence.

In LFG, flexible MWEs are analysed as complex predicates which incor-
porate their individual lexical components and which describe their argument
structure (Dyvik et al., 2017). It is the former which is specific to MWEs, since
the latter applies to predicate words in general. For instance, the verb-particle
look sth. up can be represented by a dedicated predicate look*up which takes
a subject and a direct object as arguments. In the so-called “PRED-only”
view, where only predicate words and relations between them are preserved,
f-structures take the form of dependency graphs whose nodes are either simple
tokens or MWEs, and whose arcs are annotated with grammatical functions
(subject, object, adjunct, etc.; see also Sec. 2.3). Thus, LFG marks MWEs
as lexical nodes in predicate-argument dependency structures, even if their
descriptions come from lexical entries attached to simplex words.

In TAGs, introduced in more detail in Ch. 6, we assume the approach
described by Abeillé and Schabes (1989), where MWEs are represented
using elementary grammar trees. MWEs are then directly visible in TAG
derivations – namely, they constitute nodes of derivation trees, just as other,
regular elementary trees. From the dependency perspective, if we ignore
the internal structure of the individual elementary trees present in a given
derivation (i.e. map them to the sets of their component words), we obtain
a view which is very similar to what we see within the context of LFG: a
dependency tree whose nodes are either MWEs or simplex words (provided
that all participating trees are lexicalized). A notable difference is that f-
structures in LFG can form general graphs, and that their edges are annotated
with grammatical functions. It is possible to obtain functional annotations in
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TAG derivations by specifying functional relations within the scope of the
individual elementary trees, but this is not a part of the definition of the
TAG framework.

5.5.2 Extended domain of locality of elementary gram-
matical units

A mechanism which allows to deal in symbolic frameworks with the issue of the
extended domain of MWE-related lexical dependencies and morphosyntactic
constraints (cf. Sec. 5.2.3) can be called extended domain of locality of
elementary grammatical units. It essentially means that atomic units of a given
grammatical formalism – e.g. elementary trees in TAGs, lexical entries in LFG
or HPSG, etc. – can bind together lexical and morphosyntactic properties
of lexical nodes potentially distant from each other in the corresponding
dependency trees.

Lexical items in LFG, including MWEs, specify the subcategorization and
morphosyntactic requirements of the individual words. These requirements
are expressed in terms of equations on the corresponding f-structures. All
such equations can take up quite complex forms and, importantly, they
are not restricted to the immediate neighborhood of the f-structure node
corresponding to the given lexical item.

For instance, in the syntactically flexible expression (FR) NP vider DET
sac (lit. NP empty DET bag) ‘to express NP’s secret thoughts’, the possessive
determiner DET embedded in the direct object of the verb vider ‘empty‘ must
agree in person and number with the subject NP (Abeillé and Schabes, 1989).
Otherwise, the idiomatic meaning is lost, e.g. ils ont vidé son sac should
only be interpreted as semantically compositional ‘they have emptied his bag‘.
This expression can be represented by the following idiomatic description
assigned to the verb vider :

(↑ OBJ PRED FN) =c ’sac’
(↑ OBJ SPEC POSS) = f (5.12)
(f PERS) = g (f NUM) = h

(↑ SUBJ PERS) = g (↑ SUBJ NUM) = h

The first line of the above description specifies that the name of the predi-
cate assigned to the object must be sac ‘bag’. The operator ↑ refers to the
f-structure node corresponding to the verb vider in the f-structure assigned
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to the underlying sentence. Further down, the description assigns the vari-
able f to the possessive specifier of the object, where (↑ OBJ SPEC POSS)
designates the f-structure node which can be reached from ↑ by following a
path of three dependency-like arcs with the features OBJ, SPEC and POSS,
respectively. Finally, the values of number (f NUM) and person (f PERS)
of the possessive specifier are required to agree with the corresponding values
assigned to the subject ((↑ SUBJ NUM) and (↑ SUBJ PERS), respectively).

Following (Sheinfux et al., 2015), an HPSG analysis of a particular MWE
is distributed between the lexical entries specifying its individual lexical com-
ponents. These components are mutually linked via a kind of a lexical chain.
For instance, the lexical entry associated with the (idiomatic interpretation
of the) head verb of the VMWE illustrated in Ex. 5.13 (Sheinfux et al., 2015,
p. 125) requires a specific, lexically-constrained prepositional argument. This
argument is lexically described in the entry assigned to the corresponding
(idiomatic) preposition me ‘from’ which, in turn, selects for the particular,
lexically constrained noun phrase ‘the-tools’.

(5.13) dan
Dan

hoci
took.out

et
ACC

dana
Dana

me-ha-kelim
from-the-tools

(HE)

‘Dan made Dana lose her temper’

The extended domain of locality of TAGs is a well-known property which
boils down to the fact that TAG elementary trees (ETs) are complex trees
of unbounded size and that, thanks to adjunction, two nodes of a given ET
can turn out arbitrarily distant from each other in a derived tree. Moreover,
in feature structure-based TAGs, it is possible to attach feature structures
(FSs) to the individual ET nodes. When a derived tree is attached to a given
non-terminal node via the operation of substitution or adjunction, its FS is
required to unify with the node’s FS15. If unification fails, the operation is
not allowed. This means that FS-based computations can be defined over the
entire elementary grammar units and that potentially complex predicates can
be verified within the scope of ETs. Fig. 5.4 shows an ET corresponding to
the MWE vider son sac. The FSs attached to the individual nodes express
the constraints described in Eq. 5.12.16

15We slightly simplify the picture by not adopting the typical distinction between top
and bottom FSs.

16There are, in fact, two values of number in a PossD – one agreeing with the subject,
and the other with the object. The latter is regular for possessive pronoun / noun pairs.
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Figure 5.4: A TAG ET corresponding to the MWE vider son sac. FS
decorations enforce that the subject agrees with the possessive pronoun. The
example assumes that the determiner is modeled via substitution. Otherwise,
an additional obligatory-adjunction constraint would have to be specified.

Since the size of ETs is not restricted, the distance between the mutually
constrained nodes in the corresponding dependency structure is, in principle,
not limited either. The design-related limitation is that all such constraints
must be present in the same ET. Of course, technically, it is also possible
to lexically constrain nodes by threading lexical information through feature
structures attached to the individual nodes in FS-based trees. This alternative
solution, however, is less convenient. It is also worth noting that, typically,
FSs in TAGs are required to be flat, which limits their expressive capabilities.

5.5.3 Words-with-spaces

LFG assumes a distinction between the grammar and the lexicon, which
makes it non-trivial to model syntactically irregular MWEs. Thus, fixed
expressions are often modeled as words-in-spaces (cf. Sec. 4.1), for example
in the NorGram LFG grammar (Dyvik et al., 2017) or in the Arabic LFG
grammar of Attia (2006).

In lexicalized TAGs, the grammar and the lexicon are both represented
in the form of the elementary grammar units, which allows to give a unified
account to both fixed and flexible MWEs, even if it does not exclude the use
of words-with-spaces.

A potential advantage of the unified representation is that, clearly, it can
be used to represent semi-fixed MWEs as well. LFG requires that the status
of such MWEs – as fixed expressions or not – is ascertained in advance. Some
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MWEs can then be wrongly classified as fixed, which may complicate their
further analysis. For instance, in the following short dialogue:

- Do you like New York?

- Not really, I like the old one better.

the words-with-spaces representation of New York makes it impossible to
annotate the old one as a reference to its component word, York. On the
other hand, syntactically irregular MWEs, if classified as flexible MWEs in
LFG, need to be accounted for at the level of the (productive) grammar rules.

5.5.4 Dedicated grammar rules
Another technique which allows to account for the various MWE-related
irregularities is the use of dedicated grammar rules. There is no lexicon/gram-
mar distinction in lexicalized TAGs (LTAGs), thus this technique trivially
underlies the LTAG-based descriptions of both MWEs and simplex words. In
contrast, in formalisms which adopt certain lexicon/grammar distinction, e.g.
LFG., its application to MWEs is clearly not self-evident – descriptions of
MWEs, objects of a lexical nature, should be ideally limited to lexicons.

Verb-particle constructions can be seen as constructions which should not
be handled by productive grammar rules. Only specific pairs, e.g. look up
‘search for a reference‘ but not look at (in which case at is unambiguously a
preposition), can be interpreted as MWEs. In the English ParGram grammar
this issue is handled by the mechanism dedicated to subcategorization frames.
The standard, transitive VP rule accepts a particle either before or after the
direct object of the verb (VP →V PART OBJ | V OBJ PART, in simplified
terms), while unification over the PRT-FORM feature, defined in both particle
and verb lexical entries (e.g. (↑ PRT-FORM) = ’up’ for the particle up)
guarantees that only appropriate verb-particle constructions are recognized.

A similar solution is used to model correlative conjunctions such as either
_ or _ and both _ and _. They are handled by a coordination rule with an
optional ’preconjunction’. Every preconjunction (both, either, . . . ) specifies
(as a value of the COORD-FORM feature) with which conjunction it combines
and unification guarantees that only the corresponding pairs are recognized.

NorGram includes a set of special lexical and syntactic rules which allow
to account for complex numerals, such as hundre og to ‘one hundred two’,
which can be seen as a subtype of MWEs (Dyvik et al., 2017). It is plausible
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that addresses – which are modeled e.g. in PDT following a special, dedicated
annotation scheme (Bejček and Straňák, 2016) – should be modeled in LFG
in a similar way.

Asudeh et al. (2013) provide an example of a Swedish traversal construc-
tion, (SW) Jonas knuffade sig in i mängden (lit. Jonas pushed self in inside
crowd.def), which is distinguished by the requirement for the presence of a
verb, a weak reflexive (coindexed with the subject), and a directional PP. It
also exhibits a certain word-order peculiarity: the particle follows the direct
object of the verb, while normally it would adjoin to the verb. Thus, the
authors claim, the syntactic structure of the expression can be most elegantly
modeled by a dedicated c-structure rule.

5.5.5 Templates and meta-descriptions
Grammar frameworks like LFG, HPSG or TAG typically come with mecha-
nisms which allow to conveniently account for syntactic variations of different
words, on the one hand, and to avoid descriptive redundancy, on the other
hand. Such mechanisms, which are typically designed with simplex words in
mind, often apply to MWEs as well and can be used to group together lexical
descriptions of different types of MWEs.

In HPSG, lexical descriptions are grouped into inheritance hierarchies
which enable them to share common properties, whether they describe MWEs
or simplex words (Sheinfux et al., 2015). In LFG, templates play a similar role.
They are essentially parametric functions which compute lexical descriptions,
i.e. expressions – disjunctions, conjunctions, etc. – over functional equations.
A typical design is to develop one template per subcategorization frame and
call it from the corresponding lexical entries. The template can then call
subordinate templates, which describe the different syntactic transformation
a given word can undergo. Templates for different types of MWEs can be
described in a similar way.

For instance, the NorGram LFG grammar uses the template shown in
Eq. 5.14 – parametrized by the verb and the corresponding particle – to
describe the class of Norwegian verb-particle constructions (Dyvik et al., 2017).
The first line of the definition constructs the name of the predicate. CONCAT is
just a template which allows to concatenate several values and put the result
in a variable (here: %FN). Thus if we call V-SUBJ-PRT-OBJ (look up), then
the value of the FN variable will be set to look*up. The next line defines
the predicate of the entire verb-particle construction. ↑ designates here the
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corresponding f-structure, and ↑ PRED means that we define the feature value
under the PRED path in this f-structure. In the last line, the template checks
that the form of the particle (assigned to the feature PRT-FORM by grammar
rules) actually corresponds to the particle given in the invocation of the
template.

V-SUBJ-PRT-OBJ (P prt) = (5.14)
@(CONCAT P ’* prt %FN)
(↑ PRED)=‘%FN<(↑ SUBJ)(↑ OBJ)>’
(↑ PRT-FORM) =c prt

The template V-SUBJ-PRT-OBJ can be then reused in the lexicon in the
definitions of the other verb-particle constructions which subcategorize for
a subject and an object. F-descriptions of the other types of MWEs can be
factorized using templates in a similar manner.

In this formalization, all MWEs (as well as all simplex words) are “free”
by default – they can be freely modified and undergo all the transformations
accounted for in the grammar – but the individual entries can be easily
constrained using additional functional equations. This allows, for instance,
to specify that the MWE to kick the bucket cannot be passivised17.

Templating is not the only LFG-related mechanism which can be used to
account for the lexical and syntactic variation of words. Patejuk (2016) showed
that it is possible to compile Walenty (cf. Sec. 3.4), a valency dictionary for
Polish (Przepiórkowski et al., 2014), to the set of the corresponding LFG
lexical entries compatible with POLFIE, a LFG grammar for Polish (Patejuk,
2015). These entries can be subsequently combined with the lexical entries
stemming from Morfeusz, a morphosyntactic analysis tool (Woliński, 2014),
and consequently used for LFG-based syntactic analysis of Polish sentences.
This method does not rely on the templating mechanism of LFG (even though
it can be very well combined with it), but rather on the high expressive
power of the language of LFG functional descriptions which allows to express
relatively complex functional constraints.

17This is one of the possible designs. Alternatively, passive and active forms could be
described using separate templates, called from the corresponding lexical entries indepen-
dently.
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The idea of compiling high-level, factorized descriptions to concrete gram-
mars has led to the development of the so-called meta-grammatical methods
to grammar engineering. This approach, oftentimes used within the context
of TAGs (Candito, 1999; Villemonte de La Clergerie, 2010; Crabbé et al.,
2013), can be seen as a generalization of Patejuk (2015)’s method in the sense
that (i) it applies not only to lexicon entries but also to grammar rules, and
(ii) it adopts the high factorization of syntactic and lexical patterns as a goal
in itself. While it has not yet been used extensively to describe MWE-aware
grammars, the meta-grammar approach can be considered as a promising
tool for the description of MWE-aware grammars as well as MWE-dedicated
lexicons (Lichte et al., 2017).

LFG, HPSG, and TAG differ in their expressive power. Nevertheless, all
three formalisms provide mechanisms which allow to deal with the MWE-
related issues described in Sec. 5.2. We therefore omit a comparison table
similar to Tab. 5.1 – it would trivially contain pluses in all its cells.

5.6 The choice of the grammatical formalism
In this work, we focus on the relations between MWEs and symbolic parsing,
in general, and between MWEs and TAG parsing, in particular. Both symbolic
and purely statistical methods have their advantages. We chose the former
because of the notion of the grammar – typically underlying symbolic systems
– which provides a human-understandable interface between data and the
parser, an interface which is not explicit in purely statistical approaches. Such
an interface allows a more fine-grained control over the process of syntactic
analysis. Mistakes made by the parser can be analysed and resolved via further
grammar refinement which, incidentally, can lead to better understanding
of the internal workings of natural languages. In purely statistical methods
it is often difficult to manually influence the behavior of the parser, which
is typically a black-box. If it does not perform well, one can either extend
training data in order to cover a phenomenon which causes the problem (a
process which is costly), or engineer dedicated model features. However,
neither solution provides a guarantee that the parser will learn to properly
deal with the problem, and modifying model features may lead to unexpected
changes in the behavior of the parser in other contexts.

With respect to MWEs, symbolic systems typically exhibit a significantly
extended domain of locality in comparison with purely statistical systems.
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As shown in Sec. 5.5.2, in both LFG and TAG elementary grammar units can
be used to represent MWEs, and within the scope of such elementary units
non-trivial morphosyntactic and lexical constraints can be specified, which
allows to account for the various idiosyncratic constraints and requirements of
MWEs. Furthermore, both LFG and TAG allow a perspective where MWEs
are treated as semantically atomic units which can be composed together with
other MWEs and simplex words via more or less regular semantic composition
process. The difference with respect to purely statistical methods is that
the latter rarely pay attention to provide a scaffolding over which semantic
composition can be easily performed. For instance, while regular MWEs
are recognized in the dependency parsing technique proposed by Constant
and Nivre (2016), their output representation is decoupled from syntactic
structures, and it is unclear how semantic analysis could be carried out on top
of that. Finally, the use of a formal grammar as a basis for syntactic analysis
does not exclude the possibility of performing subsequent disambiguation
over the analysis’ results.

As to the choice of TAG over e.g. LFG, it is the former which allows to
treat MWEs as first-class citizens of a natural language, not distinguished
from their regular counterparts – simplex words. In LFG, MWEs also can be
described in the lexicon using the same machinery as regular words. However,
LFG adopts a relatively strong lexicon/grammar distinction, and sometimes
MWEs require the corresponding descriptions at the level of grammar rules
as well, which may render the grammar engineering process more complex.
Finally, the fact that MWEs are represented in TAG as elementary lexicon-
grammar units entails a shift in perspective which allows to see syntactic
parsing as a process of combining opaque – but supplied with appropriate
syntactic and semantic interface – lexical objects, some of which happen to
be MWEs. In other words, MWEs in TAG behave a bit like (potentially
discontinuous) chunks (cf. Sec. 4.2) whose potential occurrences can be pre-
recognized before syntactic parsing, which opens up interesting possibilities
regarding the MWE-aware parsing architecture. This point of view (which
underlies the proposition of the MWE-promoting strategy in TAG, described
below) is obscured in LFG by the fact that MWE-related descriptions come
from simplex words, and potential MWE interpretations are constructed
during the process of parsing, not before.

It is also worth pointing out that the treatment of MWEs as elementary
grammar units entails a representation which can be seen as an instance of
the bidirectional approach (with certain properties of the chunking approach),
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which is the most flexible of the approaches we considered in Ch. 4, and
the only one which allows to conveniently handle discontinuous MWEs with
irregular structure. TAG provides a lot of flexibility in specifying the internal
structure of various types of syntactically irregular MWEs, and allows to
specify dedicated semantic representations for them. Additionally, information
about the subcategorization requirements and morphosyntactic constraints
are all specified directly in TAG elementary grammar units. TAG provides
a unified treatment of subcategorization and MWEs which, in light of the
observation that valency and MWEs are related notions (cf. Sec. 3.4), seems
like the right choice.
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Chapter 6

Tree adjoining grammar

This chapter contains a formal definition of a tree adjoining grammar (TAG).
Sec. 6.2 contains relatively standard TAG-related definitions, while in Sec. 6.3,
we provide definitions relevant to our TAG parsing architecture, described in
more detail in Ch .7.

Recall that we focus on the TAG formalisms because it provides a first-
class support for MWEs. MWEs can be conveniently represented in TAG
grammars as elementary grammar units (Abeillé and Schabes, 1989). This
makes it easy to account for the morphosyntactically restrictive properties of
MWEs (such as additional agreement constraints), among others. Practical
TAGs are typically fully (or almost fully) lexicalized. Lexicalized TAGs adopt
no lexicon/grammar distinction, which allows to handle syntactically irregular
MWEs without too much trouble. This and the previous point are related to
what is typically called an extended domain of locality of TAGs (see Sec. 5.5.2).
Finally, the TAG-based treatment of MWEs allows to see them as potentially
discontinuous chunks which can be pre-recognized before syntactic parsing
using various, supertagging-related techniques, which opens up interesting
possibilities regarding the MWE-aware parsing architecture.

6.1 Prerequisites
Let us first establish the basic notation.

Definition 6 (sequence). Let X be a set and n ∈ N. We define a sequence
over X, denoted x = (xi ∈ X)ni=1, (x1, x2, . . . , xn), or x1 . . . xn for short, as
a function from {1, . . . , n} to X, i.e., as a set {(1, x1), (2, x2), . . . , (n, xn)},
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where n is the length of x. We also denote by |x| the length n of the sequence
x, by X∗ the set of all sequences over X, and by ε an empty sequence.

Definition 7 (sequence concatenation). Let x, y be two sequences over X.
Then, we write x · y to denote a concatenation of x and y, defined as
(x1, . . . , x|x|, y1, . . . , y|y|). The concatenation is a binary associative opera-
tion, we will occasionally omit the symbol · and write simply xy to denote a
concatenation of x and y.

Since the same word can occur more than once in a sentence or a tree, we
will often need to manipulate multisets of words.

Definition 8 (multiset). For a set X, a multiset over X is a set of pairs
{(x, k) : x ∈ X}, where k ∈ N>0 is called the multiplicity of x. For any set
X, we defineM(X) as the set of all multisets over X.

We extend set notations and operators to multisets. For instance, {(a, 2), (b, 1)}
is noted as {a, a, b}ms, and we have {a, b}ms∪{a}ms = {a, a, b}ms, {a, a, b}ms\
{a, b}ms = {a}ms, {a, b}ms ⊆ {a, a, b}ms, {a, a, b}ms 6⊆ {a, b}ms, |{a, a, b}ms| =
3, etc.

6.2 Definition of a TAG
Let Σ and N be disjoint sets of terminal and non-terminal symbols.

Definition 9 (initial tree (IT)). An initial tree is an ordered tree with non-
terminals in non-leaf nodes and terminals/non-terminals in leaf nodes.1

Definition 10 (auxiliary tree (AT)). An auxiliary tree is similar to an IT
but it has one distinguished leaf (usually marked with an asterisk), called a
foot, containing a non-terminal.

Definition 11 (TAG tree). A TAG tree is a tree over terminal and non-
terminal symbols which is either an initial tree or an auxiliary tree.

1Leaf non-terminal nodes are conventionally decorated with a down arrow so as to
emphasize that they can be replaced by other trees using a substitution operation. In this
work, we omit this notational convention and assume that every leaf non-terminal node is
marked for substitution, unless stated otherwise.
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Traditionally, the above-defined terms initial tree, auxiliary tree, and TAG
tree2 usually refer to TAG trees present in a TAG grammar. In this work, we
use them instead to refer to trees which can be constructed over the sets Σ
and N in general.

Definition 12 (proper auxiliary tree). Let t be an AT over Σ and N . Then,
we say that t is proper if it contains the same non-terminal x ∈ N in its root
and in its foot.

Definition 13 (tree adjoining grammar (TAG) (Joshi and Schabes, 1997)). A
tree adjoining grammar (TAG) is defined as a tuple G = 〈ΣG, NG, IG, AG, SG〉
where ΣG is a set of terminal symbols, NG is a set of non-terminal symbols,
IG is a set of initial trees over ΣG and NG, AG is a set of proper auxiliary
trees over ΣG and NG, and SG ∈ NG is the start non-terminal.

We will occasionally omit the subscript G (and refer to ΣG by Σ, to NG

by N , etc.) when its choice is unambiguous. We call the trees belonging to I
elementary initial trees (EITs), the trees belonging to A elementary auxiliary
trees (EATs), and the trees belonging to I ∪ A elementary trees (ETs).

Definition 14 (lexicalized TAG tree). A lexicalized TAG tree (an LTAG
tree for short) is a TAG tree which contains at least one node labeled with a
terminal. We call all such terminal nodes of a given tree its anchors.

For instance, in Fig. 6.1, trees anchored with minister, made, and prime
minister are ITs, while the, prime, and good are ATs. For the sake of clarity,
we will refer to ETs by their anchors henceforth.3 Moreover, in order to make
it easier to refer to the individual ETs and their subtrees, we assign a unique
ID to each node of each ET.

A derived tree is created from EITs and EATs by substitution and adjunc-
tion. Given an IT t, and any tree t′, substitution replaces a non-terminal
leaf l in t′ by t provided that labels in l and in t’s root are equal. Given
a proper AT t, and any tree t′, adjunction replaces t’s foot by a subtree t′′
of t′ and then inserts this modified t in place of t′′ in t′, provided that the
root non-terminals in t and t′′ are identical. A derivation tree keeps track of
the operations and the elementary trees (ETs) involved in the creation of a
derived tree.

2TAG in TAG tree denotes the formalism, not a particular grammar.
3All the examples are based on lexicalized TAGs. While the parsing algorithm discussed

in Ch. 7 can be used with TAGs in general, the heuristic we are going to see later on is
constrained to lexicalized grammars.
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Figure 6.1: A toy TAG grammar. To each node a unique ID is assigned,
placed in subscript on the right.

Definition 15 (derivation tree). Let G be a TAG. Then, we define a deriva-
tion tree as a rooted tree whose:

• nodes are labeled with G’s ETs, and

• edges are labeled with addresses which unambiguously mark the attach-
ment sites of the corresponding children ETs.

Gorn addresses4 are typically used to mark the attachment sites of the
substitution and the adjunction operations. I.e., for each 〈t1, t2〉 edge in the
derivation tree marked with the address addr, addr points the node in the
ET t1 modified by t2.

Fig. 6.2 illustrates a possible derivation which leads to the derived tree
shown in Fig. 6.4. This derivation is based on the ETs present in the grammar
shown in Fig. 6.1. A more traditional, but equivalent, way of representing the
same TAG derivation tree is illustrated in Fig. 6.3 (b), while an alternative,
compositional derivation (based on the same grammar) is illustrated in
Fig. 6.3 (a).

Proposition 1. Let δ be a derivation tree. Then, δ unambiguously determines
the corresponding TAG tree, obtained by applying the individual substitution
and adjunction operations over the δ’s ETs.

40 indicates the root node and ij indicates the j-th child of the node addressed with i.
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Figure 6.2: A derivation tree based on the grammar presented in Fig. 6.1.
Adjunction and substitution operations are represented by dashed directed
arcs leading to, respectively, internal nodes and leaf nodes in other ET trees.

Figure 6.3: A traditional way of representing derivation trees. Nodes contain
ETs (represented here by their anchors), while edges are labeled with Gorn
addresses which indicate the modification sites. Substitutions and adjunctions
are represented by plain and dashed edges, respectively. (b) A derivation tree
corresponding to the derivation illustrated in Fig. 6.2. (a) An alternative
derivation based on the same grammar.
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Figure 6.4: The derived tree corresponding to the derivation trees illustrated
in Fig. 6.2 and Fig. 6.3 (b).

Note that the reverse does not necessarily hold, i.e., there can be several
derivation trees corresponding to a given TAG tree.

Definition 16 (derived tree). Let δ be a derivation tree. We call the TAG
tree determined by δ a derived tree.

Definition 17 (complete tree). Let t be a TAG tree. Then, we say that t is
complete, denoted completeG(t), iff all its leaves are labeled with terminals.

Definition 18 (tree language). Let G be a TAG. Then, we define its tree
language, denoted TG, as the set of all SG-rooted complete TAG initial trees
which can be derived on the basis of the elementary trees in G.

Definition 19 (yield of an initial tree). Let t be a TAG initial tree. Then,
we define the yield of t, denoted γG(t), as the left-to-right sequence of the
terminals stored in t’s terminal leaves.

For instance, the yield of the tree illustrated in Fig. 6.4 is (the, prime,
minister, made, a, few, good, decisions).

Definition 20 (yield of an auxiliary tree). Let t be an auxiliary tree. Then,
we define the yield of t, denoted γG(t), as a pair of sequences of terminals
stored in t’s terminal leaves on the left and on the right of the foot, respectively.
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Definition 21 (word language). Let G be a TAG. Then, we define its word
language, denoted L(G), as the set of the yields of the trees present in TG.
Formally:

L(G) = {γG(t) : t ∈ TG} (6.1)

Given a TAG G and a sentence s ∈ Σ∗G, the goal of parsing is, firstly,
to determine whether s ∈ L(G). Secondly, the parser should determine all
the derived trees t ∈ TG (and, ideally, all the corresponding G-compliant
derivation trees) such that γG(t) = s.

An important extension of TAG which we rely on in our work (particularly
in Sec. 7.5.3) is a feature structures based TAG (FB-TAG). Restrictive
morphosyntactic properties of MWEs can be most conveniently accounted
for in TAGs using feature structures (Abeillé and Schabes, 1989). We refer
the reader to (Vijay-Shanker and Joshi, 1988) for a detailed description of
the FB-TAG formalism.

6.3 Custom definitions
Here, we present the TAG-related definitions particular to our work. Let us
note that they are of no particular interest on their own, but rather serve to
bridge the gap between the more traditional TAG-related definitions and the
objects created by our parser (see Ch. 7). As such, these definitions might be
easier to process and understand once the basics of the parser are acquired.

6.3.1 Elementary subtree
Definition 22 (child tree). Let t be a TAG tree, r be its root node, and c be
a child of r5. Let also t′ be a subtree of t in the mathematical sense6 such
that (i) the root of t′ is c, and (ii) each node and edge reachable from c in t
is also in t′. Then, we say that t′ is a child tree of t.

For instance, in Fig. 6.1, let t be the ET rooted in S44, tVP be the tree
rooted in VP46, and tNP be the tree rooted in NP48. Then, tVP is a child tree
of t, tNP is a child tree of tVP , but tNP is not a child tree of t.

5Node c such that a directed edge leads from r to c (assuming that edges are oriented
away from the root).

6The sets of nodes and edges in tree t′ are subsets of the sets of nodes and edges in t,
respectively.
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Definition 23 (TAG subtree). Let t, t′ be two TAG trees. Then, we say that
t′ is a TAG subtree ( subtree for short) of t iff (i) t′ is identical to t, or (ii)
t′ is a subtree of one of the children trees of t.

Definition 24 (elementary subtree). Let G be a TAG and t be a TAG tree
constructed over Σ and N . Then, we say that t is an elementary subtree
(EST) in G iff a tree t′ ∈ I ∪ A exists such that t is a subtree of t′.

For instance, in Fig. 6.1, let t be the tree rooted in VP46 and t′ be the
tree rooted in NP9. Then, both t and t′ are elementary subtrees.

6.3.2 Derivation tree
We slightly modify the definition of a derivation tree so as to better reflect
the correspondence between derivation trees and the items constructed in the
process of bottom-up parsing.

Definition 25 (derivation tree). Let G be a TAG. Then, we define a deriva-
tion tree as a rooted tree such that:

• its root node is labeled with an EST and the non-root nodes are labeled
with ETs,

• its edges are labeled with addresses which unambiguously mark the
attachment sites of the corresponding children ETs,7 and

• all non-terminal leaves of each EST in the derivation must be modified
via substitution.8

Thus, in contrast with Def. 15, (i) the root of a derivation tree has
to contain an EST, but not necessarily an ET, and (ii) the derived tree
corresponding to a given derivation tree is, by definition, complete. For
instance, Fig. 6.5 (a) shows an example of a derivation tree consistent with
Def. 15 but not with Def. 25, because the NP leaf of the root ET is not
modified, while Fig. 6.5 (b) shows an example of a derivation tree consistent

7We adopt an extended model of TAG derivations, where an internal node can be
adjoined to several times (Schabes and M. Shieber, 1994). We assume, henceforth, that
children ETs attached to one and the same node are ordered.

8We abstract over the adjunction constraints, among others. Otherwise, we would also
require here that all such constraints are satisfied.
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Figure 6.5: A comparison of a derivation tree (a) consistent with Def. 15 and
a derivation tree (b) consistent with Def. 25.

with Def. 25 but not with Def. 15, because its root is not an ET. In the
remaining of this work, we rely on Def. 25 rather than on Def. 15, unless
stated otherwise.

Definition 26 (complete derivation tree). Let G be a TAG and δ be a G-
compliant derivation tree. Then, we say that δ is a complete derivation tree,
denoted completeG(δ), iff the root of δ is an ET in G.

For instance, the tree shown in Fig. 6.2 and both trees shown in Fig. 6.3
are complete derivation trees, while the tree shown in Fig. 6.5 (b) is not
complete.

Proposition 2. Let G be a TAG and t ∈ TG be a derived tree. Then,
• the set of derivation trees complying with Def. 15 and yielding the derived

tree t, and

• the set of complete derivation trees complying with Def. 25 and yielding
the derived tree t,

are identical.
Definition 27 (auxiliary derivation tree). Let δ be a derivation tree whose
root EST t is auxiliary. Then, we say that δ is auxiliary and we define the
foot of δ as the t’s foot.
Definition 28 (yield of a derivation tree). Let δ be a derivation tree. We
extend the definition of the yield to derivation trees, denoted γ(δ), as the yield
(either a sequence or a pair of sequences) of the corresponding derived tree.
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Figure 6.6: An example of a derivation grove consisting of two derivation
trees. The left one contains one EST t anchored in made, while the right one,
δ, is composed from three ESTs. t and the root of δ are adjacent children
trees of the VP made decisions EST.

Definition 29 (set of derivations). Let G be a TAG. Then, we define ΔG as
the set of all the G-compliant derivation trees. For a given sequence of words
s ∈ Σ∗

G, we also define ΔG(s) ⊆ ΔG as the set of all derivation trees δ such
that γ(δ) = s, and Δcomp

G (s) = {δ ∈ ΔG(s) : completeG(δ)}.

Definition 30 (size of a TAG derivation tree). Let G be a TAG and δ ∈ ΔG.
Then, we define the size of δ, denoted |δ|, as the number of δ’s nodes.

The size of a derivation tree corresponds, therefore, to the number of ESTs
participating in this derivation.

6.3.3 Derivation grove
Definition 31 (derivation grove). Let δ be a sequence of derivation trees.
Then, we say that δ is a derivation grove iff the individual derivation trees
δi contain, in their roots, ESTs which are adjacent children of an EST t.
Formally:

• δ1’s root must be the left-most child subtree of t, and

• for each i = 2 . . . |δ|, δi’s root must be a child subtree of t placed
immediately on the right of the δi−1’s root.

Fig. 6.6 shows an example of a derivation grove consisting of two derivation
trees.



6.3. CUSTOM DEFINITIONS 103

Proposition 3. Let δ be a derivation grove. Then, at most one of its
derivation trees δi is auxiliary.

The above proposition holds because, otherwise, an ET with more than
one foot node would have to exist.

Definition 32 (auxiliary derivation grove). Let δ be a derivation grove which
contains an auxiliary derivation tree δi. Then, we say that δ is auxiliary and
we define the foot of δ as the δi’s foot.

Definition 33 (yield of a derivation grove). Let δ be a derivation grove. We
extend the definition of the yield to derivation groves, denoted γ(δ), as the
left-to-right concatenation of the yields γ(δi) of the individual derivation trees
δi based on the following, associative binary operation which allows to append
two yields:

x ◦ y =


〈x1, x2y〉, if 〈x1, x2〉 = x and y ∈ Σ∗G
〈xy1, y2〉, if 〈y1, y2〉 = y and x ∈ Σ∗G
xy, if both x, y ∈ Σ∗G,
undefined, otherwise.

Note that in the above definition, the fourth case (both yields are pairs)
cannot occur because, otherwise, an EST would have to exist which contains
more than one foot node.

Occasionally, we will refer to both derivation trees and derivation groves
as derivations for short.

6.3.4 Derivation chain
Definition 34 (derivation chain). Let ~δ be a non-empty sequence of derivation
trees. Then, we say that ~δ is a derivation chain iff:

• ~δ1’s root is an initial EST,

• ∀2<i≤|~δ|, ~δi’s root is an auxiliary EST (not necessarily proper) whose
foot node is decorated with the same non-terminal as the root of the
~δi−1’s root EST.
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Figure 6.7: A graphical representation of two derivation chains, δ and δ′.
Note that the order of elements is inverted in both chains.

Fig. 6.7 illustrates two examples of derivation chains. Fig. 6.7 (a) represents
a derivation chain consisting of three singleton derivation trees, while (b)
represents a chain consisting of two derivation trees. Derivation chains play
an important role in the parsing algorithm which will be covered in Sec. 7.3.

Definition 35 (tip of a derivation chain). Let �δ be a derivation chain. Then,
we define its tip as the root node of �δ|�δ|’s root EST.

Derivation chains are related to derivation trees. For instance, the two
derivation trees of the derivation chain illustrated in Fig. 6.7 (b) could
be combined using adjunction, which would result in a single derivation
tree composed of two ETs and one EST. However, a transformation from
a derivation chain to the corresponding derivation tree is, in general, not
always possible. Firstly because the individual ATs present in a derivation
chain are not necessarily elementary and only fully recognized EATs can be
adjoined. Secondly because, if unification-like computations are assigned
to the individual ETs, it may be that the derivation chain can be only
trasformed into the corresponding derivation tree if it is extended with an
additional derivation tree.9 It is also worth noting that from a given derivation
chain several derivation trees can be possibly constructed. For instance, in
Fig. 6.7 (a), the left-most ET (i.e., the root of δ3) can be adjoined either to
the root node of the ET in δ2, or to the root node of the EST in δ1.

Definition 36 (yield of a derivation chain). Let �δ be a derivation chain. Then,

9For instance if the top and the bottom FSs assigned to the root node of the root EST
of the last derivation tree in a given chain are inconsistent and can be thus reconciled only
if the root node is modified via adjunction.
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we define the yield of ~δ, denoted γ(~δ), according to the following equation:

γ(~δ) =

γ(~δ1), if |~δ| = 1
x · γ(~δ′) · z, otherwise, where ~δ = ~δ′ · (δ) ∧ 〈x, z〉 = γ(δ).

For instance, the yield of both derivation chains illustrated in Fig. 6.7 is
equal to (a, few, decisions).

6.3.5 Multiset of terminals
Definition 37 (ET terminals). Let t be a TAG tree. Then, we define sub(t) ∈
M(Σ) as the multiset of terminals in tree t.

For instance, in Fig. 6.1, let t be the ET made decisions, t1 be its subtree
rooted at NP45, and t2 be its subtree rooted at NP48. Then, sub(t) =
{decisions,made}ms, sub(t1) = ∅ms, and sub(t2) = {decisions}ms.
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Chapter 7

Parsing MWEs with TAGs

The first issue we try to tackle in this chapter is related to TAG parsing
efficiency in general. Real-world, wide-coverage TAG grammars tend to be
large, which leads to efficiency-related issues. The theoretical time complexity
of TAG parsing is O(n6), where n is the length of the input sentence (Satta,
1994). However, TAG parsing is also linear with respect to the size of the input
grammar N . Clearly, parsing can become too slow for the use in practical
NLP applications when either n or N becomes too big. While the length of
the sentence theoretically plays a much more important role, sentences are
typically much smaller than the grammar, thus the impact of N on parsing
speed is not negligible either.

The TAG parsing architecture we describe in Sec. 7.3 lends itself to a
variety of grammar compression techniques, detailed in Sec. 7.5.2, which
enable parsing speed-up improvements. Even though this issue is not directly
related to MWEs, adding MWE-related entries to a grammar clearly increases
its size, even if it is not clear whether this phenomenon can, by itself, change
significantly the scale of the problem.

The second issue is more specific to MWEs. Practical hybrid parsing sys-
tems often adopt a parsing architecture in which disambiguation is performed
in parallel with syntactic analysis, in the sense that it is not required that all
the valid (with respect to the underlying grammar) syntactic derivations are
computed before disambiguation can take place (Klein and Manning, 2003;
Angelov and Ljunglöf, 2014; Lewis and Steedman, 2014). The advantage is
that a significant portion of the syntactic analysis search space can be left
unexplored if only the best (or a couple of the best) syntactic derivations are
searched for.
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This strategy led to particularly encouraging results published in the
work of Lewis and Steedman (2014), who used it within the context of CCG
parsing. However, Lewis and Steedman (2014)’s proposal, even though quite
generic, cannot be used within the context of a TAG grammar in which
MWEs are represented as multi-anchored ETs, nor with any other strongly
lexicalised symbolic grammar in which MWEs are represented as elementary
grammar units. At the same time, Wehrli (2014) showed that promoting
collocation-based derivations in symbolic parsing – MWEs are, in the vast
majority, statistical collocations – is a potentially beneficial strategy in that
it helps to deal with syntactic ambiguity. The second task we undertake in
this chapter is, thus, to implement a MWE-promoting strategy (defined in
Sec. 7.1) within the framework of A? TAG parsing (see Sec. 7.4). To this
end, we define (in Sec. 7.4.3) a heuristic which allows to estimate the cost of
parsing a given sentence fragment based on the potential MWE occurrences
therein. In Sec. 7.5.1, we define a variant of this heuristic which handles
adjunction more thoroughly and which has better theoretical properties. In
Ch. 8, we experimentally verify the impact of the MWE-promoting strategy,
applied to several types of MWEs, on LTAG parsing accuracy and speed.

Finally, certain idiosyncratic properties of MWEs – notably, restrictive
morphosyntactic constraints – can be most conveniently accounted for in TAGs
using feature structures (Abeillé and Schabes, 1989). Regardless of MWEs,
feature structure decorations are also used in wide-coverage TAG grammars
(Alahverdzhieva, 2008) and allow to formalize compositional semantics over
TAG derivation trees (Gardent and Kallmeyer, 2003). In Sec. 7.5.3, we show
how to extend the main parser implemented in ParTAGe so as to account for
feature structure decorations and, more generally, for various unification-like
computations defined over ETs.

It is worth noting another family of methods which allow to deal with the
efficiency problems in TAG parsing. Such methods consist in constraining the
formal power of TAG – and, thus, reducing the parsing complexity – while
preserving most of the properties which make TAG relevant for linguistic
modeling.1 A well-known example of this approach is the tree insertion

1Another form of restrictions can be found in spinal TAGs (Shen and Joshi, 2005),
where each elementary tree has to have the so-called spinal form. The goal in this case is
not to reduce the parsing complexity, but rather to make the process of constructing TAG
ETs take place in parallel with parsing. It is not clear to us, however, to what extent such
mechanism could be relevant to MWEs and, more generally, to parsing heavily relying on
linguistic resources.
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grammar (Schabes and C. Waters, 1995), where wrapping adjunction is not
allowed, thus decreasing the parsing complexity to O(n3). Another formalism
implementing this principle is osTAG (Swanson et al., 2013). The advantage
of A? parsing over these methods is that A? does not require limiting the
formal power of TAG in any way, yet potentially leading to comparable
improvements.2 It should be also possible to implement A? parsing for the
two formalisms mentioned above, thus combinig the characteristics of both
optimization families.

7.1 MWE-promoting strategy
The strategy of promoting MWEs can be formalized in TAGs in terms of a
(partial) disambiguation strategy which selects those TAG derivation trees
which contain MWE ETs. Consider again the derivation tree δmwe shown in
Fig. 6.2 and an alternative, more compositional derivation δ shown in Fig. 7.1.
Both trees are based on the same grammar (cf. Fig. 6.1), but δmwe contains
more MWE ETs than δ and, because MWE ETs are multi-anchored, δmwe’s
size is smaller (|δmwe| = 5∧ |δ| = 7). In order to make the parser promote the
TAG derivations based on MWE ETs, it is thus sufficient to make it select
the derivations which contain a smaller number of participating ETs.

Definition 38 (promoting MWEs). Let G be a TAG and s ∈ Σ∗G be a
sentence. Then, we define a MWE-promoting strategy as the relation ≤ over
∆comp
G (s) such that:

δ1 ≤ δ2 ⇐⇒ |δ1| ≤ |δ2|. (7.1)

7.2 Probabilistic characterization
Since the MWE-promoting strategy can be seen as a partial disambiguation
function, it can be expressed in probabilistic terms, i.e., in terms of a weighted
TAG.

Definition 39 (weighted TAG). We define a weighted TAG as a pair 〈G,ωG〉
such that G is a TAG and ωG is a weighting function from IG ∪ AG to R.

2We estimate that, under favorable circumstances – O(1) number of the optimal
derivations per sentence, perfect estimations of the heuristic – and assuming (quite safely)
that the size of a derivation in LTAGs is O(n), A? can reduce the complexity of TAG
parsing to O(n2).
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Figure 7.1: A “compositional” derivation tree based on the grammar presented
in Fig. 6.1.

The smaller the number ωG(t) assigned to a particular ET t in G, the
more positive the impact of the presence of t in a derivation tree is. We
implicitly extend to weighted TAGs the definitions applying to regular TAGs.

Such a characterization is inspired by the work of Lewis and Steedman
(2014) who used it for CCG parsing with promising results. However, in Lewis
and Steedman (2014)’s work, elementary grammar units can only analyse
simplex words. This means, on the one hand, that they cannot be used to
model MWEs in the same way as in TAG, but also that the probability of a
derivation can be defined as a product of the probabilities of the elementary
grammar units attached to the individual words in the sentence.
Definition 40 (multiset of ETs in a derivation). Let G be a TAG and δ ∈ ΔG.
Then, we define mts(δ) as the multiset of ETs participating in δ.

In our case, ETs can analyse several words at once, as the made decisions
ET in Fig. 6.2, which is attached to two non-adjacent words in the input
sentence. In such a context, a probability of a derivation can be defined in a
log-linear probabilistic framework instead:
Definition 41 (probability of a derivation). Let 〈G, ωG〉 be a weighted TAG,
s be a sentence, and δ ∈ Δcomp

G (s) be a complete derivation tree. We define
the probability of δ as:

pG(δ|s) =
exp(∑

〈t,k〉∈mts(δ)(−ωG(t) · k))∑
δ′∈Δcomp

G (s) exp(∑
〈t,k〉∈mts(δ′)(−ωG(t) · k)) . (7.2)
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The above probability is well-defined only if the set ∆G(s) is finite.

Definition 42 (finiteness of the derivation set in LTAG). Let G be an LTAG
and s be a sentence. Then, ∆G(s) is finite (Kallmeyer, 2010, p. 20).

Definition 43 (weight of a derivation). Let 〈G,ωG〉 be a weighted TAG and
δ ∈ ∆G be a derivation. Then, we define the weight of δ as:

ωG(δ) =
∑
〈t,k〉∈mts(δ) ωG(t) · k · [t ∈ IG ∪ AG]

where [] is the Iverson bracket.3

We do not adopt any notational distinction between ωG : (I ∪ A) → R
and its extension ωG : ∆G → R.

The value of the denominator in Eq. 7.2 does not depend on the given
derivation, thus it can be ignored when searching for the most probable
derivation for a given sentence.

Definition 44 (optimal derivation). Let 〈G,ωG〉 be a weighted TAG and s
be a sentence. Then, the most probable, optimal derivation of the sentence s
can be determined using the following equation:

δ̂(s) = arg minδ∈∆comp
G (s) ωG(δ) (7.3)

Finally, the MWE-promoting strategy can be implemented in such a
weighted framework by assuming that the same, non-negative weight w0 (e.g.,
1) is assigned to each ET in the given grammar.

Proposition 4. Let 〈G,ωG〉 be a weighted TAG such that ωG(t) = 1 for each
t ∈ IG ∪ AG, s be a sentence, and δ ∈ ∆comp

G (s). Then, ωG(δ) = |δ| and,
therefore, ωG straightforwardly specifies the MWE-promoting strategy:

δ1 ≤ δ2 ⇐⇒ ωG(δ1) ≤ ωG(δ2) (7.4)

Note that ωG can be further adjusted with respect to a given input sentence
using supertagging methods, given an appropriate probabilistic supertagging
model together with an accompanying training data set.

3[x] = 1 if x = true and [x] = 0 otherwise.
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7.3 ParTAGe: TAG parsing architecture
ParTAGe assumes a particular representation of TAG grammars which consists
of two parts. Each TAG is first transformed into an equivalent, directed
acyclic graph (DAG) representation with ordering of outgoing edges for each
node. Afterwards, traversals of the individual ET trees and their subtrees are
represented as paths in finite-state automata (FSAs).

7.3.1 Grammar DAG
Definition 45 (out-ordered directed graph). We define an out-ordered di-
rected graph (out-ordered graph for short) as a tuple D = 〈VD, ED〉 where:

• VD is the set of vertices.

• ED : VD → V ∗D represents the parent-child relations between the vertices
and is defined for each v ∈ VD. Thus, each element of ED encodes a
set of edges connecting a parent with its ordered children.

Definition 46 (child). Let D be an out-ordered graph and v, w ∈ VD. We
say that v is a child of w, denoted childD(v, w), iff ∃1≤i≤|ED(w)|(ED(w)i = v).

Henceforth, whenever the out-ordered graph D is unambiguously identifi-
able, we will refer to VD, ED, childD, etc., as V , E, child, etc., for short.

Definition 47 (path). Let D be an out-ordered graph and v1 . . . vk ∈ V +.
Then, we say that v1 . . . vk is a path in D connecting v1 with vk iff

∀1≤i≤k−1(child(vi+1, vi))

Definition 48 (out-ordered DAG). Let D be an out-ordered graph. Then,
we say that D is acyclic (and hence D is an out-ordered DAG) iff, for any
v ∈ V , there is no path in D longer than 1 which would connect v with itself.

Henceforth, we will be only concerned with out-ordered DAGs, even if
some of the following definitions apply to out-ordered graphs in general.

Definition 49 (root). Let D be an out-ordered DAG. We define rootD : V →
B as a function which tells whether a given vertex is a root in D or not.

rootD(v) =

false, if ∃v′∈V child(v, v′)
true, otherwise.
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Definition 50 (single-rooted DAG). Let D be an out-ordered DAG. Then,
we say that D is single-rooted iff ∃!v∈V root(v).

Definition 51 (leaf). Let D be an out-ordered DAG. We define leafD : VD →
B as a function which tells whether a given vertex v is a leaf in D (i.e.,
E(v) = ε) or not.

Definition 52 (sub-DAG). Let D and D′ be two out-ordered DAGs. Then,
we say that D′ is a sub-DAG of D, denoted D′ ⊆ D, iff VD′ ⊆ VD and
ED′ ⊆ ED.

Note that if D′ is a sub-DAG of D and if it contains a given vertex v from
VD, then it also contains all the vertices v′ reachable from v in D. This is
because if D′ contains a vertex v ∈ VD, then it must (by definition) contain
an edge leading from v to its children vertices, and there is only one such
candidate edge 〈v, c〉 ∈ ED. By definition, it must therefore contain all the
children nodes (ci)|c|i=1 as well and, by extension, all the nodes and edges
reachable from v via the parent-child relation.

Definition 53 (rooted sub-DAG). Let D and D′ be two out-ordered DAGs.
Then, we say that D′ is a sub-DAG of D rooted in v ∈ VD iff D′ ⊆ D, D′ is
single-rooted and rootD′(v).

Proposition 5 (subdag function). Let D be an out-ordered DAG and v ∈ VD.
Then, there exists exactly one out-ordered DAG D′ such that D′ is a sub-DAG
of D rooted in v. We denote such a sub-DAG as subdagD(v).

Definition 54 (grammar DAG). We define a grammar DAG (GDAG) as a
tuple D = 〈VD, ED,ΣD, ND, SD, `D, footD〉 such that:

• D0 = 〈VD, ED〉 is an out-ordered DAG.

• ΣD and ND are disjoint sets of terminals and non-terminals, respectively,
and SD ∈ ND is the start symbol.

• `D : VD → ΣD ∪ND is a function which assigns the non-terminal and
terminal values to the individual vertices in the grammar. Moreover,
∀v∈VD

(`D(v) ∈ ΣD =⇒ leafD0(v)).

• footD : VD → B tells whether a given vertex is a foot node or not.
Moreover, it holds that footD(v) =⇒ leafD0(v) ∧ `D(v) ∈ ND.
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• For each vertex r ∈ VD : rootD0(r) and the corresponding D′ = subdagD0(r),
there exists at most one v ∈ VD′ such that footD(v). Moreover, if such
a vertex v ∈ VD′ exists, than `D(r) = `D(v).

Thus a GDAG can be seen as a fusion of the individual ETs of a given
TAG grammar in a single data structure. We implicitly extend the definitions
introduced in the previous subsection (child, root, leaf, subdag, etc.) to
grammar DAGs in the natural way. As with out-ordered graphs, we will omit
the subscript D whenever D is unambiguously identifiable and write V , E,
child, etc., instead of VD, ED, childD, etc.

Proposition 6 (GDAG’s vertex ⇒ TAG tree correspondence). Let D0 be a
GDAG, v be a vertex in D0, and D = subdagD0(v). Then, D unambiguously
specifies a TAG tree t over non-terminals ND and terminals ΣD. Moreover, t
is auxiliary if D contains a foot node, and initial otherwise. In case v is a
root in D0 and t is auxiliary, t is also a proper auxiliary tree.

The TAG tree corresponding to a given root vertex in D can be deter-
mined in a recursive manner. For a given vertex v ∈ V , the TAG subtrees
corresponding to the individual children in E(v) are identified first, while the
(non-)terminal attached to the node corresponding to v itself is determined
on the basis of `(v). Finally, the status of the node as a foot is determined
based on foot(v).

Proposition 7 (GDAG ⇒ TAG correspondence). Let D be a GDAG. Then,
D uniquely determines the corresponding TAG G = 〈ΣD, ND, I, A, SD〉, where
the elementary trees in I and A are obtained by the traversals of the sub-DAGs
rooted in the individual root vertices in D.

Definition 55 (DAG encoding). Let D be a GDAG and G be the correspond-
ing TAG. Then, we call D a DAG encoding of G.

Proposition 8. Let G be a TAG and D be its DAG encoding. Then, each
vertex v ∈ V corresponds to an EST in G. More precisely, v entails the
corresponding subdag(v) whose traversal leads to an EST, denoted estD(v).
If root(v), then est(v) is also an ET in G.

Note that it is not true that each TAG uniquely identifies the corresponding
GDAG. Many different GDAGs can be constructed which represent one and
the same TAG. Fig. 7.2 shows two possible DAG encodings of a fragment of
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Figure 7.2: Two possible DAG encodings of the ETs made, decisions, and
made decisions from Fig. 6.1. For the sake of clarity, the values of � are put
in place of the corresponding vertices, while the vertex identifiers are placed
in subscript on the right. The roots of the individual ETs are marked in bold.

the TAG presented in Fig. 6.1. In particular, common ESTs in Fig. 7.2 (b)
are shared among the individual ETs. This technique is useful for the sake of
computation sharing, especially in bottom-up parsing. It was already used by
Schabes and C. Waters (1995) within the context of tree insertion grammars
(a TAG-related formalism where wrapping adjunction is not allowed, thus
decreasing the parsing complexity to O(n3)) and can be easily extended to
TAGs.

Def. 55 does not exclude the possibility of representing a given ET by
several roots in a GDAG either. This can be useful if to the individual ETs
additional computations, e.g. unification over feature structures assigned to
the individual nodes, are assigned.

The following definition provides a generic encoding method which, for
any given TAG, allows to construct the corresponding GDAG in which each
source ET is represented by a distinct subdag.

Definition 56 (simple DAG encoding). Let G be a TAG and D be a grammar
DAG. Then, we say that D is a simple DAG encoding of G iff:

• ΣD = ΣG, ND = NG, and SD = SG.

• Every node of every tree in IG ∪ AG is represented as a distinct v ∈ VD.
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Figure 7.3: A simple DAG encoding (a copy of Fig. 6.1).

• ED directly encodes the parent-child relations present in IG ∪ AG,

• �D and footD are defined correspondingly.

We also say that D is a simple DAG encoding iff it is a simple DAG encoding
of the TAG it entails.

Fig. 7.3 illustrates an example of a simple DAG encoding. In fact, it
constitues a copy of Fig. 6.1, but the meaning of the node IDs changes slightly.
Formally, this encoding, restricted to the ETs the and minister, is: V =
{1, 2, 3, 4, 9, 10, 11}, S = S, � = {〈1, NP〉, 〈2, D〉, 〈3, NP〉, 〈4, the〉, 〈9, NP〉,
〈10, N〉, 〈11, minister〉}, foot = {〈3, true〉} ∪ {〈v, false〉 : v ∈ V \ {3}}, and
E = {〈1, (2, 3)〉, 〈2, (4)〉, 〈3, ε〉, 〈4, ε〉, 〈9, (10)〉, 〈10, (11)〉, 〈11, ε〉}.

Definition 57 (tree1). Let G be a TAG and D be its simple DAG encoding.
We define tree1

D : VD → VD as a function which tells, for a given vertex v, to
which of D’s root (and, by extension, ET in G) it corresponds.

For instance, in Fig. 7.3, tree1(4) = 1 and est(tree1(4)) corresponds to
the ET the, tree1(8) = 5 and est(tree1(8)) corresponds to the ET prime,
tree1(45) = 44 and est(tree1(45)) corresponds to the ET made decisions, etc.

Note that we use a special index 1 to indicate that the result of this function
is a single ET. In Sec. 7.5.2, we consider other TAG → DAG encodings, in
which a given DAG vertex can belong to several ETs. In the light of this
possibility, we define its generalized version.
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Definition 58 (tree). Let D be a GDAG. Then, we define treeD : VD → 2VD

as a function which tells, for a given vertex v, to which of D’s roots it
corresponds.

For instance, in Fig. 7.2 (b), tree(10) = {9}, tree(4) = {1, 9}, tree(7) =
{1, 11}, etc.

Proposition 9. Let D be a GDAG and r ∈ VD : rootD(r). Then, it holds
that treeD(r) = {r}.

Definition 59 (sub terminals). Let D be a GDAG and v ∈ V . Then, we
define subD(v) ∈M(Σ) as the multiset of terminals occurring in est(v), i.e.,
in sub(est(v)).

Note that sub is an extension of Def. 37 in that it applies to DAG nodes
rather than to TAG trees.

Definition 60 (super1 terminals). Let D be a simple DAG encoding and
v ∈ V . Then, we define super1

D(v) ∈ M(Σ) as the multiset of terminals
occurring in est(tree1(v)) outside of est(v).

Proposition 10. Let D be a simple DAG encoding and v ∈ V . Then:

super1(v) = sub(tree1(v)) \ sub(v).

Proposition 11. Let D be a simple DAG encoding and v ∈ V : root(v).
Then, it holds that super1(v) = ∅ms.

For instance, in Fig. 7.3, sub(2) = {the}ms, sub(3) = ∅ms, sub(34) =
{a, few}ms, sub(47) = {made}ms, etc., and super1(1) = ∅ms, super1(16) =
{made}ms, super1(45) = {made, decisions}ms, super1(47) = {decisions}ms,
etc.

7.3.2 Grammar FSAs
The parser relies furthermore on an encoding of the possible traversals of ETs.
Such traversals are represented in the form of paths in the corresponding
finite-state automata (FSAs). The motivation behid such a representation
is to reduce the space of possible chart items and, hence, to further increase
computation sharing. A similar solution can be found in (Nederhof, 1998),
where an LR automaton is used to represent the space of possible chart



118 CHAPTER 7. PARSING MWES WITH TAGS

items, grouped together into equivalence classes closed under prediction, and
the possible transitions between such classes. The grammar representation
described below can be seen as a specialization of the LR automaton to
bottom-up parsing.

Definition 61 (FSA family). We define an FSA family as a tuple M =
〈QM , VM , δM , SM , headsM〉 such that:

• QM is the set of FSA-like states and VM is the set of alphabet symbols,

• δM : QM × VM → QM is the transition function,

• SM ⊆ QM is the set of start states, and

• headsM is a function : QM → 2VM which returns the final symbols
outgoing from a given state.

An FSA family is similar to a regular finite-state automaton over alphabet
VM , but (i) it can contain several start states, and (ii) instead of final states,
the headsM function specifies the states from which final quasi-transitions
leave, as well as the corresponding alphabet symbols. We adopt a distinction
between symbols emitted by the regular transitions and those emitted by
the final quasi-transitions because we will use them for different purposes.
An FSA family can be thus also seen as a transducer whose input alphabet
and output alphabet are both subsets of VD, and whose transition relation
outputs symbols only on the transitions leading to final states.

Henceforth, whenever the FSA family M is unambiguously identifiable,
we will refer to QM , VM , δM , etc., as Q, V , δ, etc., for short.

Definition 62 (transition closure). Let M be an FSA family. We define the
transition closure of δ as a partial function δ̂ : Q× V ∗ → Q such that:4

δ̂(q,w) =

δ̂(δ(q, w),w′), if w = (w) ·w′

q, if w = ε.

Definition 63 (traversals). Let D be a GDAG. Then, we define the set of
D’s traversals, denoted T (D) ⊂ ED, as:

T (D) = {〈v, c〉 ∈ ED : c 6= ε}

For any given 〈v, c〉 ∈ T (D), v is called the head and c is called the body.
4Note that, in accordance with Def. 6, we use (w) to denote a 1-element sequence.
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Figure 7.4: Two possible FSA encodings of the GDAG illustrated in
Fig. 7.2 (b). Start states are highlighted in bold, while heads are marked with
dashed arrows (leading to dummy, dashed states). (a) A simple FSA encoding
in which each GDAG traversal is represented by a distinct quasi-FSA. (b) A
prefix-tree-like FSA encoding.

Traversals are thus simply GDAG edges with non-empty sequences of
target (children) vertices. From the parsing point of view, they represent
traversals performed by the parser while matching the individual, non-trivial
(i.e. of height greater than 0) grammar ESTs encoded in the GDAG against
the input words.

Definition 64 (FSA encoding). Let D be a GDAG and M be an FSA family.
Then, we say that M is an FSA encoding of D iff VM = VD and M encodes
all D’s traversals with their heads put at the end of the corresponding FSA
paths. Formally, for any 〈v, c〉 ∈ VD × V ∗

D it must hold that:

〈v, c〉 ∈ T (D) ⇐⇒ ∃!q0∈SM

(
v ∈ heads(δ̂(q0, c))

)
.

Note that, if M is an FSA encoding of D, then transitions in M carry the
identifiers of the vertices (rather than of edges) in D. Fig. 7.4 illustrates two
possible DAG encodings of the GDAG illustrated in Fig. 7.2 (b).

Definition 65 (traversal suffixes). Let M be an FSA family. We define
suff M (q) ∈ 2V ×V ∗ as the set of traversal suffixes – sequences of DAG vertices
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terminated with the head – encoded in M and starting from q ∈ Q.

suff (q) = suff b(q) ∪ suff h(q)
suff b(q) = {〈h, (v) · b〉 : 〈〈q1, v〉, q2〉 ∈ δ, q1 = q, 〈h, b〉 ∈ suff (q2)}
suff h(q) = {〈h, ∅〉 : h ∈ heads(q)}.

For instance, assuming the FSA family M illustrated in Fig. 7.4 (b) and
that SM = {q0} where q0 is the left-most state, suff (δ̂(q0, (NP2,VP3))) =
{〈S1, ε〉}, suff (δ̂(q0, (N7))) = {〈NP6, ε〉, 〈NP11, ε〉}, suff (δ̂(q0, (NP2))) = {〈S1,

(VP3)〉, 〈S9, (VP10)〉}, suff (δ̂(q0, ε)) = {〈S1, (NP2,VP3)〉, 〈S9, (NP2,VP10)〉,
〈VP3, (V4,NP6)〉, . . .}, etc.

Definition 66 (tree). Let M be an FSA encoding of a GDAG D. We
extend the definition of a tree (cf. Def. 58) to FSA states as a function
treeM : Q→ 2VD such that:

treeM(q) =
⋃
{treeD(v) : 〈v, c〉 ∈ suff (q)}

Namely, a given q ∈ Q can be a part of several traversals of several different
ETs and the function tree(q) returns the set of such ETs, represented by D’s
roots. For instance, tree(δ̂(q0, (NP2,VP3))) = {S1}, tree(δ̂(q0, (NP2))) =
{S1, S9}, tree(δ̂(q0, ε)) = {S1, S9,NP11}, etc.

Different GDAG D→ FSAs encodings can be constructed. In the simplest
possible characterization, each traversal 〈h, c〉 ∈ T (D) is represented by a
distinct, trivial path terminated with a single head, as illustrated in Fig. 7.4 (a).
We will call such an encoding a simple FSA encoding of D.

For convenience, we define the versions of suffM and treeM working in the
simplified context:

Definition 67 (suff1
M). Let M be a simple FSA encoding and q ∈ QM .

Then, we define suff1
M as a function which returns the only traversal suffix

represented by q. Formally, suff 1
M(q) = 〈h, b〉 such that suffM(q) = {〈h, b〉}.

Definition 68 (tree1
M ). Let M be a simple FSA encoding and q ∈ QM . Then,

we define tree1
M(q) = r such that treeM(q) = {r}.

7.3.3 Basic parser
We define the parsing algorithms implemented in ParTAGe in the deductive
framework (Shieber et al., 1995), where parsing takes the form of an inference
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Figure 7.5: A hypothetical parsing configuration considered by the parser.
The prime minister is analysed as a MWE, while the possible ways of parsing
the remaining part of the sentence are unknown yet.

process. We start by giving the specification of a simplified variant of the
parsing algorithm used in ParTAGe. In Sec. 7.3.5 we describe the main
version actually implemented in ParTAGe, which we extend to handle weights
and feature structures in sections 7.3.7 and 7.5.3, respectively.

In what follows, we assume a fixed GDAG grammar representation D, a
particular FSA encoding M of D (we will call them the underlying M and D),
and a fixed input sentence s ∈ Σ∗. This corresponds to the fact that neither
the sentence nor the grammar undergoes any modifications while parsing a
particular input sentence. Nevertheless, it is worth keeping in mind that all
the definitions introduced below are, in fact, parameterized by these three
objects.

Chart items

Chart items in the deductive framework represent parsing configurations,
while inference rules specify the elementary ways in which such parsing
configurations can be combined. A sample parsing configuration is illustrated
in Fig. 7.5. It represents a situation where the ET responsible for recognizing
the MWE prime minister is matched with the corresponding words in the
input sentence. Fig. 7.6, on the other hand, illustrates a configuration where
(a part of) the made decision MWE ET is matched over the remaining part
of the sentence. In the second configuration, the fact that a few and good are
adjoined to the NP node and the N node, respectively, is not explicated. In
fact, depending on the underlying grammar, other sub-derivations which lead
to the same configuration may be possible (e.g. analyzing a as a modifier
of the NP few good decisions, cf. the ET a in Fig. 7.3), but the possible
sub-derivations leading to the individual configurations are abstracted over.

Fig. 7.7 illustrates an inference process which leads from the two configu-
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Figure 7.6: Another parsing configuration, where the VP subtree of the ET
made decisions is matched against made a few good decisions.

rations shown above to the conclusions that:

• the left NP leaf of the ET made decisions (NP45) can be substituted by
the fully matched ET prime minister and,

• since both NP and VP subtrees of the entire ET made decisions are
matched over adjacent parts of the input sentence, the ET itself can be
matched over the entire input sentence (but the word the).

Definition 69 (positions). We define pos(s) = {0, . . . , n} as the set of
positions between the words in the input sentence s, before s1 and after sn.

Definition 70 (span). Let s be an input sentence and i, l ∈ pos(s), j, k ∈
pos(s) ∪ {−}, i ≤ l, i ≤ j ≤ k ≤ l if (j, k) �= (−, −), and (j = −) iff (k = −).
Then, we say that 〈i, j, k, l〉 is a span in s. For the sake of brevity, we will
also write 〈i, l〉 to denote 〈i, −, −, l〉.

Definition 71 (simple/gapped span). Let r = 〈i, j, k, l〉 be a span. Then, we
say that r is simple iff 〈j, k〉 = 〈−, −〉, and that it is gapped otherwise.

Definition 72 (gap of a span). Let r = 〈i, j, k, l〉 be a gapped span. Then,
we define its gap, denoted gap(r), as a simple span 〈j, k〉.

Definition 73 (coverage of a span). Let r = 〈i, j, k, l〉 be a span in the
sentence s. Then, we define the coverage of r, denoted covers(r), as:

covers(r) =
⎧⎨
⎩〈si+1 . . . sj, sk+1 . . . sl〉, if r is gapped

si+1 . . . sl, otherwise.
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Figure 7.7: An inference leading from the two configurations shown in Fig. 7.5
and Fig. 7.6 to a configuration where the ET made decisions is matched over
the entire sentence but the first word. It contains two active configurations,
distinguished from the passive ones by marking some of the non-terminal
nodes in gray (e.g. both the NP45 and VP46 nodes in the right-most bottom
configuration).



124 CHAPTER 7. PARSING MWES WITH TAGS

Definition 74 (coverage of a derivation). Let δ be a derivation (tree or grove)
and r be a span in s. Then, we say that δ covers r iff γ(δ) = covers(r).

Definition 75 (coverage of a derivation chain). Let δ be a derivation chain
and r = 〈i, l〉 be a simple span in s. Then, we say that δ covers r iff
γ(δ) = covers(r).

Formally, we define two types of chart items. Passive chart items
represent configurations with fully recognized elementary subtrees (ESTs), as
the ones in Fig. 7.5 and Fig. 7.6. Active chart items, on the other hand,
represent configurations with partially recognized ESTs, e.g. the middle-left
configuration in Fig. 7.7 where the subtree rooted in S44 is not fully recognized.
More precisely, its left (trivial) subtree rooted in NP45 is matched against
prime minister, but the right subtree rooted in VP46 is not aligned with
any sentence words yet. Active items represent traversals of the individual
grammar ESTs and are strongly related to the paths in the FSA representation
of the grammar (cf. Sec. 7.3.2).

Definition 76 (passive item). Let x ∈ V be a non-leaf node in the underlying
GDAG, and r be a span in s. Then, 〈x, r〉 is a passive item.

The exact interpretation of a passive item depends on the parsing algorithm.
However, for all the parsers considered in this work, a passive item 〈x, r〉
exhibits the following invariant:

Proposition 12. A passive chart item 〈x, r〉 asserts (provided that it is
inferred by a parser) that a derivation tree δ exists such that the EST rooted
in x is also the root of δ, and δ covers r.

Definition 77 (active item). Let q ∈ Q be a state of the underlying FSA
family and r be a span in s. Then, 〈q, r〉 is an active item.

Proposition 13. An active item 〈q, r〉 asserts that a derivation grove δ =
(δi)ni=1, a start state q0 ∈ SM , and a sequence of vertices v = (vi ∈ V )ni=1
(prefix of some particular EST traversal) exist such that:

• q = δ̂(q0, v),

• the EST rooted in vi is the root of δi for each i = 1 . . . n, and

• δ covers r.
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Fig. 7.8 shows a more formal representation of the inference illustrated
in Fig. 7.7, based on passive and active chart items which represent the
corresponding parsing configurations, while Fig. 7.9 illustrates an inference
which covers the words good decisions. For the sake of clarity, we distinguish
active items from passive ones using the a and p subscript annotations,
respectively. Besides, we assume a simple FSA encoding of the grammar
depicted in Fig. 7.3 and we draw the individual traversals in the form of
the dotted rules instead of specifying the states from the corresponding FSA
representation. Elements on the left of a given dot represent the transition
symbols on the path from a start state leading to a given state, while the
elements on the right of an arrow represent the heads.

Definition 78 (chart item). Let 〈x, r〉 be either an active or a passive item,
i.e., r is a span in s and x ∈ QM ∪ VD. Then, we say that 〈x, r〉 is a chart
item (or item for short).

Definition 79 (simple/gapped item). Let v = 〈x, r〉 be an item. Then, we
say that v is simple iff r is simple and that v is gapped otherwise.

Definition 80 (domain of items). We define a domain of items, denoted I,
as a set of active and passive chart items which can be possibly constructed
by a parser over the sentence s.

Inference rules

We now formally specify the basic, Earley-style, bottom-up TAG parser using
the deductive framework (Shieber et al., 1995).

The inference rules of the basic parser, a simplified version of the parser
implemented in ParTAGe, are given in Tab. 7.1. The basic parser also
constitutes a version of the bottom-up Earley-like parser described in (Alonso
et al., 1999), with three notable differences: (i) our parser allows multiple
adjunctions at the same node, (ii) it explicitly handles substitution, and (iii)
it relies on a particular, potentially compressed grammar representation.

Each of the inference rules takes zero, one or two chart items on input
(premises, presented above the horizontal line) and yields a new item (con-
clusion, presented below the line) to be added to the chart if the conditions
given on the right-hand side – which should refer only to the premise items
and to the static properties of the parser, e.g., to the underlying grammar –
are met. We can think of inference rules as functions whose domain is 2I (cf.
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Figure 7.8: Fragment of the inference corresponding to the inference shown
in Fig. 7.7, based on passive and active chart items. Applications of the
inference rules are marked with their types (AX, DE, SU, . . . ). Note that,
due to explicit application of the DE rule, this derivation has one additional
arc in comparison with the one from Fig. 7.7.

Def. 81) because (i) the order in which the premise items are presented does
not matter, and (ii) a single item from I cannot instantiate more than one
premise of a given inference rule.5

Definition 81 (inference rule). Let I be a domain of items and d : 2I → I
be a partial function. Then, we say that d is an inference rule.

Definition 82 (inference step). Let I be a domain of items, d be an inference
rule, V ⊆ I, and v ∈ I. Then, we say that d infers v from V (or, alternatively,
that v is inferred from V by d) iff d(V ) is defined and d(V ) = v. Then we
also say that d applies to V .

The axiom rule (AX) introduces an active item for each position (pos(s)\
{n}) in the input sentence and each start state in the underlying FSA family.

5The property (ii) is not required to hold in general, but it applies to all the parsers
described in this work.
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The intuition behind AX is that any given grammar EST can potentially
match any given span in the input sentence, thus its traversal has to be
considered from each (non-final) position in s.

The scan rule (SC) matches the grammar terminal symbols with words
from the input. More precisely, for a given 〈q, 〈i, j, k, l〉〉a active item, it checks
whether a transition leading from the state q ∈ Q to another state in Q exists
such that the transition symbol v corresponds to the input word sl+1, i.e., to
the word immediately on the right of the item’s span 〈i, j, k, l〉. It relies on
the following function:

Definition 83 (leaves). Let D be a DAG encoding. We define leavesD as a
function from ND ∪ ΣD to 2VD which provides the set of vertices v ∈ VD such
that leafD(v) ∧ (`D(v) = x) for a given x ∈ ND ∪ ΣD.

For instance, in Fig. 7.3, leaves(NP) = {3, 13, 16, 23, 27, 37}, leaves(few) =
{28, 39}, etc. Let us note that the direct use of this function in the imple-
mentation of the parser might seem sub-optimal at first sight, because the
sets of leaves corresponding to the individual terminals and non-terminals
can be very large. However, this issue does not occur when the grammar is
compressed first (see Sec. 7.5.2).

Deactivation (DE) transforms an active item into the corresponding
passive item, provided that the active item represents a completed traversal of
an EST. If all children subtrees of a given EST are matched against contiguous
parts of a particular span, the entire EST (represented by the resulting passive
item) can be also matched against the same span.

Pseudo substitution (PS) is similar to scan, but instead of matching
grammar terminals against input words, grammar non-terminals are matched
against already inferred non-terminals represented by passive items. It serves
to match together two adjacent fragments of the same ET already recognized
over adjacent spans.6 Substitution (SU), on the other hand, handles regular
substitution, i.e., it matches a fully recognized initial ET with a (non-foot)
non-terminal leaf of another ET, the latter corresponding to the symbol of
the next transition in the underlying FSAs.

The foot adjoin rule (FA) matches the foot – the next element on the
traversal represented by the active premise item – against a simple span r
placed directly on the right of the premise item’s span. It puts up a hypothesis

6Note that the two premise items of the PS rule cannot be both gapped. Otherwise, an
ET with two foots would have to exist.
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Figure 7.9: An inference leading to a derivation of N49 and the corresponding
EST over the words good decisions.

that the EAT represented by the premise item can be at some point adjoined
to the root of an EST recognized over r.

Finally, The root adjoin rule (RA) represents the actual adjoining of a
fully recognized EAT t into the root of a recognized EST t′. Information that
t′ is recognized (with a modified span) is preserved in the conclusion and can
be reused in order to recognize the full ET of which t′ is a part.

The basic parser allows to modify a given ET node with several adjunctions,
which is consistent with the extended model of TAG derivations (Schabes
and M. Shieber, 1994), in opposition to the standard model of derivations
where at most one adjunction per node is allowed (Vijay-Shanker, 1987).
Adjunction can be also performed over the roots of EATs, which allows to
distinguish independent (e.g., when both prime and good modify decisions)
from independent (e.g., when the ET prime modifies the root of the ET good
which, in turn, modifies decisions) derivations.
Definition 84 (parsing system). Let I be the domain of items and D be the
set of inference rules which serve to deduce items in I. Then, we say that
〈I, D〉 is a parsing system. We will also call the system specified by the rules
in Tab. 7.1 the basic parsing system.

Let us recall that a parsing system is implicitly parametrized by a TAG,
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AX: 〈q0,〈i,i〉〉a
i∈pos(s)\{n}

q0∈SM

SC: 〈q,〈i,j,k,l〉〉a
〈δ(q,v),〈i,j,k,l+1〉〉a

v∈leaves(sl+1)
δ(q,v) defined

DE: 〈q,〈i,j,k,l〉〉a
〈v,〈i,j,k,l〉〉p

v∈heads(q)

PS: 〈q,〈i,j,k,l〉〉a 〈v,〈l,j′,k′,l′〉〉p
(δ(q,v),〈i,j∪j′,k∪k′,l′〉〉a

δ(q,v) defined

SU: 〈q,〈i,j,k,l〉〉a 〈v,〈l,l′〉〉p
〈δ(q,v′),〈i,j,k,l′〉〉a

v′∈leaves(`(v))∧¬foot(v′)
δ(q,v′) defined

root(v)

FA: 〈q,〈i,l〉〉a
〈δ(q,v),〈i,l,l′,l′〉〉a

l′∈pos(s)\{n} ∧ l<l′
v∈V ∧ δ(q,v) defined

foot(v)

RA: 〈w,〈i,j,k,l〉〉p 〈v,〈j,j′,k′,k〉〉p
〈v,〈i,j′,k′,l〉〉p

root(w) ∧ (j,k)6=(−,−)
`(w)=`(v)

Table 7.1: Inference rules underlying the basic parser, where i ∪ j is equal to
i if j = − and j otherwise.
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its GDAG and FSA representations, and an input sentence.

Definition 85 (deterministic parsing system). Let 〈I,D〉 be a parsing system.
Then, we say that 〈I,D〉 is deterministic iff, for any V ⊆ I, there is at most
one d ∈ D such that d applies to V .

Proposition 14. A basic parsing system is deterministic.

All the parsing systems described in this work are deterministic, a property
which we tacitly assume in the remaining of this document. While it is not
crucial for ParTAGe, it simplifies the formal description of the parser.

7.3.4 Parsing and hypergraphs
Formally, a parsing inference can be expressed in terms of a hypergraph (Klein
and Manning, 2001a; Gallo et al., 1993).7 The idea behind the hypergraph
representation is that each item deduced throughout the inference process is
represented as a node, and each application of an inference rule – as a hyperarc.
Namely, the conclusion node (called the head of the arc) is connected via
an arc with the premise node or nodes (the tail) of a given inference rule’s
application.

Definition 86 (hypergraph). We define a hypergraph as a tuple H =
〈VH, EH〉 such that:

• VH is the set of nodes in H,

• EH ⊆ 2VH × VH is the set of hyperarcs which connect the individual
nodes in H. We also define two subsidiary functions tail and head
which, for a given 〈V, v〉 ∈ EH, return V and v, respectively.

• ∀e∈EH(head(e) /∈ tail(e)), and

• ∀v∈VH∃e∈EH(head(e) = v).

The third property requires that the head of a given hyperarc is not in its
tail, while the fourth property requires that each node in the hypergraph is
the head of one or more hyperarcs.

7In the sense of (Gallo et al., 1993), we use B-graphs, a particular type of hypergraphs.
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Definition 87 (parsing hypergraph). Let 〈I,D〉 be a parsing system. Then,
we define the corresponding parsing hypergraph H, such that VH ⊆ I, as
a fixed point of the application of the rules in D, i.e., as the hypergraph
satisfying the following equation:

〈V, v〉 ∈ EH ⇐⇒ ∃d∈D d infers v from V

From Def. 87 stems the basic construction of the hypergraph-based parsing
algorithm, whose input is the parsing system 〈I,D〉 and the output is the
resulting parsing hypergraph. Namely, the algorithm starts with an empty
hypergraph 〈VH0 , EH0〉 = 〈∅, ∅〉 and iteratively performs the following steps:

1. For each rule d ∈ D, find the matching premise items V (if any) amongst
the items already present in VHi

.

2. Determine the result v of the application of d on V .

3. Set VHi+1 = VHi
∪ {v} and EHi+1 = EHi

∪ {〈V, v〉}.

These steps are repeated as long as any new items or hyperarcs can be created.
Once the process stops in the k-th iteration, the resulting hypergraph is
defined as H = 〈VHk

, EHk
〉.

Proposition 15. Let 〈I,D〉 be a basic parsing system and H be the corre-
sponding hypergraph. Then, for any 〈V, v〉 ∈ EH, there is exactly one d ∈ D
such that d infers v from V .

The above property (which stems directly from Prop. 14) entails that,
given a parsing system and the corresponding hypergraph, it is possible to
unambiguously determine the inference rules used to infer the individual
hyperarcs.

Definition 88 (simple path). LetH be a hypergraph, v, w ∈ VH and e1 . . . ek ∈
E∗H such that k ≥ 1. Then, we say that e1 . . . ek is a simple path connecting
v with w iff:

v ∈ tail(e1) ∧ w = head(ek) ∧ ∀k−1
i=1 (head(ei) ∈ tail(ei+1))

Proposition 16. Let G be a lexicalized TAG, s be a sentence and 〈I,D〉
be a corresponding basic parsing system. Then, the corresponding parsing
hypergraph is acyclic, i.e., for any v ∈ VH there is no simple path connecting
v with itself.
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It is possible to define a total order over items and to show that each
conclusion item is greater than any of the premise items in this order, hence
the above proposition.

Definition 89 (sub-hypergraph). Let H and H′ be two hypergraphs. We say
that H is a sub-hypergraph of H′, denoted H ⊆ H′, iff VH ⊆ VH′ ∧EH ⊆ EH′.

Definition 90 (hypergraph union). Let H and H′ be two hypergraphs. We
define their hypergraph union, denoted H∪H′, as the elementwise union, i.e,
as the hypergraph 〈VH ∪ VH′ , EH ∪ EH′〉.

Definition 91 (hyperpath). Let P be a hypergraph. Then, we say that P is
a hyperpath iff:

• ∀v∈VP∃!e∈EP (head(e) = v), and

• ∃!v∈VP¬∃e∈EP (v ∈ tail(e)).

The first point refers to the fact that, for each node v ∈ VP , there is
exactly one hyperarc leading to v (i.e. whose head is v). The second point
means that a hyperpath contains one distinguished node, the root, from which
no other hyperarcs can leave. From these two points stems the conclusion
that a hyperpath can be seen as a tree of items where the individual items
are deduced from their children items via the inference rules.

Definition 92 (hyperpath root). Let P be a hyperpath. Then, we define its
root, denoted root(P), as the only v ∈ VP such that ¬∃e∈EP (v ∈ tail(e)).

Definition 93 (hyperpath in a hypergraph). Let H,P be two hypergraphs.
Then, we say that P is a hyperpath in H, denoted P ∈ H, iff P is a hyperpath
and P ⊆ H.

The parsing hypergraph encodes all the possible inferences and, con-
sequently, all the possible TAG derivation trees corresponding to a given
sentence. Each item q ∈ I present in the parsing hypergraph asserts that a
derivation which covers the item’s span exists, while the different possible
ways of constructing such derivations are represented by the different possible
hyperpaths leading to q (i.e. all the hyperpaths in H whose root is q).

For instance, Fig. 7.10 (a) shows a fragment of the derivation corresponding
to the fragment of the inference hyperpath illustrated in Fig. 7.8, while
Fig. 7.10 (b) shows a fragment of the derivation corresponding to the fragment
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Figure 7.10: Two derivations, (a) and (b), corresponding to the inference
fragments illustrated in Fig. 7.8 and Fig. 7.9, respectively. Alignment between
VP46, its corresponding EST, and the input words can be only hypothetized,
since the inference fragment from Fig. 7.8 does not specify the inference
leading to item (VP46, (3, 8))p.

of the inference hyperpath illustrated in Fig. 7.9. The former includes an
application of substitution which corresponds to the SU inference rule, while
the latter contains a (partial) application of adjunction which corresponds to
the RA inference rule. Applications of the PS rules are not explicitly present
in the corresponding derivations, but they allow to join together adjacent ET
fragments.

Definition 94 (GDAG derivation). Let G be a TAG and D be its DAG
encoding. Then, we define a GDAG derivation (tree or grove) as a derivation
(tree or grove) which contains D vertices in its nodes instead of ESTs from G
(recall that each vertex v ∈ VD determines the corresponding EST in G, cf.
Prop. 8).

A single TAG derivation δ can be sometimes represented by several GDAG
derivations – notably, if δ’s root is an EST which is a subtree of several ETs
in the grammar. For instance, Fig. 7.10 (b) shows a TAG derivation which
would be identical if its root EST, rooted in N49, were replaced by the EST
rooted in N19 (see Fig. 7.3). Yet, such a replacement would entail a different
GDAG derivation. In Sec. 7.5.2, we consider a simple subtree sharing DAG
encoding technique which makes the two representations – TAG derivations
and GDAG derivations – equivalent.8

8However, as mentioned before, it may be useful to distinguish two identical ETs if they
come with two different FS-unification computations.
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Proposition 17 (correspondence between hyperpaths and derivations). Let
〈I,D〉 be a basic parsing system and H be the corresponding hypergraph.
Then, there is a one-to-one correspondence between hyperpaths in H and
GDAG derivations which can be constructed over s. More precisely, each
hyperpath in H uniquely identifies the corresponding GDAG derivation and,
vice versa, each GDAG derivation covering some span in s uniquely identifies
the corresponding hyperpath.

The goal of the symbolic, hypergraph-based parsing algorithm can be seen
as a two-step process: first the parser should construct the entire hypergraph
H, next it should retrieve from H the individual hyperpaths leading to final
nodes. Now we sketch the algorithm which allows to perform the latter step.

First of all, we need to determine which items (H nodes) represent full
derivations spanning the entire input sentence.

Definition 95 (final item). Let 〈I,D〉 be a parsing system and 〈v, r〉 ∈ I
be a passive item. We say that 〈v, r〉 ∈ I is final, denoted final(〈v, r〉), iff
r = 〈0, |s|〉 ∧ `(v) = S, where S is the start symbol of the underlying TAG.

Definition 96 (final hyperpath). Let 〈I,D〉 be a parsing system, H be the
corresponding hypergraph, and P ∈ H. Then, we say that P is final, denoted
final(P), iff final(root(P)).

The process of retrieving all the hyperpaths encoded in the given hyper-
graph H takes the following, recursive form:

insH(x) =


{P ∈ insH(e) : e ∈ EH, head(e) = x}, if x ∈ VH

edge(x) ∪

P∅, if x ∈ EH ∧ tail(x) = ∅⋃
v∈tail(x) insH(v), otherwise,

(7.5)

where P∅ = 〈∅, ∅〉 is an empty hyperpath and edge is a function which creates
a trivial, single-edge hypergraph from a given arc:

edge(〈V, v〉) = 〈V ∪ {v}, {〈V, v〉}〉. (7.6)

For a given node v ∈ VH, the function insH(v) returns the set of all
hyperpaths leading to v, while for a given hyperarc e ∈ EH, the function
insH(e) returns the set of all hyperpaths leading to e.

Definition 97 (inside derivation). Let H be a hypergraph and x ∈ VH ∪ EH.
Then, we call each element of insH(x) an inside derivation of x.
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Thus, in order to retrieve all the final paths encoded in a given hypergraph
H, insH needs to be called over each final node in H. This process ideally
leads to a small set of syntactically plausible analyses, but from the theoretical
standpoint there is no guarantee of that. Some hypergraph nodes may belong
to several different final hyperpaths and the algorithm described above will
visit them (and retrieve the corresponding sub-paths) several times as well. In
fact, the resulting set of final hyperpaths (and, consequently, TAG derivations
spanning the entire input sentence) can be even exponential.9 Hence the need
for syntactic disambiguation or for more elaborate parsing architectures in
which subsequent processing steps (e.g. semantic analysis) take place directly
over the hypergraph or a similar compressed representation of derivations.

7.3.5 Vanilla parser

The vanilla algorithm constitutes the main parser implemented in ParTAGe.
Its inference rules are presented in Tab. 7.2. It brings two modifications
in comparison with the basic parser: (i) the FA rule identifies ranges over
which adjunction can possibly occur, instead of blindly skipping an arbitrary
number of words to match the foot, (ii) adjunction is not allowed to take
place over the roots of the auxiliary ETs.

The FA rule ensures that the resulting item is considered only if an ele-
mentary (sub)tree, recognized starting from l, and to which the corresponding
ATs10 could be adjoined, exists. In comparison with the FA rule of the basic
parser, it requires (as a premise) a passive item which serves as a witness
that adjunction over the given span can possibly take place. We will call such
passive items witness items of the FA rule. The FA rule of the vanilla parser
allows to significantly trim the search space and performs a similar function
as the prediction rule in CFG parsing. It also entails that the invariants
asserted by the individual chart items are more complex than in the case of
the basic parser.

Definition 98 (vanilla derivation chain). Let ~δ be a derivation chain. Then,
we say that ~δ is a vanilla derivation chain iff it complies with the vanilla

9It could be even infinite if unary cycles were allowed in the hypergraph.
10Assuming the simple DAG and FSA encodings, there can be only one AT corresponding

to a given traversal. In general, however, a particular traversal’s prefix can correspond to
several ETs.
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parser, i.e., none of the auxiliary derivation trees ~δi in ~δ is an ET.11

Proposition 18. Within the context of the vanilla parser, a passive item
〈x, r〉 asserts:

• an existence of a derivation tree δ such that δ covers r and the EST
rooted in x is also the root of δ (cf. Prop. 12), and

• provided that r is gapped (which entails that δ is auxiliary), an existence
of a vanilla derivation chain ~δ such that ~δ covers the r’s gap and the
~δ’s tip (cf. Def. 35) contains the same non-terminal as the δ’s foot.

Proposition 19. Within the context of the vanilla parser, an active item
〈q, r〉 asserts:

• an existence of a derivation grove δ satisfying the properties described
in proposition 13, and

• provided that r is gapped, an existence of a vanilla derivation chain
~δ such that ~δ covers the r’s gap and the ~δ’s tip contains the same
non-terminal as the δ’s foot.

An example of a hyperpath which contains an application of the vanilla
FA inference rule is shown in Fig. 7.11.

The modification of the parsing algorithm also entails that Proposition 17
no longer holds as it is. Rather, there exists a correspondence between
hyperpaths, on the one hand, and (i) TAG derivations and (ii) TAG derivation
chains, if the gap is defined, on the other hand.

The additional constraint in RA and in FA imposed on the modified node
is that it must not be a root of an AT. This means that the vanilla parsing
algorithm models the so-called independent derivations but does not allow the
traditional, dependent ones, where one AT modifies the root node of another
AT. A similar constraint is adopted in tree insertion grammars, where the
roots of auxiliary trees cannot be modified, while simultaneous adjunction
is allowed (Schabes and C. Waters, 1995). Gardent and Narayan (2015)
argue that mixed derivations should be allowed in general, and in Ex. 7.7
in particular. While both old and Syrian Orthodox independently modify
church, it is not true with respect to Syrian and Orthodox separately. Gardent

11This is related to the fact that the vanilla parser does not allow the EATs to adjoin to
the roots of other EATs.



7.3. PARTAGE: TAG PARSING ARCHITECTURE 137

Figure 7.11: A hyperpath constructed with the vanilla parser on top of the
words good decisions (see also Fig. 7.9). Note that the item 〈N49, 〈7, 8〉〉 first
serves as a witness that the foot N∗

42 can be matched against the span 〈7, 8〉,
and afterwards it is effectively adjoined to once the entire auxiliary ET rooted
in N40 is recognized over the span 〈6, 7, 8, 8〉.
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AX: 〈q0,〈i,i〉〉a
i∈pos(s)\{n}

q0∈SM

SC: 〈q,〈i,j,k,l〉〉a
〈δ(q,v),〈i,j,k,l+1〉〉a

v∈leaves(sl+1)
δ(q,v) defined

DE: 〈q,〈i,j,k,l〉〉a
〈v,〈i,j,k,l〉〉p

v∈heads(q)

PS: 〈q,〈i,j,k,l〉〉a 〈v,〈l,j′,k′,l′〉〉p
(δ(q,v),〈i,j∪j′,k∪k′,l′〉〉a

δ(q,v) defined

SU: 〈q,〈i,j,k,l〉〉a 〈v,〈l,l′〉〉p
〈δ(q,v′),〈i,j,k,l′〉〉a

v′∈leaves(`(v))∧¬foot(v′)
δ(q,v′) defined

root(v)

FA: 〈q,〈i,l〉〉a 〈v,〈l,j′,k′,l′〉〉p
〈δ(q,v′),〈i,l,l′,l′〉〉a

v′∈leaves(`(v))∧foot(v′)
δ(q,v′) defined

root(v) =⇒ (j′,k′)=(−,−)

RA: 〈w,〈i,j,k,l〉〉p 〈v,〈j,j′,k′,k〉〉p
〈v,〈i,j′,k′,l〉〉p

root(w)∧(j,k)6=(−,−)
`(w)=`(v)

root(v) =⇒ (j′,k′)=(−,−)

Table 7.2: Inference rules underlying the vanilla parser. Recall that i ∪ j =
i if j = − and j otherwise.

and Narayan (2015) propose to analyse Syrian as a modifier of Orthodox. An
alternative analysis would be that Syrian Orthodox church, as a multiword
named entity, should be modeled as a single ET.

(7.7) The meerkat admired the old Syrian Orthodox church.

The vanilla algorithm could be modified to allow dependent derivations by
removing the root(v) =⇒ (j′, k′) = (−,−) constraint from the RA and the
FA rules. The parser could be also left as is and the dependent modifications
could be distinguished from the independent ones at the moment of the
unfolding of the derivations encoded in the hypergraph. However, the two
types of modifications can yield different FS values, thus it could be hard to
reconcile the latter solution with FS-aware parsing.

In the actual implementation of the vanilla parser, two types of passive
items are distinguished – top passive items, which represent fully recognized
ETs, and non-top passive items which represent fully recognized ESTs which
are not ETs. This modification slightly changes the form of the individual
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inferences rules – e.g., the SU rule requires a top-passive premise item and,
thus, does not have to refer to grammar leaves – and makes the size of the
resulting inference computations smaller – different top-passive items over
the same span and referring (via `(v)) to the same non-terminal are then
conflated into a single item. We will introduce this change in the subsequent
versions of the parsing algorithm.

7.3.6 Parsing algorithm
Here we give a more detailed description of the parsing algorithm sketched
above. It applies to the vanilla parsing system, but can be easily extended to
cover additional inference rules and handle weights.

Algorithm 1 Parsing algorithm
1: Q← ∅ . The priority queue with open items
2: C ← ∅ . The set of closed items
3: E ← ∅ . The set of hyperarcs
4: apply-ax . Create all the instantiations of the AX rule
5: while Q 6= ∅ do
6: x← delete-min(Q)
7: C ← C ∪ {x}
8: if passive x then . Consider rules depending on x’s type
9: apply-ps(x); apply-su(x);
10: apply-fa(x); apply-ra(x)
11: else
12: apply-sc(x); apply-de(x)
13: end if
14: end while

Algorithm 1 shows the pseudocode of the body of the main procedure of
the parser. It first creates three basic data structure: the priority queue of
open items Q, the set of closed items C, and the set of hyperarcs E. At the
end of this procedure, Q = ∅ and the resulting hypergraph is specified by
VH = C and EH = E.

The algorithm is based on a total order defined over items, which allows
to store them in a priority queue. This total order (see Def. 99) guarantees
that, if there are two items which can undergo an application of a particular
rule d ∈ D, then they will be processed by the algorithm (i.e. removed from
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Q) always in the same order, regardless of their particular form. For instance,
the passive premise item of the ps rule will always be removed after its active
premise item, while the passive premise item of ra representing the full AT
will always be removed after the passive premise item representing the EST
node being adjoined to.

Definition 99 (total order on items). Let 〈x, r1〉 and 〈y, r2〉 be two items.
Then we define the total order ≤ as

〈x, r1〉 ≤ 〈y, r2〉 ⇐⇒ 〈end(r1), len(r1)〉 ≤lex 〈end(r2), len(r2)〉,

where beg(〈i, j, k, l〉) = i, end(〈i, j, k, l〉) = l, len(r) = end(r) − beg(r), and
≤lex is the lexicographic order on N× N.

The fact that the above definition takes into account the length of the
span is related to the ra rule, which can in general apply to two passive items
with the same ending position.

Proposition 20. Let 〈I,D〉 be a vanilla parsing system and v, w ∈ I be two
items such that v ≤ w and w ≤ v. Then, none of the rules d ∈ D can be
applied to {v, w}.

Algorithm 2 Initialization: determine instantiations of the AX rule
15: procedure apply-ax
16: for i ∈ pos(s) \ {n} do . For each non-terminal position in s
17: for q0 ∈ SM do . For each FSA start state
18: x← 〈q0〈i, i〉〉a . Create the resulting item
19: Q← Q ∪ {x} . Put it in the queue
20: E ← E ∪ {〈∅, x〉} . Store the incoming hyperarc
21: end for
22: end for
23: end procedure

Alg. 1 satisfies a property which is important for the analysis of its time
complexity:

Proposition 21. Let 〈I,D〉 be a vanilla parsing system and A be the al-
gorithm specified in Alg. 1. Then, each deduced hyperarc is added (cf. e.g.
line 2.20) to the set of hyperarcs E only once.
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Within the context of an inference rule with two premises, the above
property stems from the fact that the rule’s application over two particular
items v and w is only considered when the greater of them (i.e. v if w < v12

and w otherwise) is removed from the queue.
Algorithm 2 shows the procedure responsible for determining all the

instantiations of the ax rule at the very beginning of the parsing process. It
does not differ considerably from its formal, deductive description in Tab. 7.2.

Algorithm 3 Determine the instantiations of the PS inference rule with
respect to the given passive item.
24: procedure apply-ps(x)
25: 〈v, 〈i′, j′, k′, l′〉〉p ← x
26: for y ∈ {〈q, 〈i, j, k, l〉〉a ∈ C : l = i′ ∧ δ(q, v) defined} do
27: z ← 〈δ(q, v), 〈i, j ∪ j′, k ∪ k′, l′〉〉a
28: Q← Q ∪ {z}
29: E ← E ∪ {〈{x, y}, z〉}
30: end for
31: end procedure

Algorithm 3 shows the procedure responsible for determining all the ps
instantiations with respect to the given passive item. In particular, the
procedure searches for all the active items in C (i) which end at the same
position as the given passive item begins, and (ii) which correspond to
ET traversals awaiting precisely the node provided by the passive item.
Its time complexity relies on the computation cost of the line 3.26. The
desired behavior is that the creation of each ps instantiation (as well as the
instantiations of the other types) is constant, thus the computation cost of
this line should be linear w.r.t. the number of the matching active items y.

To this end, the individual active items in C are indexed by (i) their
ending positions and (ii) their FSA states. Then, when looking for the active
items which can ps-match with the given passive item 〈v, r〉p, the following
procedure is used:

1. The set of active items in C ending at the position beg(r) is retrieved.
More precisely, a map M1 from FSA states to such items is determined.

12Which should be understood as w ≤ v ∧ ¬(v ≤ w).
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2. The set of the FSA states Q2, from which a transition labeled with the
the DAG vertex v leaves, is determined. In practice, a map which allows
to determine Q2 for the individual vertices v ∈ V is pre-computed on
the basis of the underlying FSA family.

3. The intersection between the key-set in M1 and the set Q2 is calculated.

4. Finally, for each FSA state q in this intersection, all the corresponding
active items (i.e., M1(q)) are retrieved.

Note that, assuming the simple DAG and FSA encodings, the size of Q2 is at
most 1, and the above procedure can be implemented so as to achieve the
desired, linear behavior w.r.t the number of the retrieved active items.

The implementation of the other, binary inference rules – SU, RA, and
FA – follows the same pattern: when an item is removed from the queue, the
parser looks for the corresponding premise items using appropriate indexing
strategies to minimize the lookup cost. In contrast, the implementation of
the remaining, unary rules, is rather straightforward.

7.3.7 Weighted inference rules
A weighted parsing system is an extension of a parsing system in which
the individual inference rules are annotated with functions which allow to
calculate the weight of the conclusion item on the basis of the weights of
the premise items. Formally, such weighted systems can be defined in the
weighted deductive framework (Nederhof, 2003).

Definition 100 (weighted GDAG). Let D be a GDAG and ωD : VD → R be a
partial function, defined over D’s roots, which represents the weights assigned
to the individual ETs. Then, we say that 〈D,ωD〉 is a weighted GDAG.

Recall that each r ∈ VD : rootD(r) unambiguously determines the corre-
sponding ET est(r).

Proposition 22 (weighted DAG encoding). Let 〈D,ωD〉 be a weighted GDAG.
Then, it unambiguously determines the corresponding weighted TAG 〈G,ωG〉.
We call 〈D,ωD〉 a weighted DAG encoding of 〈G,ωG〉.

In what follows, we assume a fixed weighted TAG 〈G,ωG〉, a particular
weighted DAG encoding 〈D,ωD〉 of 〈G,ωG〉, a particular FSA encoding M of
D, and a fixed input sentence s.
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Tab. 7.3 specifies the weighted version of the parser described in Tab. 7.2,
which models Def. 43 in that the weights assigned to the resulting hyperpaths
(this notion will be introduced in Sec. 7.3.8) should correspond to the weights of
the corresponding TAG derivations. Such a weighted parser can be formalized
in terms of weighted inference rules:

Definition 101 (weighted inference rule). Let I be a domain of items and
d : (I → R) → (I × R) be a partial function. Then, we say that d is a
weighted inference rule.

The intuition behind a weighted inference rule is that, in comparison with
a regular inference rule (cf. Def. 81):

• it takes as argument a set of items together with their corresponding
weights (I → R ⊂ 2I×R) rather than just a set of items (2I), and

• it not only calculates the resulting item, but also computes the corre-
sponding weight.

For instance, the PS inference rule (as specified in Tab. 7.3) is a function
dPS which maps any given g = {〈〈q, 〈i, j, k, l〉〉a, x1〉, 〈〈v, 〈l, j′, k′, l′〉〉p, x2〉} to
〈〈δ(q, v), 〈i, j∪j′, k∪k′, l′〉〉a, x1+x2〉, provided that 〈q, 〈i, j, k, l〉〉a, 〈v, 〈l, j′, k′,
l′〉〉p ∈ I and that δ(q, v) is defined. Otherwise, dPS(g) is not defined. Thus,
dPS({〈〈NP45 • VP46 → S44, 〈1, 3〉〉a, 1〉, 〈〈VP46, 〈3, 8〉〉p, 2〉}) = 〈〈NP45VP46•
→ S44, 〈1, 8〉〉a, 3〉, while dPS({〈〈•NP45VP46 → S44, 〈1, 1〉〉a, 0〉, 〈〈NP29, 〈1, 3〉〉p,
1〉}) is not defined (contrary to the SU rule, which would apply to the latter
arguments – see Fig. 7.12).

Each weighted inference rule unambiguously determines the corresponding
regular inference rule, thus the properties and algorithms described in the
preceding sections apply within the context of weighted inference rules and
weighted parsing systems as well.

Definition 102 (weighted parsing system). Let I be the domain of items
and D be the set of weighted inference rules which serve to deduce items in
I. Then, we say that 〈I,D〉 is a weighted parsing system. We also call the
system specified by the rules in Tab. 7.3 the vanilla weighted parsing system.

In the majority of the weighted rules presented in Tab. 7.3, the weight
computed for the conclusion item is simply a sum of the weights of the
premise items. This corresponds to the fact that most of the rules bring



144 CHAPTER 7. PARSING MWES WITH TAGS

AX: 0:〈q0,〈i,i〉〉a
i∈pos(s)\{n}

q0∈SM

SC: x:〈q,〈i,j,k,l〉〉a
x:〈δ(q,v),〈i,j,k,l+1〉〉a

v∈leaves(sl+1)
δ(q,v) defined

DE: x:〈q,〈i,j,k,l〉〉a
x+c:〈v,〈i,j,k,l〉〉p

v∈heads(q)
c=[root(v)]ωD(tree1(v))

PS: x1:〈q,〈i,j,k,l〉〉a x2:〈v,〈l,j′,k′,l′〉〉p
x1+x2:〈δ(q,v),〈i,j∪j′,k∪k′,l′〉〉a

δ(q,v) defined

SU: x1:〈q,〈i,j,k,l〉〉a x2:〈v,〈l,l′〉〉p
x1+x2:〈δ(q,v′),〈i,j,k,l′〉〉a

v′∈leaves(`(v))∧¬foot(v′)
δ(q,v′) defined

root(v)

FA: x1:〈q,〈i,l〉〉a x2:〈v,〈l,j′,k′,l′〉〉p
x1:〈δ(q,v′),〈i,l,l′,l′〉〉a

v′∈leaves(`(v))∧foot(v′)
δ(q,v′) defined

root(v) =⇒ (j′,k′)=(−,−)

RA: x1:〈w,〈i,j,k,l〉〉p x2:〈v,〈j,j′,k′,k〉〉p
x1+x2:〈v,〈i,j′,k′,l〉〉p

root(w)∧(j,k)6=(−,−)
`(w)=`(v)

root(v) =⇒ (j′,k′)=(−,−)

Table 7.3: The weighted version of the vanilla parser from Tab. 7.2. To each
item the corresponding weight, given before the colon, is assigned. Recall
that ωD(tree1(v)) refers to the grammar-specified weight of the tree1(v). [x]
is equal to 1 if x is true and to 0 otherwise.
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no additional weight. The two exceptions are the deactivation rule, which
adds the weight of the corresponding ET, and the foot-adjoin rule, which
transfers only the weight of the active item, in accordance with the fact that
the internal derivation of the witness item is irrelevant.

7.3.8 Weighted hypergraphs
Definition 103 (root arc). Let P be a hyperpath. We define its root arc,
denoted rootarc(P), as the arc e ∈ EP such that head(e) = root(P) (see also
Def. 86 and Def. 92).

Definition 104 (weighted hypergraph). Let 〈I,D〉 be a weighted parsing
system and H = 〈VH, EH〉 be the corresponding hypergraph.13 We define
the corresponding weighted hypergraph as a pair 〈H, ωH〉 such that ωH is
a function which assigns the weights to the individual hyperpaths P ∈ H.
Formally, let P ∈ H be a hyperpath, 〈R, r〉 = rootarc(P), and d ∈ D be such
that d infers r from R. Then:

ωH(P) = d({〈w, ωH(P ′)〉 : w ∈ R,P ′ ∈ insP(w)})2.

Recall that insP(w) is the set of hyperpaths leading to w ∈ VP in the
hypergraph P (cf. Eq. 7.5). Since P is a hyperpath itself, it contains only
one hyperpath P ′ leading to w and, therefore, the argument of d is a function
(as required) which assigns the weights to the individual tail items w ∈ VP .

Fig. 7.12 illustrates a version of the hyperpath shown in Fig. 7.8 in which
the weights ωH(P) computed for the individual hyperpaths P (on the basis
of the rules presented in Tab. 7.3) are shown next to their roots. The weights
are based on the assumption that all ETs have the weight of 1, hence the
weight of the hyperpath leading to 〈VP46, 〈3, 8〉〉 is 2 (decisions is modified
by a few and good), and the weight of the hyperpath leading to 〈NP29, 〈1, 3〉〉
is 1 (prime minister is analysed as a MWE).

Proposition 23 (correspondence between hyperpath and derivation weights).
Let 〈I,D〉 be a vanilla weighted parsing system and W = 〈H, ωH〉 be the
corresponding weighted parsing hypergraph. Then, for each P ∈ H and the
corresponding TAG derivation δ (cf. Prop. 17, Prop. 18, and Prop. 19) it
holds that ωH(P) = ωG(δ) (see also Def. 43).

13Note that a weighted parsing system unambiguously determines the corresponding
non-weighted parsing system.
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Figure 7.12: A weighted version of the hyperpath presented in Fig. 7.8 in
which the weights computed for the individual hyperpaths are shown on the
left of their roots.

Definition 105 (monotonicity). Let W = 〈H, ωH〉 be a weighted hypergraph.
Then, we say that ωH is monotonic iff:

∀P ′∈H∀P⊆P ′
(
ωH(P) ≤ ωH(P ′)

)
. (7.8)

We also say that a weighted parsing system is monotonic if the corresponding
weighted hypergraph is monotonic.

The above definition states that the weight ωH(P ′) of any hyperpath P ′ ∈
H is equal or greater than the weight ωH(P) of any hyperpath P contained
in P ′. Note that an equivalent definition is obtained by requiring that only
the weights ωH(P) of the paths P ⊆ P ′ such that root(P) ∈ tail(rootarc(P ′))
are equal or smaller than ωH(P ′).

Proposition 24. Let W = 〈H, ωH〉 be a weighted hypergraph. Then, ωH is
monotonic iff:

∀P ′∈H∀P⊆P ′
(
root(P) ∈ tail(rootarc(P ′)) =⇒ ωH(P) ≤ ωH(P ′)

)
. (7.9)

Proposition 25. Let 〈I, D〉 be a vanilla weighted parsing system. Then,
〈I, D〉 is not monotonic.
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First of all, a vanilla weighted parsing system is not guaranteed to be
monotonic because the weights assigned to the individual ETs in the grammar
can be, in general, negative. In such a case, the weight the de rule assigns
to the conclusion item can be lower than the weight of the premise item.
Moreover, even when all the ET weights are non-negative, the fa inference
rule violates the required property: the resulting weight x1 can be smaller
than the weight x2 assigned to the witness item (cf. Tab. 7.3). In both cases,
Eq. 7.8 does not hold.

Another definition of monotonicity, which we will call HC-monotonicity,
can be found in (Huang and Chiang, 2005). A HC-monotonic parsing system
exhibits the property that, if one of the weights assigned to the tail items
increases, then the weight resulting from applying a weighted inference rule d
should not decrease either. This property holds for all the weighted parsing
systems described in this work and, henceforth, we will implicitly assume
that it is not violated, unless stated otherwise.

Just as it is possible to retrieve all the final hyperpaths from a given
hypergraph, it is also possible to retrieve only the least-weight (shortest) final
hyperpath14. It can be done with a version of Eq. 7.5 (p. 134) which, for a
given node v ∈ VH, searches recursively for the shortest hyperpath amongst
the shortest paths determined for the individual hyperarcs e ∈ EH such that
head(e) = v.

The problem of finding the shortest path in a hypergraph has been already
studied in (Gallo et al., 1993). Its extended version, where the goal is to
find the k-shortest paths embedded in a hypergraph, has been investigated
in (Nielsen et al., 2005) and (Huang and Chiang, 2005). In particular,
the solution described in the latter work allows negative weights (i.e., non-
monotonic parsing systems) and, therefore, it could be used within the context
of the weighted vanilla parser even if some of the weights assigned to the
individual ETs were negative (cf. the rule de in Tab. 7.3).

7.4 A? parsing with MWE-driven heuristic
As mentioned in Sec. 7.3.4, the basic hypergraph-based parsing algorithm
creates the entire parsing hypergraph for a given parsing system and, then,
selects the optimal (i.e. the shortest) hyperpath amongst all the final paths
encoded in the graph. Assuming the vanilla parser, the memory complexity

14Provided that the underlying weighted parsing system is HC-monotonic
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of this solution is O(n6), where n is the length of the input sentence, since
O(n6) is the number of hyperarcs which can be potentially created in the
vanilla parsing system.15 The memory complexity can be reduced to O(n4) if
only the shortest hyperpath is searched for – only a single, optimal incoming
hyperarc has to be stored per node then, and there are O(n4) chart items
which can be potentially created by the parser.

An alternative parsing architecture, based on the classical A? algorithm,
is based on the principle that the shortest hyperpath can be found without
creating the entire hypergraph corresponding to a given parsing system.
Rather, the parser strives to visit only the nodes and arcs belonging to the
shortest path. To this end, it exploits a heuristic which estimates the cost of
parsing the remaining part of the input sentence for each constructed item.
The idea of A? parsing has been introduced in the work of Klein and Manning
(2003) and later extended to other formalisms (Lewis and Steedman, 2014;
Angelov and Ljunglöf, 2014) as well as to k-best parsing (Pauls and Klein,
2009).
Definition 106 (inside weight). Let W = 〈H, ωH〉 be a weighted parsing
hypergraph and x ∈ VH ∪ EH. Then, we define the inside weight of x as the
weight of its optimal inside derivation (cf. Def. 97):

β(x) = minP∈ins(x) ωH(P)
Definition 107 (crossing derivation). Let H be a hypergraph and v ∈ VH.
Then, we define a crossing derivation of v as any of the final hyperpaths
P ∈ H such that v belongs to P. Formally, the set of v’s crossing derivations
is:

cross(v) = {P : P ∈ H, final(P), v ∈ VP}
Similarly, we define the set of the crossing derivation of a given e ∈ EH as:

cross(e) = {P : P ∈ H, final(P), e ∈ EP}
and a crossing derivation of e as a member of this set.
Definition 108 (crossing weight). Let W = 〈H, ωH〉 be a weighted parsing
hypergraph and x ∈ VH ∪ EH. Then, we define the crossing weight of x as
the weight of its optimal crossing derivation:

γ(x) = minP∈cross(x) ωH(P)
15There are 6 free positions – i, j, k, l, j′, l′ – in the premise items of the rule RA in

Tab. 7.2. The upper bound on the size of the set of the possible instantiations of this rule
is thus O(n6). Instantiations of the other rules are more constrained.
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Definition 109 (outside derivation). Let H be a hypergraph and v ∈ VH.
Then, we define an outside derivation of v as any of the final hyperpaths
P ′ ∈ H such that v belongs to P ′, accompanied with the corresponding inside
derivation of v. Formally, the set of outside derivations of v is:

out(v) = {(P ′,P) : P ′ ∈ H, final(P ′),P ⊆ P ′, root(P) = v}

Similarly, we define the set of the outside derivations of a given e ∈ EH as:

out(e) = {(P ′,P) : P ′ ∈ H, final(P ′),P ⊆ P ′, rootarc(P) = e}

and an outside derivation of e as a member of this set.16

Definition 110 (outside weight). Let W = 〈H, ωH〉 be a weighted parsing
hypergraph and x ∈ VH ∪ EH. Then, we define the outside weight of x as:

α(x) = min(P,P ′)∈out(x)
(
ωH(P)− ωH(P ′)

)
Proposition 26. Let W = 〈H, ωH〉 be a weighted hypergraph corresponding
to a weighted parsing system and x ∈ VH ∪ EH. Then, it holds that γ(x) =
β(x) + α(x).17

According to the above proposition, the weight of any optimal, final
hyperpath can be divided into two parts for any of its component hypernodes
v (hyperarcs e, respectively). Namely, β(v) represents the minimal weight of
reaching the node v (hyperarc e), while α(v) represents the minimal weight
of reaching a final node from v (e).

Proposition 27. Let W = 〈H, ωH〉 be a weighted parsing hypergraph and
x ∈ VH be a final node. Then, α(x) = 0 and β(x) = γ(x) is equal to the
weight of the optimal full derivation ending in x.

7.4.1 Dijkstra-style parsing
A Dijkstra-style parsing algorithm, presented in Alg. 4, is similar to Alg. 1.
The notable differences are that:

16 It is tempting to say that an outside derivation is a difference between P ′ and P,
which could be defined as a set difference between the corresponding sets of hyperarcs.
However, the result of such an operation does not necessarily satisfy all the properties of a
hyperpath.

17This property does not necessarily hold for non-HC-monotonic parsing systems.
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• To each item v in the priority queue Q the estimation β̂(v) of its inside
weight β(v) is assigned.

• The total order over items (used to arrange them in Q) is based on the
estimations of their inside weights rather than on their spans.

• The algorithm stops when the first final item is found.

• C is a map from closed items to their β values.

• The order in which the items are removed from Q cannot be controlled
statically anymore. Recall that, in Alg. 1, this order depends on the
span values of the individual items. When the items are removed from
Q according to their β weights, it is no longer possible to enforce that,
e.g., the passive premise item of the su rule is always removed from
Q after the corresponding active premise item. Thus, the reversed
versions of the binary procedures apply-su, apply-ps, etc., have to be
implemented.

The estimations are computed using the weighted inference rules and when
an item is inferred which has been already deduced before, the minimum
of the computed weights is preserved. This parsing algorithm can be seen
as an adaptation of the algorithm specified in (Nederhof, 2003, p. 140) to a
particular formalism and to particular inference rules.

Alg. 6 shows a reversed variant of the procedure shown in Alg. 5, which
looks for the corresponding passive items given an active item. Its efficiency
relies on the computation cost of the line 32, which could be implemented as
follows.18 Given an active item 〈q, r〉a:

1. The set S1 of passive items in C beginning at the position end(r) is
retrieved. More precisely, a map M1 : VD → 2S1 which indexes the items
in S1 by the DAG vertices they contain is determined.

2. The set of transition symbols V2 ⊆ VD outgoing from q is determined.

3. The intersection between the key-set in M1 and V2 is calculated.
18The actual implementation in ParTAGe does not exactly follow this procedure. It first

picks one of the transition symbols v ∈ VD outgoing from the state q and then looks for
the passive items with v and placed on the right. Within the context of the simple FSA
encoding this method is sufficiently efficient, but it does not compose nicely with grammar
compression techniques, where a large number of transitions can leave a given state q.
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Algorithm 4 Dijkstra-style parsing algorithm
1: Q← ∅ . The priority queue: function from open items to β̂ values
2: C ← ∅ . The function from closed items to β values
3: E ← ∅ . The set of hyperarcs
4: stop← false . When to stop the algorithm
5: apply-ax
6: while ¬stop do
7: (x,w)← delete-min(Q)
8: C ← C ∪ {(x,w)}
9: if final(x) then
10: stop← true
11: else
12: apply-ps(x,w); apply-su(x,w); apply-fa(x,w)
13: apply-ra(x,w); apply-sc(x,w); apply-de(x,w)
14: . Below, the parser considers the reversed rule applications

for all the inference rules with two premise items, whose processing order
cannot be controled anymore.

15: apply-ps-rev(x,w); apply-su-rev(x,w)
16: apply-fa-rev(x,w); apply-ra-rev(x,w)
17: end if
18: end while
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4. Finally, for each vertex v in this intersection, all the corresponding
active items (M1(v)) are retrieved.

Algorithm 5 Dijkstra-style parsing: determine the instantiations of the PS
inference rule with respect to the given passive item.
19: procedure apply-ps(x,wx)
20: guard (passive x) . Process the item only if passive
21: 〈v, 〈i′, j′, k′, l′〉〉p ← x
22: for y ∈ {(〈q, 〈i, j, k, l〉〉a, wy) ∈ C : l = i′ ∧ δ(q, v) defined} do
23: z ← 〈δ(q, v), 〈i, j ∪ j′, k ∪ k′, l′〉〉a
24: wz ← wx + wy
25: Q← Q ∪min {(z, wz)} . If item z is already present in Q, the

minimum of Q(z) and wz is preserved.
26: E ← E ∪ {({x, y}, z)}
27: end for
28: end procedure

Algorithm 6 Dijkstra-style parsing: the reversed variant of apply-ps.
29: procedure apply-ps-rev(y, wy)
30: guard (active y)
31: 〈q, 〈i, j, k, l〉〉a ← y
32: for x ∈ {(〈v, 〈i′, j′, k′, l′〉〉p, wx) ∈ C : l = i′ ∧ δ(q, v) defined} do
33: z ← 〈δ(q, v), 〈i, j ∪ j′, k ∪ k′, l′〉〉a
34: wz ← wx + wy
35: Q← Q ∪min {(z, wz)}
36: E ← E ∪ {({x, y}, z)}
37: end for
38: end procedure

Definition 111 (correctness). Let 〈I,D〉 be a weighted parsing system and
A be a parsing algorithm (e.g., the algorithm specified in Alg. 4). Then, A
is correct iff it holds that when a final item is removed from the queue, the
underlying hypergraph19 contains an optimal hyperpath.

19I.e., the hypergraph induced by the set of hyperarcs E maintained by the algorithm.
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Consequently, when a parsing algorithm is correct, the resulting hyper-
graph is guaranteed to encode an optimal TAG derivation tree covering the
input sentence.

Proposition 28. Let 〈I,D〉 be a monotonic parsing system (cf. Def. 105)
and A be the Dijkstra-style parsing algorithm specified in Alg. 4. Then, A
exhibits the following properties:

• When an item v is removed from the priority queue Q (cf. line 7 of
Alg. 4), its estimated β̂(v) (stored as the priority in Q) equals β(v).

• Items are removed from Q in an ascending order of their inside weights.

As a result, when a final item is removed from the queue, the parsing
shortest-path algorithm can be stopped since we know that no other final
items v with lower β(v) + α(v) can be found anymore (recall that α(v) = 0
since v is final). Then, based on the items stored in the closed set C and the
hyperarcs stored in E, it is possible to restore an optimal inside derivation of
v using the methods mentioned in Sec. 7.3.8.

Proposition 29. Let 〈I,D〉 be a weighted parsing system and A be the
Dijkstra-style parsing algorithm specified in Alg. 4. Then,

〈I,D〉 is monotonic =⇒ A is correct.

Finally, let us recall that the vanilla weighted parsing system is not
monotonic (cf. Prop. 25). Alg. 4 can be used with this system but does not
guarantee that the first final item removed from the queue is optimal.20

7.4.2 A? parsing
The Dijkstra-style parsing algorithm provides a speed-up with respect to the
standard Alg. 1 when only the least-weight derivation is searched for. The A?

parsing algorithm provides a further improvement of this idea, which relies
on an estimation of the α function.

Let us imagine that we know in advance the β(v) and α(v) values for
the individual nodes v in the weighted parsing hypergraph. Then, we could

20Recall that the vanilla weighted parser is HC-monotonic, thus it is still possible to first
create the entire hypergraph and then to retrieve the 1 or k shortest hyperpaths.
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simply use a version of Alg. 4 where the total order defined over the items
corresponds to their β(v) + α(v) values. Under such conditions, the parser
would actually never visit (i.e. remove from the queue) any node whose
total weight exceeds the optimal β(v) + α(v), which underlies the idea of A?

parsing.
The values of β, as mentioned above, can be computed directly using the

weighted inference rules. However, the values of α are unknown, since they
refer to the parts of the hypergraph which are yet to be found and connected.
Thus the A? parsing algorithm relies on their estimation, called A? heuristic.

Definition 112 (A? heuristic). Let W = 〈H, ωH〉 be a weighted parsing
hypergraph and x ∈ VH ∪ EH. Let h(x) be an estimation of α(x). Then, we
call h an A? heuristic (or heuristic for short).

Definition 113 (admissible heuristic). Let W = 〈H, ωH〉 be a weighted
parsing hypergraph and h be a heuristic. Then, we say that h is admissible
iff it never over-estimates the value of α. Formally, h is admissible iff:

∀x∈VH∪EH(h(x) ≤ α(x))

Definition 114 (monotonic heuristic). Let W = 〈H, ωH〉 be a weighted
parsing hypergraph and h be a heuristic. Then, we say that h is monotonic
iff:

∀e∈EH∀v∈tail(e)
(
β(v) + h(v) ≤ β(e) + h(e)

)
. (7.10)

The definition of a monotonic heuristic is strongly related to the definition
of a monotonic weighted hypergraph (cf. Def. 105 and Prop. 24). The main
differences are that: (i) Eq. 7.9 refers to hyperpath weights in general, while
Eq. 7.10 focuses on the weights of the optimal hyperpaths exclusively, and
(ii) Eq. 7.9 does not take the values of the heuristic into account.

Definition 115 (A? parsing algorithm). Let A be a version of Alg. 4 in
which the total order over items x ∈ I (used to arrange them in Q) is based
on their β̂(x) + h(x) weights. Then, we call A the A? parsing algorithm.

Proposition 30. Let 〈I,D〉 be a weighted parsing system, W = 〈H, ωH〉 be
the corresponding weighted hypergraph, h be a monotonic, admissible heuristic,
and A be the A? parsing algorithm. Then, A can be used to dynamically
construct W and to find a shortest path therein. Moreover, A satisfies the
following properties, analogous to those described in Prop. 28:
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Figure 7.13: A hypothetical parsing configuration considered by the parser:
prime minister analysed as a MWE, the cost of parsing the remaining part
of the sentence to be determined.

• When an item v is removed from Q, its estimated β̂(v) equals β(v).

• Items are removed from Q in an ascending order of their β + h weights.

Proposition 31. Let 〈I, D〉 be a weighted parsing system, h be a heuristic,
and A be the A� parsing algorithm. Then,

h is monotonic ∧ h is admissible =⇒ A is correct.

7.4.3 MWE-driven A� heuristic
Our goal is therefore to estimate α(v), the weight remaining to parse the entire
input sentence, for any v ∈ VH. Given the close relation between hyperpaths
and TAG derivation, this task can be cast back in the realm of TAG derivation
trees. Fig. 7.13 illustrates a hypothetical parsing configuration considered by
the parser, represented by a passive item 〈NP29, 〈1, 3〉〉p. The inside weight is
already known and it is equal to 1, since we assume here that all the ETs are
assigned weight 1 and since the EST rooted in NP29 matches the entire span
〈1, 3〉.

As mentioned before, our point of departure is the work of Lewis and
Steedman (2014), where the weight of parsing the remaining part of the
sentence is the sum of the (minimal) weights of the elementary grammar
units (EUs) which can analyse the individual words in this part. In this
formalization, the structure of each EU is abstracted over and the only pieces
of information which matter are (i) to which word in the input sentence this
EU is attached, and (ii) what its weight is.

In our probabilistic formalization we also assume that the weight of the
final derivation is the sum of the weights of the participating ETs. If there
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were no multi-anchored ETs in the grammar, it would be possible to use the
same heuristic as the one described in Lewis and Steedman (2014).

Proposition 32. Let 〈G,ωG〉 be a weighted lexicalized TAG such that ωG(t) ≥
0 for each ET t in G and there are no multi-anchored ETs in G. Let also 〈I,D〉
be a vanilla weighted parsing system parameterized by 〈G,ωG〉, W = 〈H, ωH〉
be the corresponding weighted hypergraph, and x ∈ VH. Then, the heuristic
defined as:

h(x) =
∑

(w,k)∈rest(x)
minw(w)× k,

where:

• rest(x) is the bag of words in the input sentence outside of x’s span (see
Def. 121 for a more precise definition),

• (w, k) ∈ rest(x) is a word and its multiplicity in a bag,

• minw(w) = min{ωG(t) : t ∈ IG ∪ AG, anchor(t) = w} denotes the
minimal weight of scanning w by an ET,

• anchor(t) is a terminal of the given ET t,

is an admissible (never overestimating) heuristic.

For instance, assuming the grammar from Fig. 7.3 restricted to mono-
anchored ETs and that each ET has weight 1, minw(w) = 1 for each
terminal w in the grammar. Furthermore, let x = 〈NP29, 〈1, 3〉〉p be the
item representing the parsing configuration shown in Fig. 7.13. Then,
rest(x) = {the,made, a, few, good, decisions}ms.

This idea can be extended to a MWE-aware context in a way which
does not entail significant computational overhead. Fig. 7.14 shows how the
weights of the individual ETs in a given, MWE-driven TAG derivation can
be projected over the words of the input sentence. Fig. 7.15 shows another,
more compositional derivation and the corresponding weights. In both cases,
the weight of the derivation is equal to the sum of the weights projected on
the individual words in the sentence.

When we face the task to estimate α for an item ranging over a span
〈i, j, k, l〉 in sentence s, the weights projected over the individual words are, of
course, unknown, since they depend on the particular derivation covering the
entire sentence. However, based on the underlying grammar and the weights



7.4. A� PARSING WITH MWE-DRIVEN HEURISTIC 157

Figure 7.14: Example of projecting the weights of the ETs on the corresponding
terminals.

Figure 7.15: Example of projecting the weights of the ETs on the corresponding
terminals.
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assigned to the individual ETs, it is possible to estimate the minimal weight
which can be projected over each of the words outside the span 〈i, j, k, l〉.
This, in turn, allows to compute a lower-bound estimate of the weight of
parsing the remaining part of the input sentence.
Definition 116 (scanning weight). Let 〈G,ω〉 be a weighted TAG and w ∈ ΣG.
Then, we define the minimal scanning weight of w by an ET ( scanning weight
henceforth) as the minimum proportion of w among all terminals of a single
ET. More precisely,

minw(w) = min
t∈IG∪AG:(w,i)∈subG(t)

ωG(t)
|subG(t)| . (7.11)

For instance, assuming the grammar from Fig. 7.3 and that each ET has
the weight 1, minw(the) = 1 (terminal the is present only in a single, mono-
anchored ET), minw(prime) = 0.5 (prime is present in the MWE ET prime
minister), minw(made) = 0.5, etc. If there were an ET corresponding to the
MWE take into account in this grammar, then minw(take) = minw(into) =
minw(acount) = 1

3 .
Variants of the minw(w) definition include distributing the weights of

individual terminals in an ET proportionally to their frequencies in the corpus.
Our experiments (cf. Ch. 8) did not show any advantage of such a distribution
over the uniform one.
Definition 117 (scanning cost). Let m ∈M(Σ) be a multiset of words and
minw be the scanning weight function. Then, cost(m) represents the globally
minimal cost of scanning all the words in m:

cost(m) =
∑

(x,k)∈m
minw(x)× k (7.12)

For instance, assuming the grammar from Fig. 7.3 and that each ET has
the weight 1, cost({the,made, a, few, good, decisions}ms) = 1+0.5+0.5+0.5+
0.5 + 0.5 = 3.5 (note that the argument corresponds to the words remaining
to be parsed in the parsing configuration shown in Fig. 7.13).
Definition 118 (span words). Let r = 〈i, j, k, l〉 be a span in the sentence s.
Then, mid(r) represents the multiset of words covered by r (cf. Def. 73):

mid(〈i, j, k, l〉) =

{si+1, . . . , sj, sk+1, . . . , sl}ms if (j, k) 6= (−,−)
{si+1, . . . , sl}ms otherwise

(7.13)
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For instance, assuming the sentence from Fig. 7.14, mid(〈1, 3〉) = {prime,
minister}ms, mid(〈0, 8〉) = {the, prime,minister,made, a, few, good, decisions}ms,
mid(〈0, 1, 3, 8〉) = {the,made, a, few, good, decisions}ms, etc.
Definition 119 (gap words). Let s be an input sentence and r = 〈i, j, k, l〉
be a span in s. Then, in(r) represents the multiset of words covered by r’s
gap:

in(〈i, j, k, l〉) =

{sj+1, . . . , sk}ms if (j, k) 6= (−,−)
∅ otherwise

(7.14)

For instance, assuming the sentence from Fig. 7.14, in(〈0, 8〉) = in(〈1, 3〉) =
∅ms, in(〈0, 1, 3, 8〉) = {prime,minister}ms, etc.
Definition 120 (outer words). Let 〈i, j, k, l〉 be a span in s. Then, out(r)
represents the multiset of words outside (on the left and right of) r:

out(〈i, j, k, l〉)) = {s1, . . . , si, sl+1, . . . , s|s|}ms. (7.15)

For instance, assuming the sentence from Fig. 7.14, out(〈0, 8〉) = ∅ms,
out(〈1, 3〉) = {the,made, a, few, good, decisions}ms, out(〈0, 1, 3, 8〉) = ∅ms,
etc.
Proposition 33 (sentence coverage). Let r be a span in s. Then,

in(r) ∪mid(r) ∪ out(r) = {si : i ∈ {1 . . . |s|}}ms (7.16)

Definition 121 (remaining words). We define rest(r) as a multiset of words
in the input sentence s outside of the given span r, i.e.,

rest(r) = out(r) ∪ in(r) (7.17)

For instance, assuming the sentence from Fig. 7.14, rest(〈0, 8〉) = ∅ms,
rest(〈1, 3〉) = {the,made, a, few, good, decisions}ms, rest(〈0, 1, 3, 8〉) = {prime,
minister}, rest(〈0, 1, 3, 5〉) = {prime,minister, few, good, decisions}ms, etc.
Definition 122 (required words). We define req1(x) as the multiset of words
required by the yet unparsed part of the ET corresponding to a given x ∈
VD ∪QM , i.e.,

req1(x) =

super1(x), if x ∈ VD,
super1(v) ∪ ⋃|c|i=1 sub(ci), if x ∈ QM ,

where (v, c) = suff 1(x) (for the case of x ∈ QM).
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For instance, assuming the grammar from Fig. 7.3, req1(D2) = ∅ms,
req1(NP45) = {made, decisions}, req1(A30) = {minister}, etc. Moreover,
assuming a simple FSA encoding of this grammar and using dotted rules to
specify its states, req1(•NP45VP46 → S44) = {made, decisions}ms, req1(NP45•
VP46 → S44) = {made, decisions}ms, req1(NP45VP46• → S44) = ∅ms, req1(•
A41N∗42 → N40) = {good}ms, req1(A41 • N∗42 → N40) = ∅ms, req1(made50• →
V47) = {decisions}ms, req1(V47 • NP48 → NP46) = {decisions}ms, etc.

Definition 123 (primary heuristic). For any given item we define a primary
heuristic h0 as in equation (7.18).

h0(〈x, r〉) =

∞, if req1(x) 6⊆ rest(r)
cost(rest(r) \ req1(x)), otherwise.

(7.18)

Definition 124 (top). Let x ∈ VD ∪QM . Then, we define

top(x) = [x ∈ VD ∧ rootD(x)],

where [] is the Iverson bracket.

Definition 125 (heuristic). Let W = 〈H, ωH〉 be a vanilla weighted parsing
hypergraph and 〈x, r〉 ∈ VH be a chart item. Then, the estimation for the
weight of the item 〈x, r〉’s best outside derivation, i.e. α(〈x, r〉), is given by
equation (7.19).

h(〈x, r〉) = ωD(tree1(x))[¬top(x)] + h0(〈x, r〉) (7.19)

Given a hyperarc e ∈ EH, we define h(e) as h(head(e)).

For instance, h(〈NP29, 〈0, 3〉〉p) = 0 + 3, h(〈NP45VP46• → S44, 〈0, 8〉〉a) =
1 + 0, h(〈S44, 〈0, 8〉〉p) = 0 + 0, h(〈NP13 • VP14 → S12, 〈0, 3〉〉a) = 1 + 2.5,
h(〈•decisions20 → N19, 〈7, 7〉〉a) = 1 + 4.5, etc.

Fig. 7.16 and Fig. 7.17 show fragments of hyperpaths, decorated with β
and h values, corresponding to the derivations shown in Fig. 7.14 (a MWE-
driven derivation) and Fig. 7.15 (a compositional derivation), respectively.
Both hyperpaths are part of a larger parsing hypergraph constructed over the
given input sentence and based on the grammar shown in Fig. 7.3. However,
the total β + h weights assigned to the individual chart items in the MWE-
oriented hyperpath are lower than the total weight assigned to any of the
items present in the compositional hyperpath. This means that, in principle,
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Figure 7.16: A fragment of a hyperpath corresponding to the MWE-oriented
derivation shown in Fig. 7.14. The individual items are decorated with the
pairs of the corresponding [β, h] values, linked to them via dotted edges.

the A� parser should only explore the MWE-driven hyperpath before reaching
the final item corresponding to the MWE-oriented derivation, while the items
belonging to the compositional hyperpath should never be removed from the
priority queue of the parser.

Fig. 7.14 and Fig. 7.15 illustrate a MWE-related ambiguity. Both deriva-
tions entail roughly equivalent syntactic structures (i.e., derived trees). In a
real-sized TAG extending the grammar shown in Fig. 7.3, there could be many
more ETs anchored in the, prime, minister, etc. For instance, the grammar
would certainly contain ETs representing the past participle uses of the word
made, as in a house made of wood. ETs which do not lead to a syntactically
valid interpretation of the input sentences would be nevertheless considered
by a symbolic TAG parser. In particular, the parser would consider the
interpretations where made modifies (i) minister, (ii) prime minister, or (iii)
the prime minister, before realizing that none of these interpretations leads
to a valid parse. The MWE-driven A� parser, however, would benefit from
the fact that made is a part of the MWE made decisions, potentially present
in the sentence, and it would not remove the chart items corresponding to
the three invalid, past participle-based interpretations before reaching the
MWE-oriented derivation.

Proposition 34. Let W = 〈H, ωH〉 be a vanilla weighted parsing hypergraph.
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Figure 7.17: A fragment of a hyperpath, decorated with [β, h] values, corre-
sponding to the compositional derivation shown in Fig. 7.15. Note that the β
value attached to the item 〈NP13 • VP14 → S12, 〈0, 3〉〉a is smaller than the
sum of the β values assigned to the tail items of the corresponding, incoming
hyperarc. This is because another, lighter inside derivation of this item exists
in the hypergraph, even though it is not shown here.
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Then, the heuristic defined by Eq. 7.19 is admissible.

The heuristic is based on the premise that when a given ET is being
parsed (i.e. when an item 〈x, r〉 referring to one of its nodes or one of its
traversals is considered), its weight ωD(tree1(x)) will have to be eventually
incorporated into the weight of the full TAG derivation. However, when a top-
level passive item is considered (which entails that ωD(tree1(x))[¬top(x)] = 0),
the corresponding tree weight has already been added to β. I.e., it is a part
of the inside derivation, in accordance with Def. 43.

Furthermore, the remaining part of the ET being matched can contain
some terminals. Since the weight of the ET is already accounted for, the
scanning cost of such terminals should not be computed as a part of the cost
of scanning the words in the remaining part of the input sentence. Thus,
in the second line of Eq. 7.18, the required terminals are subtracted from
the remaining terminals before the resulting scanning cost is computed. In
the first line of this equation, on the other hand, the situation where the
remaining part of the sentence does not contain all the required terminals is
handled.

Proposition 35. Let W = 〈H, ωH〉 be a vanilla weighted parsing hypergraph.
Then, the heuristic defined by Eq. 7.19 is not monotonic.

The heuristic is not monotonic because the underlying vanilla weighted
parsing system is not monotonic (cf. Def. 105). The problem lies in the
weighted FA inference rule (see Tab. 7.3) which does not transfer the inside
weight of the adjunction witness. As a result, the heuristic might under-
estimate the cost of scanning the items covered by the gap which, in fact, is
already known.

Proposition 36. Let 〈G,ωG〉 be a TAG, D be its simple DAG encoding and
M be a D’s simple FSA encoding. Let also s be a sentence, 〈I,D〉 be the
corresponding vanilla parsing system, and 〈x, r〉 ∈ I be an item. Then, the
time complexity of computing the value h(〈x, r〉) is O(|req1(x)|).

The computation of the weight of tree1(x), as well as verifying top(x),
is constant time. The computation of h0(〈x, r〉) is potentially more costly.
The values of req1 can be pre-computed for the individual x ∈ VD ∪ QM ,
which adds the O(|VD|+ |QM |) pre-processing overhead. Similarly, the values
of rest can be pre-computed for the individual spans r in s, with at most
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O(|s|4) pre-processing overhead.21 Both tasks are thus less expensive than
TAG parsing itself from the time complexity point of view.

Proposition 37. Let 〈x, r〉 be an item such that req1(x) ⊆ rest(r). Then,

cost(rest(r) \ req1(x)) = cost(rest(r))− cost(req1(x)). (7.20)

From the above proposition stems that, if we pre-compute not only the
values of req1 and rest, but also the corresponding values of cost ◦ req1

and cost ◦ rest,22 respectively, then the value cost(rest(r) \ req1(x)) can be
computed in constant time provided that req1(x) ⊆ rest(r). However, the
time complexity of verifying that req1(x) ⊆ rest(r) is O(|req1(x)|).23

7.5 Extensions
We now propose three extensions of the parsing architecture described in
Sec. 7.3 and the MWE-promoting strategy specified in Sec. 7.4, with the goal
of showing their practicality in a real-world setting. Firstly, we introduce a
variant of the MWE-promoting A? heuristic which not only has better theo-
retical properties, but also is easier to compute. Its monotonicity guarantees
the correctness of the parser (cf. Def. 111) and makes it safe to combine it
with other A? heuristics. Secondly, we show how to combine the A? parsing
strategy with grammar compression techniques. Clearly, in a real-world
setting, different parsing efficiency enhancements should ideally combine to
provide an optimal solution. Finally, we show how to extend the parser so
as to account for feature structures, which are commonly used in practical
TAGs and allow to model the idiosyncratic properties of MWEs.

7.5.1 Adjunction-aware A? heuristic
The A? heuristic defined in Sec. 7.4.3 is admissible but it is not monotonic.
Below we define a variant of this heuristic which is monotonic provided that
the underlying TAG is non-negative.

21We assume some kind of data sharing between the individual values of rest. Otherwise,
the memory complexity of such a solution could be prohibitive.

22The symbol ◦ represents the function composition in this case.
23Assuming constant lookup time in rest(r).
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Definition 126 (non-negative weighted TAG). Let 〈G,ωG〉 be a weighted
TAG. Then, we say that 〈G,ωG〉 is non-negative iff ∀t∈IG∪AG

(ωG(t) ≥ 0).

First of all, let us note that the heuristic defined in Eq. 7.19 can be
transformed into a version (based on Prop. 37) which, while slightly worse in
terms of its estimations (when req1(x) 6⊆ rest(r)), is easier to compute:

hsim(〈x, r〉) = ωD(tree1(x))[¬top(x)] + cost(rest(r))− cost(req1(x)) (7.21)

It can be shown that hsim(v) is smaller than h(v) for any chart item v in a
vanilla weighted parsing hypergraph and, thus, it is admissible.

Definition 127 (amortized weight). Let x ∈ VD ∪QM . Then, we define its
amortized weight as:

A(x) = ωD(tree1(x))[¬top(x)]− cost(req1(x)) (7.22)

For a given x ∈ VD ∪ QM , A(x) accounts for the weight of the ET t
containing x, and for the fact that t may still contain some terminals which
need to be consumed (w.r.t. to the position of x in t). Thus, A(x) can be
intuitively understood as the weight of the already parsed part of t (with the
exception of the case where x is a root).

Proposition 38. Let x ∈ VD : rootD(x). Then, A(x) = 0.

Proposition 39. Let x ∈ VD : ¬rootD(x). Then, the total weight that
tree1

D(x) projects24 over the words in estD(x) is equal or smaller than A(x).

The total weight that tree1
D(x) projects over the words in estD(x) equals

ωD(tree1(x))− w, where w is the total weight that tree1
D(x) projects over the

words in req1(x). The weight w, in turn, is equal or greater than cost(req1(x)),
hence Prop. 39.

Definition 128 (witness derivation chains). Recall that, in accordance with
the propositions 18 and 19, each gapped item v (within the context of the
vanilla parser) asserts an existence of at least one derivation chain satisfying
certain constraints (in particular, the chain must cover the gap of v’s span).
We define the witness derivation chains of v, denoted ~∆v, as the set of such
derivation chains.

24See Fig. 7.15 for an example of projecting ET weights over the corresponding words.
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Figure 7.18: A configuration corresponding to a gapped passive item v = 〈t0, r〉
with a particular witness derivation chain δ ∈ �Δv (highlighted in green), where
|δ| = 3 and ∀1≤i≤3(ti = rootdrv(δi)).

Definition 129 (amortized weight of a derivation chain). Let �δ be a GDAG
derivation chain.25 Then, we define its amortized weight as:

A(�δ) =
|�δ|∑

i=1

(
ωG(�δi) + A(rootdrv(�δi))

)
(7.23)

where rootdrv(δ) is the root EST of the derivation tree δ.

Thus, A(�δ) is the sum of the weights of the derivation trees participating
in a given chain �δ, adjusted with the amortized weights of their respective
root ESTs.

Proposition 40. Let 〈x, r〉 ∈ VH be a gapped chart item of a vanilla weighted
parsing hypergraph H and �δ ∈ �Δ〈x,r〉. Then, the total weight that �δ projects
over the words in gap(r) is equal or smaller than A(�δ).

The weights projected by the individual ETs in a given chain �δ ∈ �Δv over
gap(r) are accurately accounted for in Eq. 7.23. As to the remaining, EST
trees in �δ, by Prop. 39 the total weights they project over the words in gap(r)
are smaller than their amortized weights.

Fig. 7.18 shows a configuration of the parser which corresponds to (i) a
gapped passive item v = 〈t0, r〉, and (ii) one of its witness derivation chains

25We extend the notion of a derivation chain into a GDAG derivation chain in a similar
way as we do it for derivations (cf. Def. 94). The functions applying to derivation chains
can be easily extended to GDAG derivation chains as well.



7.5. EXTENSIONS 167

δ ∈ ~∆v. Item v refers to a particular EST, represented by a GDAG vertex t0,
and each of the derivation trees δi in δ contains in its root an EST represented
by a GDAG vertex ti (recall that each GDAG vertex unambiguously specifies
the corresponding EST, cf. Prop. 8). The individual ESTs ti are not necessarily
ETs and, thus, can come with non-empty multisets of required words req1(ti).

The idea behind the adjunction-aware heuristic is that the cost of such
required words can be subtracted from the cost of the outer words, cost(out(r)),
even before the value of the latter is known. This behavior is modeled in A(δ)
(cf. Eq. 7.23), where the amortized weight of the individual ESTs – t1, t2, and
t3 – is accounted for. This amortized weight, in turn, subtracts cost(req1(ti))
from the weight of the corresponding tree (cf. Eq. 7.22).

The heuristic must provide a lower-bound estimate of the outside weight
α(v) and, hence, it must choose the optimal derivation chain amongst all the
chains in ~∆v. Put differently, when looking at the item v, the parser has no
way of knowing which of the witness derivation chains in ~∆v is a part of an
optimal crossing derivation of v and, therefore, it must assume that it is the
lowest-weight one.

Definition 130 (foot weight). Let v ∈ VH be a chart item of a vanilla parsing
hypergraph H. Then, we define its foot weight as:

φ(v) =

0, if v is not gapped,
min{A(~δ) : ~δ ∈ ~∆v}, otherwise.

(7.24)

Definition 131 (adjunction-aware heuristic). Let W = 〈H, ωH〉 be a vanilla
weighted parsing hypergraph and 〈x, r〉 ∈ VH be a chart item. Then, we define
the adjunction-aware heuristic as:

hadj(〈x, r〉) = A(x) + cost(out(r)) + φ(〈x, r〉). (7.25)

Given a hyperarc e ∈ EH, we define hadj(e) as the estimation of hadj(head(e))
based on the incoming hyperarc e.26

The main differences, in comparison with the heuristic specified in Def. 125,
are that:

• the cost of out(r) rather than rest(r) is taken into account, and
26As will be later explained, the values of φ are computed via inference rules, which

makes the value of hadj(e) dependent on e.
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• the cost of the gap is accounted for in φ(〈x, r〉), which potentially
provides a better estimation of the cost of scanning the terminals in
in(r) than cost(in(r)) does.

Proposition 41. Let 〈x, r〉 ∈ VH be a gapped chart item of a vanilla weighted
parsing hypergraph H. Then,

cost(in(r)) ≤ φ(〈x, r〉). (7.26)

Let us look at a particular ~δ ∈ ~∆〈x,r〉. The individual derivation trees ~δi
in ~δ together project some particular weights over all the words in gap(r).
Those weights are at least as high as the global minimum projection weights
represented by minw and, thus, the total weight ~δ projects over gap(r) is
greater or equal to cost(in(r)). At the same time, this total weight is equal
or smaller than A(~δ) (cf. Prop. 40). This reasoning applies to any ~δ ∈ ~∆〈x,r〉,
hence the above proposition.

Proposition 42. LetW = 〈H, ωH〉 be a hypergraph corresponding to a vanilla
weighted parsing system. Then, the heuristic defined by Eq. 7.25 is admissible.

The admissibility of the heuristic hadj stems from the observation that,
given a gapped item v = 〈x, r〉 and a derivation tree δ corresponding to a
final hyperpath crossing v,27 one of the derivation chains ~δ ∈ ~∆v must also
be a part of δ. Let us first assume that ~δ is a least-weight derivation chain,
i.e., that it minimizes φ(v). Then, the globally minimal weights of all the
words required both by x and ~δ are subtracted from cost(out(r)), so that
they are not accounted for twice. As to the words remaining in out(r), the
heuristic assumes that they will be scanned with the globally smallest costs
possible, which entails admissibility of the estimation. Otherwise, if ~δ is not
a least-weight derivation, then including the (optimal) foot weight φ(v) in
hadj’s calculation is all the more an underestimation.

Proposition 43. LetW = 〈H, ωH〉 be a hypergraph corresponding to a vanilla
weighted parsing system. Then, the heuristic defined by Eq. 7.25 is monotonic,
provided that the underlying grammar is non-negative.

The values of φ are computed via inference rules specified in Tab. 7.4.
In comparison with Tab. 7.3, a pair of numbers (x, y) ∈ R × (R ∪ {−}) is

27I.e., a final hyperpath which is a crossing derivation of v
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attached to each item, specified before the colon in the inference rules.28 The
meaning of x is as before: it represents the inside weight. The value y, on
the other hand, represents φ(v), where v is the corresponding item (given
after the colon). The value y = − is used within the context of the ungapped
items, whose foot weight is known to be equal to 0.

Algorithm 4 can be used to implement the rules specified in Tab. 7.4.
The priority of an item v is based on the estimation β̂(v) of its inside weight
β(v) (as before) and the estimation of its hadj value, which relies on the
estimation φ̂(v) of φ(v) computed via the rules. When an item is inferred
which has been already deduced before, (i) the minimum of the computed
inside weight estimations, and (ii) the minimum of the computed φ estimations
are preserved.

Proposition 44. Let 〈I,D〉 be a weighted parsing system following the specifi-
cation given in Tab. 7.4 and A be the Dijkstra-style parsing algorithm specified
in Alg. 4, modified in order to trace the estimations of φ. Then, provided that
the grammar is non-negative, A exhibits the following properties:

• When an item v is removed from the priority queue Q, its estimated
β̂(v) equals β(v) and its estimated φ̂(v) equals φ(v).

• Items are removed from Q in an ascending order of their β+hadj weights.

Proposition 45. Let 〈G,ωG〉 be a TAG, D be its simple DAG encoding,
and M be a D’s simple FSA encoding. Let also s be a sentence, 〈I,D〉 be
the corresponding adjunction-aware weighted parsing system, and 〈x, r〉 ∈ I.
Then, the time complexity of computing the value hadj(〈x, r〉) is O(1).

Recall that to compute hadj(〈x, r〉), the values A(x), cost(out(r)), and
φ(〈x, r〉) have to be calculated. The values of A are grammar-dependent
only and can be pre-computed for the individual x ∈ VD ∪ QM , with the
O(|VD ∪ QM |) time complexity overhead. The values of cost ◦ out can be
pre-computed with the O(|s|) time complexity overhead. The linear behavior
can be obtained in this case by calculating, separately, the costs of (i) the
span 〈0, k〉 for each k ∈ 0 . . . |s|, and (ii) the span 〈k, |s|〉 for each k ∈ 0 . . . |s|,
and then combining them to obtain cost ◦ out for any given span in s. Finally,
the values of φ are computed via inference rules, of which the most complex

28A similar solution, used for trace the optimal weights of the prediction-related deriva-
tions, can be found in (Nederhof, 2003, p. 137).
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AX: (0,−):〈q0,〈i,i〉〉a
i∈pos(s)\{n}

q0∈SM

SC: (x,y):〈q,〈i,j,k,l〉〉a
(x,y):〈δ(q,v),〈i,j,k,l+1〉〉a

v∈leaves(sl+1)
δ(q,v) defined

DE: (x,y):〈q,〈i,j,k,l〉〉a
(x+c,y):〈v,〈i,j,k,l〉〉p

v∈heads(q)
c=[root(v)]ω(tree(v))

PS: (x1,y1):〈q,〈i,j,k,l〉〉a (x2,y2):〈v,〈l,j′,k′,l′〉〉p
(x1+x2,y1∪y2):〈δ(q,v),〈i,j∪j′,k∪k′,l′〉〉a

δ(q,v) defined

SU: (x1,y1):〈q,〈i,j,k,l〉〉a (x2,−):〈v,〈l,l′〉〉p
(x1+x2,y1):〈δ(q,v′),〈i,j,k,l′〉〉a

v′∈leaves(`(v))∧¬foot(v′)
δ(q,v′) defined

root(v)

FA: (x1,−):〈q,〈i,l〉〉a (x2,y2):〈v,〈l,j′,k′,l′〉〉p
(x1,x2+y2+A(v)):〈δ(q,v′),〈i,l,l′,l′〉〉a

v′∈leaves(`(v))∧foot(v′)
δ(q,v′) defined

root(v) =⇒ (j′,k′)=(−,−)

RA: (x1,y1):〈w,〈i,j,k,l〉〉p (x2,y2):〈v,〈j,j′,k′,k〉〉p
(x1+x2,y2):〈v,〈i,j′,k′,l〉〉p

root(w)∧(j,k)6=(−,−)
`(w)=`(v)

root(v) =⇒ (j′,k′)=(−,−)

Table 7.4: A variant of the weighted vanilla parser (cf. Tab. 7.3) adapted to
trace the estimations of foot weights.

computation occurs in the FA rule which, nevertheless, can be performed in
constant time (it is, again, based on the pre-computed values of A and relies
on a constant lookup time).

7.5.2 Grammar compression
As shown before in Fig. 7.2, different DAG encodings of a given TAG are
possible. In particular, Fig. 7.2 (b) presents a variant of a DAG encoding
where each grammar EST is represented by exactly one DAG vertex.

Definition 132 (subtree sharing). Let G be a TAG and D be its DAG
encoding. Then, we say that D is a subtree sharing DAG encoding of G iff
each grammar EST is represented by exactly one vertex in VD.

Proposition 46. Let D be a simple GDAG. Let also 〈I,D〉 be a vanilla
parsing system based on D and H be the corresponding hypergraph. Then,
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for any two passive items 〈v, r〉, 〈v′, r′〉 ∈ I such that r = r′ and estD(v) is
identical to estD(v′), it holds that 〈v, r〉 ∈ VH ⇐⇒ 〈v′, r′〉 ∈ VH.

The above proposition suggests that, from the bottom-up parsing point
of view, there is no point in distinguishing two identical grammar ESTs, even
when they belong to two different ETs. This motivates the use of the subtree
sharing encoding method.

Even though quite simple, the subtree sharing encoding has an important
influence on the complexity of the applications of the individual parsing
inference rules (for instance, cf. the rules SC and SU in Tab. 7.2).

Proposition 47. Let D be a subtree sharing GDAG and x ∈ ΣD∪ND. Then,
|leavesD(x)| ≤ 1 (cf. Def. 83).

Note that a leaf is a also a subtree, it must be thus shared among the
trees containing it.

On the other hand, the subtree sharing encoding renders more difficult
the computation of the values of the heuristic h. Recall that, in the definition
of h, we rely on the functions tree1

D, req1
D, etc., and, consequently, on a simple

DAG encoding. Otherwise, the calculation of h(〈x, r〉) for a given item 〈x, r〉
must consider all the different ETs to which x ∈ VD ∪QM may correspond.
Thus, while a symbolic TAG parser can become significantly faster when the
subtree encoding is used (Waszczuk et al., 2016a), this encoding may make
the computations of the values of the A? heuristic significantly slower at the
same time.

Given a particular DAG encoding, different FSA encoding methods can
be used to store its various traversals (cf. Def. 63). In the simplest case, each
traversal is represented by a distinct, single path quasi-FSA (see Fig. 7.4 (a)).
Another possibility is to use a prefix tree in which common prefixes of the
individual traversals are shared (see Fig. 7.4 (b)).

Definition 133 (prefix tree encoding). Let D be a GDAG. Then, we say that
M is a prefix tree FSA encoding of D iff M encodes the individual traversals
of D in the form of a prefix tree.

Definition 134 (traversal prefix). Let M be an FSA family – either simple
or a prefix tree – and q ∈ QM . We define prefM(q) ∈ V ∗D as the traversal
prefix of q – a sequence of DAG vertices starting from some q0 ∈ SM and
terminating in q.
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An even more compressed representation could be based on a minimal
deterministic finite-state automaton.29 However, we did not identify a signif-
icant speed-up when using this compression technique in comparison with
a prefix tree (Waszczuk et al., 2016a), thus we will focus on the prefix tree
representation in this section.

Proposition 48. Let D be a GDAG and M be its simple FSA encoding. Let
also 〈I,D〉 be a vanilla parsing system based on D and H be the corresponding
hypergraph. Then, for any two active items 〈q, r〉, 〈q′, r′〉 ∈ I such that r = r′

and prefM(q) = prefM(q′), it holds that 〈q, r〉 ∈ VH ⇐⇒ 〈q′, r′〉 ∈ VH.

The above proposition shows that the prefix tree encoding allows to group
active chart items into classes equivalent from the left-to-right, bottom-up
parsing point of view, in a similar way as subtree sharing groups together
passive items corresponding to identical grammar ESTs.

Both the simplified heuristic hsim(〈x, r〉) = A(x) − cost(rest(r)) (see
Eq. 7.21 and Def. 127) and the adjunction-aware heuristic hadj are more
robust than h with respect to both the subtree sharing and the prefix tree
optimizations. Even though the amortized weight A has to be re-defined
in order to account for such optimizations, its values can be pre-computed
before parsing takes place.

Definition 135 (extended amortized weight). Let D be a GDAG, M be its
FSA encoding, and x ∈ VD ∪QM . Then, we define the extended amortized
weight of x as:

Aext(x) =


0, if top(x)
AD(x), if x ∈ VD
AM(x), otherwise,

(7.27)

where:

AD(x) = min{ωD(t)− cost(subD(t) \ subD(x)) : t ∈ treeD(x)} (7.28)

and:

AM(x) = min{ωD(t)− cost((subD(t) \ subD(v)) ∪
⋃|c|

i=1 subD(ci)) (7.29)
: 〈v, c〉 ∈ suffM(x), t ∈ treeD(v)}

29One way to obtain suffix sharing is to replace the heads of the top-level traversals by
the corresponding non-terminal symbols, as proposed in (Waszczuk et al., 2016a).



7.5. EXTENSIONS 173

Proposition 49. Let D be a simple GDAG, M be its simple FSA encoding,
and x ∈ VD ∪QM . Then, it holds that A(x) = Aext(x).

Aext can be alternatively expressed in a recursive manner and its individual
values calculated using dynamic programming techniques, hence the following
proposition:

Proposition 50. Let D be a GDAG and M be its FSA encoding. Then, the
values of AD, AM , and Aext can be calculated in time O(|D|+ |δM |), where
|D| = ∑

〈p,c〉∈ED
|c|.

Proposition 51. Let G be a TAG, D be its subtree sharing DAG encoding,
and M be a D’s prefix tree FSA encoding. Let also s be a sentence, 〈I,D〉 be
the corresponding adjunction-aware weighted parsing system, and 〈x, r〉 ∈ I.
Then, the time complexity of computing the value hadj(〈x, r〉) (based on the
pre-computed values of Aext) is O(1).

Related work

FSA-based grammar encoding considerably speeds up CFG parsing (Klein
and Manning, 2001b) but it is not straightforwardly applicable to TAGs
(which consist of trees rather than flat rules). It is, however, enabled by
the flattening transformation proposed in this paper. Previous proposals of
applying FSA-based compression to TAGs are manifold. Kallmeyer (2010)
and Prolo (2002) describe LR parsers for TAGs, in which predictions are
pre-compiled off-line into an FSA. Each state of this FSA is a set of dotted
production rules closed under prediction.

Another automata-based solution for LTAGs and related lexicalized for-
malisms has been proposed by Evans and Weir (1997); Carroll et al. (1998).
The traversal of an ET, starting from its anchor (lexical unit), is represented
there as an automaton. Sets of trees attached to common anchors are then
converted to automata, merged and minimized using standard techniques.
As a result, structure sharing occurs only within tree families, while in our
solution all ETs are represented with a single automaton which provides
sharing between rules assigned to different lexical units. Another potential
advantage of our solution lies in the subtree-sharing it enables, which allows
different rules – even when represented by completely different paths in the
automaton – to share common middle elements if these middle elements
represent common subtrees. Finally, our method can be used for TAGs in
general, not only for lexicalized TAGs.
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Villemonte de La Clergerie (2010) proposes a method of grammar com-
pression directly at the stage of its definition. A linguist uses a formal
language including factoring operators (e.g., disjunctions over tree fragments,
Kleene-star-alike repetitions, optional or shuffled fragments, etc.) and the
resulting grammar is then converted into a Logic Push-Down Automaton
for parsing. The price to pay for this highly compact resource is its high
potential overgeneration. Moreover, grammar description and parsing are
not separated, hence large non-factorized TAGs can be hardly coped with.
Our solution abstracts away from how the TAG is represented, compression
is automatic and the FSA representation is strongly equivalent to the original
TAG.

Similar techniques can be also used in dependency parsing, as shown in
(Nasr and Rambow, 2010), where a grammar takes the form of a family of
FSAs, and each FSA is used to encode the possible dependency tree fragments
(specifying subcategorization and modification requirements) corresponding
to its lexical anchor (each FSA is required to contain a lexical anchor). The
parsing algorithm is then an extension of the chart parsing algorithm for
CFGs, and chart items refer to grammar FSAs rather than to the unfolded
dependency fragments.

7.5.3 Parsing with feature structures
Practical TAG grammars are often decorated with feature structures (FSs),
which specify unification-like computations within the scope of the individual
ETs. Such computations turn out useful within the context of MWEs as
well. For instance, they allow to enforce additional agreement constraints, as
shown before in Fig. 5.4.

One possible way to add support for FSs would be to handle them in the
post-processing phase of syntactic parsing, a solution implemented in TuLiPa,
a parsing environment which employs Range Concatenation Grammar as a
pivot formalism and which can be used to parse with several mildly context-
sensitive formalisms, in particular with TAGs (Parmentier et al., 2008). On
the other end of the spectrum would be a solution where FSs are not only
handled during parsing, but also common parts of different FSs are shared
between the individual trees of the grammar. Such a solution would extend
the mechanism of sharing common parts of ETs implemented in ParTAGe.

The solution implemented in ParTAGe is placed between the two solutions
mentioned above. Namely, FSs are processed during parsing, but no sharing
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of common FS parts is performed. Structurally, FSs can be seen as graphs
(Francez and Wintner, 2012), and thus implementing the sharing functionality
for them would be more difficult than for elementary trees. Moreover, this
decision allows to abstract away from the particularities and low-level details
of FSs and to focus on what they represent from the parsing point of view
– that is, unification-like computations over derivation trees, computations
which can possibly fail.

As already mentioned, TuLiPa handles FSs in post-processing, but there
are also advantages of handling them during parsing. Notably, if we consider
probabilistic A? parsing, then handling FSs after parsing may lead to the
rejection of the most-probable parse(s) found by the A? algorithm due to
potential unification failures over the corresponding FSs. This undesirable
situation is avoided when unification of FSs is resolved on the fly.

Definition 136 (rose trees). Let X be a set. Then, we define R(X) as the
set of rose trees with nodes labeled by the values from the set X. Formally,
R(X) can be defined as the smallest set satisfying the following properties:

∀x∈X〈x, ε〉 ∈ R(X) (7.30)
~t ∈ R(X)∗ =⇒ ∀x∈X〈x,~t〉 ∈ R(X) (7.31)

Definition 137 (set with bottom). Let X be a set. Then, we define X⊥ as
X ∪ {⊥}.

Fig. 7.19 provides an example of two rose trees. The tree on the right
belongs to R(F⊥), where F is a set of feature structures, and takes the form
〈⊥, (〈x, ε〉, 〈e, (l, r)〉)〉, where l = 〈⊥, (〈⊥, ε〉)〉, r = 〈⊥, (〈x, ε〉, l)〉, x ∈ F is
the FS corresponding to {〈Pers, 3〉, 〈Num, sg〉}, and e ∈ F is an empty FS.

Definition 138 (unification system). We define a unification system as a
tuple U = 〈FU ,≤U ,]U , TU , θU〉 such that:

• FU is a set of FS-like30 values such that ⊥ /∈ FU ,

• ≤U is a total order on FU ,

• ]U : FU → FU → F⊥U is a function which unifies two values and returns
⊥ in case of unification failure,

30By FS-like values we mean the values handled by the unification system, typically
feature structure values.
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Figure 7.19: A graphical representation of a unification computation given
an ET decorated with FSs and unification variables (on the left) and a tree
of FSs originating from adjunctions and substitutions (on the right). Among
the non-leaf nodes, an adjunction is performed on the VP node exclusively.
The unification of the corresponding person and number features succeeds
and the result is an empty FS.

• TU is the set of objects (in practice, grammar ETs) for which unification
computations are defined,

• θU : TU → R(F ⊥
U ) → F ⊥

U is a family of unification computations defined
for the individual objects in TU .

A particular unification computation θU(t), for a given t ∈ TU , takes a
tree of FS-like values ν ∈ R(F ⊥

U ) and returns a single FS-like value v ∈ FU ,
or ⊥ if the unification computation fails. Within the context of a real FS
unification, the role of θU(t) is to verify that the FS values attached to the
individual nodes in t unify with the corresponding FS values in ν, the latter
originating from the adjunction and substitution operations performed on
the individual nodes in t. In ν, the value ⊥ is used to indicate the non-leaf
nodes which are not modified via adjunction.31 Fig. 7.19 shows an example
of a unification computation based on FS values.

A unification system abstracts over the particularities of feature structures
and, thus, allows to express different types of unification-like computations.
A simple example is a system where FU = {�}32 and θU(t) verifies that all

31An alternative solution would be to assume that a neutral element e ∈ FU exists such
that e � v = v � e = v for each v ∈ FU , and assign it to all non-modified internal nodes.
Then the type of ω would be R(FU ) → F ⊥

U . An empty FS provides such a neutral element
in case of FSs. However, such an alternative solution would make it more difficult to
account for adjunction constraints, which can be handled by unification computations.

32� stands for top.
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the adjunction constraints assigned to the individual nodes in t are satisfied.
Examples of adjunction constraints are null adjunction and obligatory adjunc-
tion. The former forbids adjunction at a given node, while the latter makes
adjunction at the node required. In order to account for such constraints,
θU(t)(ν) can look at each node in t and verify that (i) if it is marked with null
adjunction, then the corresponding value in ν is ⊥, or (ii) if it is marked with
obligatory adjunction, then the corresponding value in ν is >. Otherwise,
θU(t)(ν) fails.

ParTAGe requires a total order to be defined over chart items. This allows
to speed up the search of the corresponding chart items when the individual
inference rules of the parser are considered. This is why, in order to satisfy
this requirement, we assume a total order ≤U over the set FU of FS-like values.

Tab. 7.5 shows a variant of the vanilla parser adapted to handle FS-like
computations. The main modifications introduced in the FS-aware version of
the parser are:

• Three types of chart items are distinguished – active, passive and (new) top
items. Top items represent fully recognized ETs over which the unification
computation was performed (and did not fail). Passive items can also
represent fully recognized ETs, but their root nodes can still undergo
adjunction and their unification computation is not yet performed.

• A new inference rule (FI, standing for finalize), related to the distinction
between passive and top chart items, is introduced. It models the transition
from a passive to the corresponding top item and applies the unification
computation θ assigned to the corresponding ET. If the computation fails,
the corresponding top chart item is not inferred.

• A trace is added to the individual chart items. It keeps track of the FS-like
values computed for the ETs inserted (substituted, adjoined) in place of
the already processed non-terminals of the ET represented by a given chart
item. This enables to perform the unification computation once the full ET
is matched.

In the definitions below and in Tab. 7.5, we assume a fixed GDAG D,
FSA family M , input sentence s, and unification system U . The individual
computations are defined over the roots in D, i.e., TU = {v ∈ VD : rootD(v)}.
Recall that each root in D represents a grammar ET (cf. Prop. 8).
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AX: 〈q0,ε,〈i,i〉〉a
i∈pos(s)\{n}

q0∈SM

SC: 〈q,~t,〈i,j,k,l〉〉a
〈δ(q,v),~t·(〈⊥,ε〉),〈i,j,k,l+1〉〉a

v∈leaves(sl+1)
δ(q,v) defined

DE: 〈q,~t,〈i,j,k,l〉〉a
〈v,〈⊥,~t〉,〈i,j,k,l〉〉p

v∈heads(q)

FI: 〈r,t,r〉p
〈`D(r),x,r〉t

rootD(r)
x=θU (tree1

D(r))(t)
x6=⊥

PS: 〈q,~t,〈i,j,k,l〉〉a 〈v,t,〈l,j′,k′,l′〉〉p
(δ(q,v),~t·(t),〈i,j∪j′,k∪k′,l′〉〉a

δ(q,v) defined

SU: 〈q,~t,〈i,j,k,l〉〉a 〈v,x,〈l,l′〉〉t
〈δ(q,v′),~t·(〈x,ε〉),〈i,j,k,l′〉〉a

v′∈leaves(v)∧¬foot(v′)
δ(q,v′) defined

FA: 〈q,~t,〈i,l〉〉a 〈v,t,〈l,j′,k′,l′〉〉p
〈δ(q,v′),~t·〈⊥,ε〉,〈i,l,l′,l′〉〉a

v′∈leaves(`(v))∧foot(v′)
δ(q,v′) defined

root(v) =⇒ (j′,k′)=(−,−)

RA: 〈w,x,〈i,j,k,l〉〉t 〈v,〈y,~t〉,〈j,j′,k′,k〉〉p
〈v,〈z,~t〉,〈i,j′,k′,l〉〉p

(j,k)6=(−,−) ∧ w=`(v)
root(v) =⇒ (j′,k′)=(−,−)
z= if y 6=⊥ then x]y else x

z 6=⊥

Table 7.5: A variant of the vanilla parser adapted to handle FS-like values.
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Definition 139 (top item). Let v ∈ ND be a non-terminal, x ∈ FU be a
FS-like value, and r be a span in s. Then, 〈v, x, r〉t is a top item.

Definition 140 (passive item). Let v ∈ VD be a DAG vertex, t ∈ R(FU) be a
tree of FS-like values, and r be a span in s. Then, 〈v, t, r〉p is a passive item.

Definition 141 (active item). Let q ∈ QM be an automaton state, ~t ∈ R(FU)∗
be a sequence of trees of FS-like values, and r be a span in s. Then, 〈q,~t, r〉a
is an active item.

Support for FSs is independent from the grammar compression techniques
described in Sec. 7.5.2 and can be safely composed with both subtree sharing
and prefix tree FSA encoding. It is also orthogonal to the idea of A∗ parsing
and could33 be used in combination with the heuristics described in Sec. 7.4.3
and Sec. 7.5.1.

7.6 Conclusions
Tab. 7.6 shows a comparison of the individual parsing architectures we have
seen in this section based on their: (i) parsing time and space complexity,
(ii) heuristic-related and statistical-parsing-related properties, (iii) ability to
compose with grammar compression techniques, and (iv) support for FSs.

Let us recall that the heuristic-related properties are crucial for us since
our goal is to use an A? heuristic to implement the MWE-promoting strategy
(cf. Sec. 7.1) in order to improve accuracy and efficiency. Such a heuristic
should ideally be admissible (cf. Eq. 113) and monotonic (cf. Eq. 7.10),
since both properties entail correctness (cf. Def. 111). Besides, calculating
its values should not cause an important computational overhead. It should
also finely combine with grammar compression techniques which are often
used to increase efficiency of symbolic parsing in general. Finally, it should
be possible to extend an A?, heuristic-based parser to account for feature
structures, since the latter play an important role in practical TAGs and
allow to handle the idiosyncratic properties of MWEs.

The basic parser, specified in Tab. 7.1, is a symbolic parser which always
generates the entire hypergraph, hence its space complexity is O(n6), where
n is the length of the input sentence. It combines with all three grammar

33We consider the support for FSs in ParTAGe as experimental and we did not verify
empirically that it can be integrated with A∗ parsing.



180 CHAPTER 7. PARSING MWES WITH TAGS

basic vanilla Dijkstra
style

A?

with h
A?

with hadj

FS-
aware

complexity time O(n6) O(n6) O(n6) O(n6) O(n6) O(n6)?
space O(n6) O(n6) O(n4) O(n4) O(n4) O(n6)?

heuristic
(statistical
parsing)

complexity n/a n/a n/a O(req1(x)) O(1) n/a
admissible n/a n/a n/a + + n/a
monotonic n/a n/a - - + n/a
correctness n/a n/a ? ? + n/a

compression
subtree sh. + + + ~ + +
prefix tree + + + ~ + +
min. DFA + + + ~ + -

FS-support - - - - - +

Table 7.6: A comparison of the different parsing architectures.

compression techniques we mentioned in Sec. 7.5.2: subtree sharing, the
prefix-tree representation of tree traversals, and compressing the traversals in
the form of a minimal deterministic finite-state automaton (minimal DFA).

The vanilla parser (cf. Tab. 7.2), implemented in ParTAGe (cf. Alg. 4), is
equivalent to the basic parser in terms of the properties we look at in Tab. 7.6.
However, due to its modified FA inference rule, which performs a function
similar to prediction in CFG parsing, in practice it should be faster and leave
a smaller memory footprint.

When the Dijkstra-style algorithm (cf. Alg. 4) is used with the weighted
parsing system (cf. Tab. 7.3) to find the least-weight derivation for a given
sentence, its memory footprint drops to O(n4). This is because only one,
optimal incoming hyperarc per hypernode (chart item) has to be stored.
However, even if the underlying grammar is non-negative, the weighted
parsing system is not monotonic and, therefore, correctness of the parsing
algorithm is not guaranteed (hence the question mark in Tab. 7.6).

The A? parsing algorithm (cf. Def. 115) based on the weighted parsing
system (cf. Tab. 7.3) and the heuristic h (cf. Def. 125) is an extension of
the Dijkstra-style parser in which h is used to guide the parser to reach the
optimal solution more quickly. To recall, the heuristic h estimates the cost of
parsing the remaining (w.r.t. the given chart item) part of the input sentence
based on the potential MWE occurrences therein. This heuristic is admissible
(cf. Prop. 34) but not monotonic (cf. Prop. 35), thus correctness of the
parsing algorithm is not guaranteed. However, a runtime verification test
we used in our experiments (see Ch. 8) showed that non-gapped items are
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removed from the queue in an ascending order of the β + h weights, which
would suggest that the A? parser based on h, as well as the Dijkstra-style
parser, are nevertheless both correct.34

The A? parsing algorithm used with the adjunction-aware heuristic hadj
(cf. Def. 131) is correct, since hadj is both admissible (cf. Prop. 42) and
monotonic (cf. Prop. 43), provided that the underlying grammar is non-
negative. In terms of the quality of its estimations, hadj is often more accurate
(i.e., closer to α) than h due to taking account of the weights related to
the witness items. On the other hand, h is more accurate than hadj when
the words required by the underlying item are not present in the remaining
part of the sentence. This advantage of h, however, comes with a significant
computational cost when grammar compression techniques are used. Having
to consider many different elementary trees which can correspond to a given
chart item 〈x, r〉 and, consequently, many different sets of required words
req1(x) can be inefficient.35 hadj deals with this issue much more aptly and
the complexity of calculating its values remains constant regardless of the
grammar compression techniques used.

Finally, the FS-aware parser, which extends the vanilla parser with the
support for feature structures, is a proof of concept which shows a possible way
of dealing with feature structures on the fly. Such approach has a potentially
detrimental effect on parsing time and space complexity, since we propose to
enrich chart items with FS values. ParTAGe provides support for flat FSs
(with top/bottom distinction) only, hence this is not necessarily an issue – the
space of the possible FS values is bounded in this case. Anyhow, handling FSs
on the fly has important advantages within the context of A? parsing – notably,
it guarantees that the first final item found by the algorithm corresponds to
a solution which is not only optimal but also satisfies the unification-related
requirements.

34(Nederhof, 2003, p. 140) shows that an algorithm similar to our Dijkstra-style parser,
applied to a non-monotonic weighted CFG parsing system with prediction, still correctly
computes the derivations with the lowest weights.

35It is, of course, possible, and we relied on such an implementation in our experiments.
However, it works against the benefits of grammar compression.
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Chapter 8

Experimental evaluation

In this chapter, we describe an experimental evaluation of the MWE-promoting
strategy (cf. Sec. 7.1) and its A∗ implementation (cf. Sec. 7.4.3) based on the
heuristic h (cf. Def. 125). In all the experiments the grammar was compressed
using the subtree sharing (cf. Def. 132) and the prefix tree (cf. Def. 133)
encoding techniques. The main goals of this experiment are: (i) to examine
the influence of the MWE-promoting strategy on the accuracy of a symbolic
TAG parser, and (ii) to investigate the possible speed-up gains stemming
from its A∗-based implementation.

An evaluation of a parser which jointly performs MWE recognition and
syntactic parsing relies on an appropriate syntactic treebank annotated with
MWEs. In a statistical setting, such a treebank is first (i) divided into two
parts – called training and evaluation – then, (ii) the parameters of the parser
are estimated over the training part, next (iii) the resulting parser is used to
process the evaluation part – i.e., identify the MWE occurrences therein, as
well as determine the syntactic structures of the individual sentences – and,
finally, (iv) the syntactic parsing accuracy and the MWE recognition accuracy
are calculated on the basis of the discrepancies between the annotations
present in the evaluation part and the parser’s output.

In a symbolic setting, a similar procedure could be followed. After dividing
the treebank into two parts, an MWE-aware grammar could be extracted
from the training part and the ability of the parser to correctly identify
MWEs and determine syntactic structures in the evaluation part could be
measured. However, such a process would mainly ascertain the quality of
the extraction method used to obtained the grammar from the training part,
which is not our goal. Whether an underlying symbolic grammar is hand-
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crafted or extracted from a treebank (or both), the MWE-promoting strategy
is not able to correct the mistakes made during the syntactic analysis stage.
Rather, it is a special instance of a disambiguation strategy, whose quality
can be measured independently from that of the syntactic analysis (and,
consequently, independently from the underlying grammar). We follow this
principle in our experiments and evaluate the MWE-promoting strategy with
respect to sentences which the parser is able to correctly analyse.

8.1 Data preparation
The experiment relies on two main resources: a treebank annotated with
MWEs, and a MWE-aware TAG grammar compatible with the treebank.
Sec. 8.1.1 contains a description of the procedure of mapping MWE resources
on a Polish constituency treebank which we used to obtain a MWE-aware
treebank, while Sec. 8.1.2 describes the grammar extraction method we used
to get a TAG grammar compatible with this treebank.

8.1.1 Mapping MWE resources on a treebank
Let us note that, while we projected MWEs on a treebank for the specific
purpose of the evaluation of the MWE promoting strategy, its utility can be
seen in a broader context. Treebanks in which MWEs have been explicitly
annotated are highly precious resources enabling us to study their more or less
unpredictable properties. They also constitute basic prerequisites for training
and evaluating MWE-aware syntactic parsers (as in our case). However, few
treebanks contain full-fledged MWE annotations, even for English (Rosén
et al., 2015), and lexical resources of MWEs develop more rapidly than MWE-
annotated treebanks (Losnegaard et al., 2016). It is, thus, interesting to
examine how far MWE lexicons can help in completing the existing treebanks
with annotation layers dedicated to MWEs (Savary and Waszczuk, 2017).

Our case study in this respect deals with four Polish resources: (i) the
named-entity annotation layer of a Polish reference corpus, (ii) an e-lexicon of
nominal, adjectival and adverbial continuous MWEs, (iii) a valence dictionary
containing a phraseological component, and (iv) a treebank with no initial
MWE annotations. We show how the 3 former resources can be automatically
projected on the latter, by identifying syntactic nodes satisfying (totally or
partly) the appropriate lexical and syntactic constraints.
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Resources

The National Corpus of Polish (NCP) (Przepiórkowski et al., 2012) contains a
manually double-annotated and adjudicated subcorpus of over 1 million words.
Its named entity layer (NCP-NE), which builds on the morphosyntactic
layer (relying in its turn on the segmentation layer), contains over 80,000
annotated NEs, 20% of which are MWNEs. Only the latter were used in the
experiments described below. The annotation schema assumes notably the
markup of nested, overlapping and discontinuous NEs, i.e., the annotation
structures form trees (Savary et al., 2010).

SEJF (Czerepowicka and Savary, 2015) is a grammatical lexicon of Polish
continuous MWEs containing over 4,700 compound nouns, adjectives and
adverbs, where inflectional and word-order variation is described via fine-
grained graph-based rules. It is provided in two forms – intensional (multiword
lemmas and inflection rules) and extensional (list of morphologically annotated
variants). The latter, generated automatically from the former, was used
in our projecting experiments. Tab. 8.1 shows a sample extensional entry
containing a MWE inflected form, its lemma and morphological tag: noun
(subst) in singular (sg) genitive (gen) and masculine inanimate gender (m3).

Inflected form Lemma Tag
sposobu bycia sposób bycia subst:sg:gen:m3

Table 8.1: Sample inflected form of sposób bycia (lit. way of being) ’manner’
in SEJF.

Walenty is a Polish large-scale valence dictionary with over 8,000 frames
which describe VMWEs (in its 2015 version). For instance the idiom high-
lighted in Ex. 8.1 is described in Walenty as shown in Tab. 8.2 (cf. Ex. 3.1
and Tab. 3.2, which we repeat here for the readability reasons). Refer to
Sec. 3.4 for a more detailed description of this resource.

(8.1) Nie
Not

umiem
knowsg.1

w
in

tych
these

sprawach
affairs

trzymać
holdinf

języka
tonguesg.gen

za
behind

zębami.
teeth.

(lit. I cannot hold my tongue behind my teeth in such cases) ’I cannot
hold my tongue in such cases’
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trzymać: subj{np(str)}+
obj{lex(np(str),sg,’język’,natr)}+
{lex(prepnp(za,inst),pl,’ząb’,natr)}

Table 8.2: Walenty description of trzymać język za zębami ’hold one’s tongue’

Składnica is a Polish constituency treebank comprising about 9,000 sen-
tences with manually disambiguated syntactic trees (Świdziński and Woliński,
2010). It was created by automatically generating all possible parses with
a large-coverage DCG grammar, and then manually selecting the correct
parse. It does not contain MWE annotations. Its morphosyntactic tagset is
mostly equivalent to the one used in Walenty, although it uses Polish terms:
mian=mianownik ’nominative’, dk=dokonany ’perfective aspect’, etc.

Fig. 8.1 shows the correct syntax tree from Składnica for Ex. 8.1. Each
non-terminal node includes a feature structure (FS). Here, the FS of the node
fno (nominal phrase), above the terminal język ’tongue’, is highlighted. It
includes the feature neg=nie meaning that this node occurs within the scope
of a negated verb. This enables an easy validation of some constraints from
Walenty entries, such as the structural genitive of direct objects.

A notable feature of Składnica is that dependents of the verbs are explicitly
marked as either arguments (fw) or adjuncts (fl), i.e., valency is accounted
for. Note, however, that the valency of head verbs in VMWEs can differ from
the one of the same verbs occurring as simple predicates.

Projection

Since Składnica contains no explicit MWE annotations, we produced them
automatically by projecting NCP-NE, SEJF and Walenty on the syntax trees.
The projection for NCP-NE was straightforward and did not require manual
validation, since Składnica is a subcorpus of the NCP, whose NE annotation
and adjudication were performed manually. The projection for SEJF and
Walenty, followed by a manual validation, consisted in searching for syntactic
nodes satisfying all lexical constraints and part of syntactic constraints of a
MWE entry. The required lexical nodes were to be contiguous for SEJF but
not for Walenty.

Here, we give more details on the Walenty-to-Składnica projection, which
was the most challenging one. It required defining correspondences at different
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Figure 8.1: Syntax tree of Ex. 8.1 in Składnica. The categories denote: ff
’finite phrase’, fl ’adjunct’, fno ’nominal phrase’, formaczas ’verbal phrase’,
formaprzym ’adjectival phrase’, formarzecz ’nominal phrase’, fpm ’prepo-
sitional phrase’, fpt ’adjectival phrase’, fw ’required phrase’, fwe ’verbal
phrase’, partykuła ’particle’, przyimek ’preposition’, wypowiedzenie ’ut-
terance’, zdanie ’sentence’, znakkońca ’ending punctuation’. The feature
structure of the fno node dominating the terminal język ’tongue’ is highlighted.
The feature codes include: przypadek ’case’, rodzaj ’gender’, liczba ’num-
ber’, osoba ’person’, rekcja ’case government’, and neg ’negation’. The
values denote: dop ’genitive’, mnz ’human inanimate’, poj ’singular’, and nie
’negated’.

levels. Explicit morphological values and phrase types could be translated
rather straightforwardly due to largely compatible tagsets (np→fno ’nominal
phrase’, mian→nom ’nominative’, etc.). Context-dependent values like str
(structural case) were encoded in conditional statements taking combination of
features into account. For instance, the argument specification obj(np(str))
translated into a feature structure containing one of the following: [category =
fno, przypadek = bier, neg = tak], [category = fno, przypadek = dop, neg = nie]
(nominal object, either in the accusative in an affirmative sentence or in the
genitive in a negative one).

Once these morphosyntactic correspondences were defined, the procedure
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of identifying a Walenty MWE entry in Składnica consisted in checking if the
current sentence contained a subtree in which: (i) the lexically constrained
arguments and adjuncts (and their own, recursively embedded, lexically
constrained dependents) were present, (ii) selected syntactic constraints
(those concerning np and prepnp phrases) were fulfilled. For instance in
Fig. 8.1, a head verb, a direct object with a lexicalized head and a lexicalized
prepositional complement were searched for, but an ellipsis of the subject was
allowed.

Query language

We split the task of MWE projection into three elements: (i) a query language,
providing an interface between our MWE resources and the treebank, (ii) a
set of dedicated procedures – one per each MWE resource – for compiling
lexicon entries into the corresponding queries, and (iii) an interpreter which
allows to run the queries over treebank nodes and, in particular, to answer the
question whether the MWE entry – to which the executed query corresponds
– occurs within the context of a given syntactic subtree.

Formally, we defined our core query language using the following abstract
syntax:

b (Booleans) ::= true | false
n (node queries) ::= b | n1 ∧ n2 | n1 ∨ n2 | mark | satisfy (node→ b)
t (tree queries) ::= b | t1 ∧ t2 | t1 ∨ t2 | root n | child t | . . .

Thus, the properties of a given syntactic node or tree can be verified via an
appropriate node query (NQ) or tree query (TQ), respectively. Both kinds of
queries are recursive and TQs can additionally build on NQs. For instance,
from the query interpretation point of view, the TQ root n is satisfied for a
given tree iff its root satisfies the NQ n. Also, the TQ child t is satisfied iff
at least one of its root’s children trees satisfies the TQ t. Finally, particular
feature values (category, przypadek, etc.) can be verified using the NQ
satisfy (node→ b), which takes an arbitrary node-level predicate (node→ b)
and tells whether it is satisfied over the current syntactic node.

The particularity of this simple language of NQs and TQs is the mark
construction, which allows to mark the currently considered syntactic node
as a part of a MWE. When a TQ t, containing mark, is executed over a given
tree, all the nodes matched with mark during the course of t’s execution will
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be returned as t’s result, provided that the syntactic tree satisfies all the
constraints encoded in t. Mark does not check any constraints by itself, but it
can be easily combined with other NQs via query conjunction (i.e., n∧ mark).

Note that, based on our core language, more complex queries can be
expressed, for instance:

member n
def= root n ∨ child (member n) (8.2)

which checks whether the current tree contains (either in its root or, recursively,
in one of its subtrees) a node which satisfies the given node query n.

The query interpreter is defined over the core language only and handles
MWE-related marking. For instance, given a query of type t1 ∨ t2, while eval-
uating t1, some subtree nodes may be marked as potential MWE components
(by the mark operator). If, however, t1 finally evaluates to false, then all
these markings are wiped out. This behavior is guaranteed by an appropriate
implementation of the core disjunction (∨) operator.

Compiling MWE entries

Let us focus on the Walenty-to-query compilation and on the entry from
Tab. 8.2 in particular. Its querified version checks that (i) the base form of the
lexical head, reached via the head-annotated edges (grayed out in Fig. 8.1),
corresponds to the main verb of the entry (i.e., trzymać), and (ii) each of
the lexically-constrained elements of the frame (i.e., noun phrase język and
prepositional phrase za zębami) is realized by one of the child-ren trees of the
queried tree. Part (i) of the query is implemented by the version of the member
query (see Eq. 8.2) restricted to head-annotated edges. Implementation of
(ii) depends on the particular frame element. Tree queries corresponding to
(i) and (ii) are then combined using the ∧ operator.

The obj{lex(np(str),sg,’język’,natr)} frame element is also trans-
lated to a ∧-combined set of tree queries, which individually check that all
the given restrictions are satisfied: the lexical head is język, the number is
singular, etc. The node query which verifies that język is the lexical head
is combined with mark, so that it is designated as a part of the resulting
MWE annotation, provided that all the other entry-related constraints are
also satisfied. Modifiers, if specified, are recursively compiled into tree queries
which are then applied over child-ren trees. Here, natr specifies that no
modifiers are allowed, constraint compiled into a query which checks that the
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Source True pos. False pos. Comp. readings All Comp. rate
NKJP 1,304 n/a n/a 1,304 n/a
SEJF 368 18 23 409 0.94
Walenty 365 78 18 452 0.95
Total 2,037 96 41 2,165 0.95

Table 8.3: Projection results

corresponding tree is non-branching1 (i.e., has no other children apart from
its head, constraint satisfied in Fig. 8.1 by the subtree rooted with fno placed
over the leaf język). The other element of the frame, which describes the
prepositional argument za zębami, is compiled into a query in a similar way.

Projection results

Table 8.3 shows the projection results. Among the 2165 automatically identi-
fied candidate MWEs, those 1,304 stemming from NCP-NE were supposed
correct (since resulting from manual double-annotation and adjudication).
The 861 remaining candidates were manually validated. They contained 733
true positives, 96 false positives, and 41 candidates with a compositional
reading, as in examples (8.3)-(8.4). Thus, the precision of the SEJF/Walenty
projection was equal to 0.85. The idiomaticity rate (El Maarouf and Oakes,
2015), i.e., the ratio of occurrences with idiomatic reading to all correctly
recognized occurrences, is about 0.95. We expect that if NEs were taken
into account, this ratio would be even higher, since NEs seem to exhibit
compositional readings relatively rarely. Note also that false positives are
much more frequent for entries stemming from Walenty than for those from
SEJF, which shows the higher complexity of verbal MWEs as compared to
other, continuous, MWEs.

(8.3) . . . w drugiej połowie XIX wieku
’. . . in the second half of the 19th century’
MWE: (lit. second half ) ’one’s husband or wife’

1The non-branching predicate is a part of the core language. We did not define it
above for the sake of brevity.
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(8.4) Nie podał Klossowi ręki, wskazał mu tylko krzesło.
’He did not give Kloss his hand, he just pointed at a chair.’
MWE: (lit. give someone a hand) ’help’

(8.5) Odetchnęła głęboko i przymknęła oczy.
’(She) breathed profoundly and closed her eyes.’
MWE: przymknać oczy na coś (lit. to close one’s eyes on sth) ’to
pretend not to see sth’

Notable errors in the projection procedure stem from allowing for the
ellipsis of compulsory but non-lexicalized arguments. If all such arguments
marked in Walenty were required in Składnica during the projection, correct
MWEs occurrences with elided arguments would be missed, as in the case
of the subject required in Tab. 8.2 but omitted in Fig. 8.1. Conversely,
allowing for the ellipsis of such arguments results in some false positives, as
in example (8.5), where the absence of the prepositional argument (headed
by the preposition na ’on’) excludes the idiomatic reading.

The result of the automatic projection of MWE resources on Składnica is
available2 under the GPL v3 license. The results are represented in a simplified
custom XML format, meant for an easy use, e.g., in automatic grammar
extraction. This format refers to identifiers of sentences and tokens in the
Składnica trees, which enables users to automatically project annotations on
the original treebank.

8.1.2 Grammar extraction
Following Chen and Shanker (2004), the first step to extract a LTAG grammar
from a MWE-ignorant constituent treebank is to determine the status of
the individual nodes in the individual syntactic trees. Let η′ be a node
immediately dominated by a node η. Then, η′ can be either:

(a) On the path from η to its lexical head – we call such a path a trunk.

(b) A complement of η – when the lexical head of η′ is a complement of η’
head.

(c) An adjunct of η – when the lexical head of η′ is a modifier of η’s head.
2http://zil.ipipan.waw.pl/Sk%C5%82adnicaMWE

http://zil.ipipan.waw.pl/Sk%C5%82adnicaMWE
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In Fig. 8.1, all the trunks are marked with grayed out edges. For instance,
the trunk of the right fwe node (the one which dominates four other nodes)
connects it with its lexical head, trzymać ‘to hold’. Recall also that dependents
of the verbs are explicitly marked as either arguments (fw) or adjuncts (fl).

In the case (a), both η′ and η should end up on the trunk of the cor-
responding ET. In the case (b), a copy of η′ should become a substitution
non-terminal leaf of the ET to which η belongs, while another copy of η′
should be placed in the root of a separate ET which attaches to the first copy
via substitution. Finally, in the case (c), when η′ is an adjunct of η, it should
be modeled as a root of a separate EAT (to be determined on the basis of
the syntactic subtree rooted in η′) which adjoins to η.3 Fig. 8.2 (a) shows
the ETs extracted from the tree rooted in the right fwe node in Fig. 8.1, as
well as the substitution and the adjunction relations which the extraction
procedure entails.

In a MWE-aware treebank, the prominent difference is that a node can
have several lexical heads, which are then modeled as the anchors of the
corresponding ET. Consider again the tree rooted in the right fwe node in
Fig. 8.1. In Składnica, it has one lexical head, trzymać ‘to hold’. In the
MWE-annotated variant of Składnica, all four lexical components – trzymać
‘to hold’, język ‘tongue’, za ‘behind’, and ząb ‘tooth’ – of the MWE identified
in this tree can be interpreted as its lexical heads. Consequently, the trunk of
the fwe node includes the paths to all the above-mentioned lexical components.
Fig. 8.2 (b) shows the MWE ET extracted from the syntactic tree rooted in
the right fwe node when the MWE annotation is taken into account.

Concerning the rules of deciding whether a given node η′, directly domi-
nated by η, is a complement or an adjunct of η, we followed – inspired by
Krasnowska (2013) – the procedure as specified below:

• In case of the verbs, the status is already specified in Składnica via
the fw and fl pseudo-syntactic nodes.4 The fw and fl nodes are
subsequently removed, i.e., they do not appear in the extracted ETs.

• Let x’ be the label of η′ and x be the label of η. Then, η′ is a complement
3However, it is not alway possible to obtain such a behavior. In particular, if both the

left and the right immediate sisters of η′ are complements or trunk-elements of η, η′ can
be at best modeled as a modifier of one of its sister nodes.

4It seems that the only function of such nodes is, precisely, to mark the status of the
nodes they dominate. Such information could be, perhaps more appropriately, placed in
FSs.
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Figure 8.2: ETs extracted from the tree rooted in the right fwe node in
Fig. 8.1. (a) The compositional derivation (the MWE annotation is ignored).
(b) The ET corresponding to the MWE occurrence.

of η if: (i) x’ = fno (nominal phrase) and x = fpm (prepositional phrase),
or (ii) x’ = zdanie (sentence) and x = fzd (embedded clause), or (iii)
x’ = zdanie and x = zdanie,5 or (iv) x’ = spójnik.6 Otherwise, η′ is
an adjunct.

Let us note that, in our extraction procedure, we did not account for FSs
and, consequently, the resulting grammar was a plain LTAG rather than a
FS-based LTAG.

8.2 Evaluation
The evaluation of the MWE-promoting strategy consisted in parsing the
1566 Składnica sentences in which MWEs were identified7 using the mapping
procedure described in Sec. 8.1.1. The underlying TAG was extracted using
the method described in 8.1.2, applied to all Składnica trees, so as to obtain
ETs related to both the compositional derivations and the MWE-based ones.

As a baseline, we consider a “dummy” disambiguation strategy which
consists in preserving all the derivations obtained via syntactic analysis. Put

5Occurring in coordinations of sentences.
6To avoid analyzing additional conjunctions – as in Często chodzili do pubu, pili piwo,

rozmawiali. ‘Often [they] were-going to pub, drunk beer, talked.’, where only one of the
commas is marked as a trunk-element – as adjuncts.

7Including the occurrences with a compositional reading, but not the false positives,
based on the assumption that ETs corresponding to such compositional occurrences should
also be present in the grammar.
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differently, the baseline is a vanilla symbolic parser which does not perform
any disambiguation and returns (in a compact, hypergraph form) all the
grammar-compliant derivations. Since we perform the experiment over the
trees from which the grammar was extracted, we obtain a baseline system
with a perfect, 100% accuracy. Note that this is consistent with our choice
of measuring the accuracy of the MWE-promoting disambiguation strategy
with respect to the trees covered by the underlying grammar only.

We assess the parser’s efficiency (speed) in terms of the size of its parsing
hypergraph (i.e., the number of its hyperarcs, cf. Def. 86). We believe it to
be a more objective measure to compare different parsing strategies than the
absolute parsing time, because it abstracts over the low-level implementation
details which may significantly influence the parsing time depending on
the optimization techniques involved. Each hyperarc corresponds to an
application of an inference rule, i.e. to a basic parsing step, which we assume
to be implementable in constant time.8 Recall that the time complexity
overhead related to computing the values of the heuristic h (see Def. 125)
is at most linear in the size of the words required (cf. Def. 122) by a given
chart item (cf. Prop. 36), provided that no grammar compression methods
are used.

The baseline hypergraph is the one generated with the full grammar,
when no MWE-promoting strategy is used and all grammar-compliant parses
are generated for each sentence. The MWE-promoting (PM) hypergraph,
compared to this baseline, includes mainly the optimal parses (the algorithm
ensures that, in PM, all optimal parses are achieved, but some sub-optimal
parses may also be reached, since a heuristic is an imperfect estimation of
α), i.e., those in which the maximum number of words belongs to potential
MWEs. To this end, Alg. 4 is slightly modified so as to stop when an item v
with the total weight β(v) + h(v) exceeding the total weight of the previously
found final item is removed from the agenda.

The experiment was carried out on the dataset from which the grammar
was extracted and on the basis of the heuristic h exclusively. Therefore,
for each sentence, the baseline hypergraph contained both its gold (i.e.,
conforming to Składnica) parse (derived tree) and its gold MWE identification
(derivation tree). The PM hypergraphs, in turn, contained the correct parses
for virtually 100% of the sentences,9 and correct MWE identification for

8We verified the rationality of this assumption, with respect to a version of the vanilla
parser, in (Waszczuk et al., 2016a).

9A sanity check showed that for 54 sentences the gold parse was not found, mainly
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Figure8.3:(a)Averagenumberofhyperarcsexploreddependingonthe
parsingstrategy(forclarityusingonlysentenceoflength<20),(b)Average
%ofhyperarcsexploredwiththePM+STstrategy,usingtheSTstrategyas
areference,and(c)Average%ofhyperarcsexploreddependingonthetype
ofMWEs.

around95%ofthem(duetotheidiomaticityrateequalto0.95). Thus,
theparsingefficiencygainduetothePMstrategyoccurredwithnolossof
syntacticparsingaccuracyandwitha5%lossofMWErecognitionaccuracy.

ThePMstrategyiscomparabletosupertagging(ST),i.e.pre-selecting,
foreachsentence,asubsetofETswhichhavegoodchancestobeusedinthe
derivation,inordertoreducetheparsingsearchspace. Weexperimentedwith
asimpleformofST,whichrestrictsthegrammartoETswhoseterminalsoccur
inthegivensentence.Namely,weexaminedtheSThypergraphcontaining
allparsesforeachsentence,andtheoneinwhichSTwascombinedwith
PM(wheremainlyoptimalparseswereachieved).Recallthat,ideally,we
wouldlikethesupertaggertoprovideuswithsentence-dependentweights
representingtheplausibilityofusingthepre-filteredETsinaderivation.

Fig.8.3ashowstheabsolutesizesofthehypergraphsforthese4strategies
asafunctionofthesentencelength.ThePMstrategybringsenhancement
regardlessofwhethersupertaggingisusedornot.Thesupertaggingalone
outperforms,onaverage,thebaselineMWEs-promotingstrategy.Sincethe
combinationofSTandPMstrategiesprovesthemostefficient(inparticular,
itallowstoreducethesearchspacebyaround40%forthesentencesoflength

duetosomeabbreviation-andletter-case-relatedspecificities,aswellastomissingMWE
annotationsinSkładnica.
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20), we restrict further experiments to this version.
Note that Fig. 8.3a does not fully reflect the potential advantages of

the PM strategy, whose behavior does not directly depend on the length of
the parsed sentence, but rather on the number and the size of the MWEs
potentially occurring in it. These 2 values can be together represented as
the ratio of the size of the MWE-based derivation tree to the size of the
corresponding compositional derivation tree (i.e. the one assuming no MWE
occurrence). Expectedly, as shown in Fig. 8.3b, the lower this ratio (i.e. the
more words in the sentence belong to MWEs, and the longer are these MWEs),
the more significant the hypergraph size reductions. As we can see, the PM
strategy allows to reduce the search space by around 85% for the sentences
with the highest MWE density. Moreover, the resulting graph suggests that
the hypergraph size reductions are linear with respect to the above-mentioned
ratio. Note that the vertical axis now shows the proportional gain in the
hypergraph size due to the ST+PM strategy with respect to the ST strategy
alone.

Finally, we investigated the behavior of the PM+ST strategy for two types
of MWEs independently: verbal MWEs from Walenty and compounds from
NCP and SEJF. As shown in Fig. 8.3c, verbal MWEs, while less frequent,
prove to be better in reducing ambiguity for sentences with low number
of potential MWEs. It is hard to ascertain this claim for sentences with
lower gold derivation size ratio. While compounds seem to outperform verbal
MWEs in this case, sentences with verbal MWEs for which this ratio is low
are also very short in our dataset (of length 5, on average, for the 20 sentences
with the lowest ratio), and thus exhibit low syntactic ambiguity.



Chapter 9

Future work

Recall that the probabilistic characterization of the MWE-promoting strategy
(cf. Sec. 7.2) was inspired by the work of Lewis and Steedman (2014), who
showed that it can be used for both efficient and accurate CCG parsing. Their
system relies on the assumption that the probability of a given derivation
is a product of the probabilities of the participating elementary grammar
units. This might seem like a strong and unrealistic assumption – clearly,
the probability of a combination of two lexicalized elementary units should
be different depending on the words they represent. In different terms, this
model does not account for bilexical relations which, after all, are known to
play an important role in syntactic disambiguation.

The high accuracy of Lewis and Steedman (2014)’s CCG parser stems from
the fact that the probabilities of the individual elementary grammar units
(EUs) are not global, but rather computed for each input sentence separately
before syntactic parsing takes place. Namely, a sequential, probabilistic
supertagger is used to assign the probabilities to the individual EUs which
can be potentially attached to the individual input words, based on local
contextual information. This makes sense from the parsing architecture point
of view because sequential models are simpler than syntactic parsing models,
which means that obtaining the probabilities is significantly less costly than
it would be if they were computed on the basis of a full-fledged probabilistic
parsing model. The fact that the most probable sequence of EUs does not
necessarily lead to a correct analysis is then handled by the parsing algorithm,
which accepts only the syntactically correct (in the symbolic sense, i.e., those
which would be present in the results of syntactic analysis) derivations.

The situation gets significantly complicated when MWEs enter the scene.
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On the one hand, because of their scarcity, even simple probabilistic models
might have trouble to reliably estimate their weights. On the other hand,
MWEs can span over several words in the input sentence, potentially distant
form each other, which excludes the possibility of use of the simple sequential
supertagging models.

In future work, we plan to address this issue by assuming a distinction
between MWE-related and simplex ETs: probabilities of the latter could be
handled using sequential probabilistic supertagging methods, as in (Lewis and
Steedman, 2014), while MWE-related ETs could be systematically promoted
as in our current proposition. An alternative would be to design an extension
of the word-lattice approach capable of handling discontinuous MWEs. Recall
that regular word-lattices (cf. Sec. 5.4.3) can handle segmentation ambiguities
related to continuous MWEs. Fig. 9.1 shows an example of a pseudo-lattice
extension which accounts for discontinuous MWEs as well. It preserves the
property that each path from the starting node to the final node represents
a possible segmentation of the sentence. A sequential model applied to
such a representation would provide us with positive weights assigned to the
individual ETs, possible to reuse in A? parsing.

A clear weakness of the pseudo-lattice approach sketched above is that
it does not preserve the order of the words in the input sentence, which
may lead to poor estimations of the ETs’ weights. Another possibility would
be to use a variant of the lexical dependency tree model of Constant et al.
(2016), which allows to capture deep lexical analyses like nested MWEs
and to handle discontinuous MWEs. Segmentation ambiguities, including
those related to discontinuous MWEs, could be then represented with a
lexical dependency forest, obtained via a dependency parser modified so as
to output a probability-annotated shared dependency forest rather than the
most probably dependency tree. A challenge would be then to make such
a dependency parser lexicon-driven, so that it outputs only (and all) the
segmentations consistent with the ETs present in the underlying TAG.

We also plan to continue the grammar extraction experiments so as to
obtain a high-quality, linguistically-motivated Polish TAG grammar. We
think that an optimal method should rely not only on the syntactic treebank,
but also on the other available lexical resources for Polish. In particular,
the MWE-dedicated ETs could be directly compiled from the corresponding
Walenty entries, rather than via their annotated occurrences in Składnica.
This would allow to bypass the scarcity issue related to the fact that only a
limited number of syntactic variants of the individual MWEs can be observed
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Figure 9.1: A variant of the lattice shown in Fig. 5.2, extended with an
additional path related to the MWE interpretation of made decisions.

in such a small treebank. An alternative, promising approach we consider
pursuing is to use a metagrammar framework, e.g. XMG (Crabbé et al.,
2013), to obtain a core, linguistically-motivated TAG, ideally decorated with
feature structures, and to use Składnica to: (i) complete it with alternative,
automatically extracted ETs, so as to increase the grammar coverage, (ii)
estimate the weights of the individual ETs.

We also plan to continue our work on ParTAGe. Firstly, we plan to inte-
grate the FS-aware parser (cf. Sec. 7.5.3) with the A� parser (cf. Sec. 7.4.2) and
to ascertain the advantages and disadvantages of the on-the-fly FS-unification
in comparison with the alternative strategy – performing FS-unification in
post-processing. Secondly, we plan to optimize the implementation of the
A� parser so as to obtain the desired, close to constant-time behavior of
the application of the inference rules when the grammar is compressed (cf.
Sec. 7.5.2). Finally, we want to investigate the idea of the on-the-fly FS-
unification in a context where FSs are potentially recursive. While in TAG
FSs are typically restricted to flat structures, recursive FSs could be used to
model semantic frames (Lichte and Petitjean, 2015). Furthermore, ParTAGe
could then possibly serve as a parser for hybrid LFG/TAG grammars (Findlay,
2017).



200 CHAPTER 9. FUTURE WORK



Chapter 10

Conclusions

MWEs are linguistic objects containing two or more words and showing
idiosyncratic behavior at different levels. Notably, their meaning is often not
deducible from the meanings of their components and from their syntactic
structure in a fully compositional way. Thus, interpretation-oriented NLP
tasks, such as semantic calculus or translation, call for MWE-dedicated
procedures. In this work, we focus on syntactic parsing, which often underlies
such tasks. MWEs exhibit properties of both words and syntactic expressions,
hence it is not clear what is an appropriate model to handle them in parsing,
nor how they should be represented in syntactic treebanks (Rosén et al.,
2015).

In order to better understand the relationship between MWE recognition
and syntactic parsing, we first looked at how MWEs are represented in
syntactic treebanks (cf. Ch. 4). We designed a novel classification of the
MWE representation methods, with a particular focus on the MWE/syntax
interface, and identified three appropriate representation approaches: chunks
(for fixed, continuous MWEs), overlay (for syntactically regular expressions),
and bidirectional (for both regular and irregular MWEs).

We also investigated the methods of dealing with MWEs in the existing
parsing systems (cf. Ch. 5). In case of statistical methods, we used a
classification based on the so-called orchestration question – at which point
the MWE identification should take place: before, after, or during syntactic
parsing (Constant et al., 2017), a dynamic counterpart of the MWE/syntax
interface question examined before. Based on several MWE-related issues,
we identified the MWE-aware approach (nota bene, the only approach which
supports the bidirectional MWE/syntax interface) as the most promising in
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dealing with both MWEs and syntactic structures. Two other approaches
turned out as interesting alternatives – the word-lattice approach (related
to the chunking interface and, thus, dealing with fixed MWEs only) and the
re-ranking approach (related to the overlay approach).

However, among the statistical MWE-aware parsing methods we exam-
ined, none provides the precision necessary to fully account for the various
MWE-related idiosyncrasies.1 Numerous symbolic parsing frameworks ex-
hibit a significantly extended domain of locality in comparison with purely
statistical systems and, thus, allow to better deal with this issue. Among the
symbolic formalisms we considered in our work, TAG stands out in allowing
to describe MWEs and their idiosyncratic properties in a particularly natural
way – i.e., as elementary grammar units which represent information about
the corresponding subcategorization requirements, possible syntactic configu-
rations, potentially irregular internal structure, lexical and morphosyntactic
constraints, etc. From the parsing point of view, such elementary units can
be seen as possibly discontinuous chunks which can be pre-recognized, thanks
to their lexical nature, before syntactic parsing takes place. TAG, therefore,
served as a natural framework to design a parsing architecture in which
MWEs are exploited so as to make parsing both more accurate and faster.

In the domain of symbolic parsing, a growing interest is dedicated to
parsing strategies – e.g., A? parsing – which allow to compute the most
plausible parse tree(s) without having to generate the space of all the grammar-
compliant solutions in advance. Such strategies enable efficient parsing within
the context of large grammars and/or complex symbolic formalisms (Angelov
and Ljunglöf, 2014), without sacrificing the parser’s accuracy (Lewis and
Steedman, 2014). However, the existing symbolic parsing strategies rarely
pay attention to MWEs, even though the latter can account for more than
40% of lexical items in a natural language (Savary, 2014), potential MWE
occurrences can help the parser to make better disambiguation decisions
(Wehrli, 2014), and such occurrences are relatively easy to spot, due to their
lexical nature.

Following the trend of improving efficiency in symbolic parsing, we designed
a simple probabilistic characterization of the MWE promoting strategy and
an A? heuristic which straightforwardly implements this strategy (cf. Ch. 7).
Our experiments (cf. Ch. 8) confirmed the hypothesis that promoting MWEs

1Even if, as we believe, MWE-aware methods could be leveraged so as to overcome this
challenge.
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(more precisely, preferring TAG derivations based on MWE-related elementary
trees) is a profitable strategy for a wide range of MWE types. We showed
that up to 85% search-space reduction can be gained by guiding the parser
to focus on the MWE-related derivations, and that the size of the parsing
search space drops linearly in the number and size of the MWEs present in
the sentence (Waszczuk et al., 2016b). We made use of additional grammar
compression techniques so as to obtain results closer to a real-world setting,
where different parsing enhancements should ideally combine to provide an
optimal solution. Let us recall that the weighting scheme underlying our
A? heuristic can be adapted so as to take corpus-based estimations of the
probabilities of the individual ETs into account. Such estimations would then
lead to further search-space reductions, independent from the MWE-related
efficiency gains.

More importantly, we showed that speed-up gains can be achieved with
virtually no loss in syntactic parsing accuracy, a relatively low-hanging fruit
which is, nevertheless, beyond the reach of many symbolic A? parsers. Such
parsers should be, therefore, extended with appropriate, MWE-aware A?

components which would allow them to benefit from the possitive effects
of promoting MWEs. Moreover, our results show the need for appropriate
MWE-aware supertagging methods. In future work (cf. Ch. 9), we wish
to investigate the lexical segmentation representations capable of handling
both continuous and discontinuous MWEs, as well as the corresponding
supertagging methods which would allow us to control the weights assigned
to the individual ETs in a sentence-dependent manner (Lewis and Steedman,
2014). Such an approach would help in discriminating between the real, the
literal, and the accidental occurrences of MWEs. In our particular case, this
would help to deal with the 5% loss in the MWE recognition accuracy we
observed in our experiments (Savary and Waszczuk, 2017).

Designing a symbolic parsing architecture which allows to promote MWEs
in a principled way, so that it can be incorporated in a large-scale parsing
system, is not a trivial task. We, thus, formalized a number of extensions (cf.
Sec. 7.5) in order to show its practicality in a real-world setting, as well as to
lay out the theoretical foundations for confirming our hypothesis (the benefits
of promoting MWEs) with a real-sized TAG grammar. Firstly, we proposed
an improved variant of the MWE-promoting A? heuristic which not only has
better theoretical properties, but also is easier to compute. Its monotonicity
guarantees the correctness of the parsing results and makes it safe to combine
it with other A? heuristics. Secondly, we showed how to combine our A?
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parsing strategy with grammar compression techniques. It remains to be
proved that grammar compression and A? parsing are fully composable, but
we believe that obtaining a constant-time behavior of the application of the
inference rules is mostly a matter of low-level implementation optimizations.
Finally, we showed how to extend the parser so as to account for feature
structures (FSs), which are commonly used in practical TAGs and allow to
model the idiosyncratic properties of MWEs. The FS-aware parser performs
FS unification on the fly, which allows to combine it with A? parsing strategies.

Both the basic parsing architecture and its extensions were implemented
in ParTAGe, a Haskell library available2 under the BSD2 license. A front-end,
command-line tool called ParTAGe4XMG, which allows to use ParTAGe
with FS-aware TAGs generated with XMG (Crabbé et al., 2013), is also
available3 under the BSD2 license. The experiments we performed to verify
our hypothesis were carried out on Składnica, a Polish constituency treebank.
The automatic projection of three high-quality, MWE-aware Polish resources
on this treebank resulted in a manually validated resource containing over
2,000 verbal MWEs in about 9,000 constituency trees, and available4 under
the GPL v3 license.

To conclude, we showed that the challenge of the MWE-related idiosyn-
crasies can be turned into an advantage in practical symbolic parsing. Namely,
with TAGs, which provide first-class support for MWEs, and A? search strate-
gies, considerable speed-up gains can be achieved by promoting MWE-based
analyses with virtually no loss in syntactic parsing accuracy. This is in contrast
to purely statistical state-of-the-art parsers, which, despite efficiency, provide
no satisfactory support for MWEs. We contribute a TAG-A?-MWE-aware
parsing architecture with facilities (grammar compression and feature struc-
tures) enabling real-world applications, easily extensible to a fully probabilistic
framework.

2https://github.com/kawu/partage
3https://github.com/kawu/partage4xmg
4 http://zil.ipipan.waw.pl/Sk%C5%82adnicaMWE

https://github.com/kawu/partage
https://github.com/kawu/partage4xmg
http://zil.ipipan.waw.pl/Sk%C5%82adnicaMWE
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