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Résumé

Le cadre de cette thèse est la théorie des surfaces minimales dans deux variétés

homogènes, R3 et ˜PSL2(R). Dans R3, étant donné un pavage T du plan par des
polygones, qui soit invariant par deux translations indépendantes, on construit une
famille de surfaces minimales plongées et triplement périodiques qui désingularise
T × R. Dans cette perspective, et inspiré par le travail de Martin Traizet, nous
ouvrons les nodes d’une surface de Riemann singulière dans le but de coller ensemble
des Karcher saddle towers, chacune placée sur un sommet avec ses bouts au long
des arrêtes qui se terminent sur ce sommet même. Dans une seconde partie, nous

étudions les graphes minimaux dans ˜PSL2(R) et nous fournissons des exemples
de surfaces invariantes. Nous obtenons des estimées du gradient pour les solutions
de l’équation des surfaces minimales dans l’espace en considération et on étudie le
comportement des suites monotones de solutions. Nous concluons par prolonger à

˜PSL2(R) un théorème de Jenkins et Serrin, qui donnent une condition nécessaire
et suffisante pour la solvabilité du problème du Dirichlet de l’équation des surfaces
minimales dans R3, avec des données infinies sur le bord d’un domaine convexe et
borné.

Mots clés : Variétés Homogènes simplement connexes de dimensions trois, Fi-
brations Riemannienne, Sections minimales, Surfaces minimales invariantes dans

˜PSL2(R), Théorème de type Jenkins-Serrin, Surfaces minimales triplement pério-
diques, Surfaces de Riemann singuliere, différentielles regulière, Karcher Saddle to-
wers, Pavage rigide du plan.
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Abstract

This doctoral thesis deals with minimal surface theory in two homogeneous mani-

folds, namely, R3 and ˜PSL2(R). In R3, given a tiling T of the plane by straight edge
polygons, which is invariant by two independent translations, we construct a family
of embedded triply periodic minimal surfaces which desingularizes T × R. For this
purpose, inspired by the work of Martin Traizet, we open the nodes of singular Rie-
mann surfaces to glue together simply periodic Karcher saddle towers, each placed
at a vertex of the tiling in such a way that its wings go along the corresponding edges

of the tiling ending at that vertex. On the other hand, in ˜PSL2(R) we study mini-
mal graphs and we furnish many invariant examples. We derive gradient estimates
for solutions of the minimal surface equation in the underlying space and we study

convergence of monotone sequences of solutions. Finally, we extend to ˜PSL2(R) a
result of Jenkins and Serrin who provide a necessary and sufficient condition for
the solvability of the Dirichlet problem of the minimal surface equation in R3, with
infinite data over boundary arcs of a convex bounded region.

Keywords : Homogeneous simply connected 3-manifolds, Riemannian fibrations,

Minimal sections, Invariant minimal surfaces in ˜PSL2(R), Jenkins-Serrin type theo-
rem, Triply periodic minimal surfaces, Riemann surfaces with nodes, Regular diffe-
rentials, Karcher saddle towers, Rigid planar tilings.
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Introduction

L’étude des surfaces minimales date du 18ième siècle et trouve ses racines dans
les travaux de Lagrange, qui cherchait des graphes qui admettent comme bord une
courbe fixe, et qui minimisent l’aire. Les difficultés rencontrées en essayant de com-
prendre ces surfaces, faisant appel à des branches différentes des mathématiques,
ont nécessité des efforts de la part de plus grands mathématiciens du 19ième et du
20ième siècle. Une surface minimale est une surface dont la courbure moyenne est
nulle en chacun de ses points. Egalement, et plus intuitivement, une surface mini-
male est telle que chacun de ses points admet un voisinage qui minimise l’aire par
rapport à son bord.

Ce mémoire de doctorat est consacré à l’étude de la théorie des surfaces minimales
dans deux variétés homogènes et simplement connexes de dimension trois, l’espace

euclidien R3 et ˜PSL2(R), le revêtement universel du group linéaire spécial projectif
d’ordre deux. Nous avons deux objectifs, d’un côté nous initions l’étude des surfaces

minimales dans ˜PSL2(R), nous fournissons des exemples de surfaces invariantes par

des groups à un paramètre d’isométries de ˜PSL2(R), et nous développons une machi-
nerie pour montrer un théorème de type Jenkins-Serrin pour les graphes minimaux

dans ˜PSL2(R). De l’autre côté, nous construisons une pléthore d’exemples de sur-
faces minimales triplement périodiques en collant ensembles des surfaces minimales
simplement périodiques.

La variété ˜PSL2(R) porte d’une manière naturelle une des huit géométries maxi-
males possibles sur une variété simplement connexe de dimension trois, comme dé-
crites par Thurston. En fait, il y a un intérêt croissant dans l’étude de la théorie des
surface minimales dans des espaces comme S2 ×R, H2 ×R et le group d’Heisenberg
Nil(3), chacun portant une des géométries dans le sens de Thurston, et donc il est

naturel d’initier la théorie dans ˜PSL2(R). Il se trouve que ˜PSL2(R) est une fibration
Riemannienne sur le plan hyperbolique H2, ce qui permet de considérer les graphes

comme des sections de la projection du fibré. Le groupe d’isométries de ˜PSL2(R)
est de dimension quatre et est engendré par les rélèvements des isométries de H2 et

les translations le long des fibres verticales de ˜PSL2(R). Nous commençons notre in-

vestigation par le calcul de l’équation des surfaces minimales dans ˜PSL2(R) et nous
l’utilisons pour trouver des exemples de surfaces minimales invariantes. Suivant les
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INTRODUCTION

pas de Jenkins et Serrin dans R3 et ceux de Rosenberg et Nelli dans H2 × R, nous
développons la machinerie nécessaire pour montrer un théorème de type Jenkins-

Serrin dans ˜PSL2(R).

Notre théorème de type Jenkins-Serrin donne une condition nécessaire et suffisante
pour la solvabilité du problème du Dirichlet de l’équation des surface minimales dans

˜PSL2(R), avec des données infinies prescrites sur des arcs du bord d’un domaine
convexe et borné de H2, et avec une donnée continue sur le reste du bord. Cepen-
dant, un arc du bord d’un domaine de H2, où une solution de l’équation des surfaces

minimales dans ˜PSL2(R) admet une valeur infinie, doit être géodésique.

Plus précisément, soit Ω un domaine convexe et borné dans H2 dont le bord consiste
en des arcs géodésiques (ouverts) A1, .., An, B1, ..., Bm et leurs extrémités, et des
arcs ouverts convexes C1, C2, ..., Cℓ. On suppose que les géodésiques Ai (resp. Bi)
n’admettent pas d’extrémité commune. Nous fournissons une condition nécessaire et

suffisante pour l’existence d’une section minimale s : Ω → ˜PSL2(R) de la submer-
sion Riemannienne, qui admet la valeur +∞ sur les arcs A1, ...An, −∞ sur les arcs
B1, ..., Bm, et une donnée continue arbitrairement prescrite sur les arcs Ci. Pour un
polygone géodésique simple P , dont les sommets sont choisis parmi les extrémités
des Ai et Bj, nous désignons par α et β les H2-longueurs totales des segments Ai et
les segments Bj respectivement qui font partie de P . Nous remarquons que dans le
cas {Cs} = ∅, P peut être le bord de Ω tout entier. Nous énonçons notre resultat

principal dans ˜PSL2(R)

Théorème Si la famille {Cs} 6= ∅, il existe alors une section unique du fibré

π : ˜PSL2(R) → H2 définie dans Ω qui admet la valeur +∞ sur les arcs géodé-
siques Ai, la valeur −∞ sur les géodésiques Bj et une donnée continue arbitraire fs
sur Cs si et seulement si

2α < γ and 2β < γ

pour chaque polygone P choisi comme ci-dessus.
Si la famille {Cs} = ∅, la condition sur les polygones P est la même sauf dans le
cas ou P est le bord de Ω oú la condition devient α = β. De plus l’unicité est à une
constante près.

Un résultat important pour notre travail est l’existence d’une solution du problème

de Dirichlet de l’équation des surfaces minimales dans ˜PSL2(R), dans un domaine
convexe et borné de H2 avec une donnée continue par morceaux. Important aussi
est le comportement des suites monotone de solutions dans ce genre de domaine.
Dans leur travail, Jenkins et Serrin emploient des estimées a priori pour les solu-
tions de l’équation des surfaces minimales dans R3, et ils utilisent la surface de
Scherk comme barrière, ce qui est fondamental pour la plupart des résultats. Les
techniques de Jenkins-Serrin ont été adaptées dans H2 × R par Rosenberg et Nelli,
qui construisent une surface de type Scherk dans cet espace. Cependant, ces tech-
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INTRODUCTION

niques ne se prolongent pas d’une manière evidente dans ˜PSL2(R), qui n’est pas un
éspace produit ! Nous adaptons des résultats de Spruck pour obtenir une estimée de
gradient pour les solutions dans l’espace en considération, ce qui implique un prin-
cipe de compacité. Ensuite nous étudions le comportement des suites monotones de
solutions et nous suivons les constructions de Jenkins et Serrin pour établir notre
théorème.

Nous poursuivrons avec une description de notre construction de surfaces minimales
plongées triplement périodiques. Au cours du 19ième siècle, H.A. Schwarz explorait
les surfaces minimales périodiques et il a pu construire cinq surfaces triplement pério-
diques. Une surface minimale dans l’espace euclidien est dite triplement périodique,
si elle est invariante par trois translations indépendantes. Sa méthode consistait à
refléter une surface minimale de type disque, bordée par une ligne polygonale non
plane, par rapport aux segments du bord. Dans les années 1970, le physicien et
cristallographe Alan Schoen, a découvert plusieurs exemples de surfaces minimales
triplement périodiques et il en a construit des modèles. Quelques années plus tard,
Herman Karcher a pu établir rigoureusement l’existence des surfaces de Schoen, et
il a pu construire de nouvelles familles de surfaces minimales triplement périodiques
en appliquant sa méthode "Conjugate plateau constructions".

Nous construisons des familles de surfaces minimales triplement périodiques en col-
lant ensemble des surfaces minimales simplement périodiques avec des bouts de type
Scherk. Un bout de type Scherk est asymptotique a un demi-plan. Heuristiquement,
l’idée derrière le processus de construction est la suivante : de loin, une Karcher
saddle tower se voit comme une collection de demi-plans verticaux ayant une ligne
en commun. Nous supposons que tout les saddle towers admettent la même période
verticale (0, 0, T ), qu’on normalise à (0, 0, 2π) . Nous rapetissons les saddle towers
d’un facteur ε2, de façon que la période verticale soit Pε = (0, 0, ε2T ). Alors étant
donné un pavage de R2, invariant par deux translation indépendantes, nous plaçons
une Karcher saddle tower rapetissée sur chaque sommet de T de telle manière que
le nombre de bouts de la saddle tower soit égal au nombre des arêtes qui se ter-
minent au sommet, et chaque bout va le long d’une arête. Pour chaque arête nous
collons les bouts des saddle towers placées sur ses extrémités, ce qui va donner une
surface minimale triplement périodique d’une période horizontale celle du pavage
et d’une période verticale Pε. Il est naturel qu’on suppose les surfaces à construire
symétriques par rapport au plan horizontal car les Karcher saddle towers le sont.
Bien sûr, nous n’attendons pas que la construction marche pour des pavages pé-
riodiques arbitraires. Par exemple, il sera nécessaire d’avoir des pavages qui soient
équilibrés (au sens balanced de notre article) pour qu’on puisse placer les Karcher
saddle towers comme nous l’avons expliqué. Nous montrerons qu’il suffit d’avoir des
pavages orientables, équilibrés et rigide pour que tout marche bien. Notre résultat
se résume dans le théorème suivant

Théorème Soit T un pavage équilibré du plan qui est invariant par deux transla-
tions indépendantes T1 et T2. Soit Γ le groupe engendré par T1 et T2, et T le pavage

15



INTRODUCTION

correspondant dans R2/Γ.

Si dans le quotient T est orientable et rigide alors pour chaque ε 6= 0 suffisam-
ment petit, il existe une surface minimale triplement périodique Mε d’une période
horizontale Γ et d’une periode verticale (0, 0, 2πε2) telle que :

1. Mε est symétrique par rapport au plan horizontal et dépend de ε d’une manière
continue.

2. Quand ε → 0, Mε converge, sur les compacts de R3 et pour la métrique am-
biante, vers l’ensemble T × R.

3. Autour de chaque sommet v de T dans le plan, Mε agrandi d’un facteur ε−2,
ressemble à une Karcher saddle tower Mv, d’une période verticale (0, 0, 2π),
dont les bouts sont en bijection avec les arêtes qui se terminent en v d’une
manière que le demi-plan vertical asymptotique à un bout de Mv soit parallèle
à son arête correspondante et pointe dans la même direction.

Plus précisément, il existe un vecteur horizontal νε tel que ε−2(Mε−νε) converge
vers Mvsur les compacts de R3.

La construction sera menée en fournissant les données de Weierstrass sur une surface
de Riemann bien adaptée. Inspiré par le travail de Martin Traizet, nous ouvrons les
nodes d’une surface de Riemann singulière oú nous exploitons la régénération des
formes régulières qu’elles portent vers des formes holomorphes. Nous ajusterons les
paramètres qui sous-tendent la construction en appliquant le théorème des fonctions
implicites.
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Introduction

The study of minimal surfaces dates back to the late 18-th century, and is rooted
in the work of Lagrange who sought graphs with least area, spanning particular
space curves. The difficulty encountered in understanding these surfaces and the
interplay between different branches of mathematics employed through their study,
engaged the efforts of many of the greatest mathematicians of the 19-th and the
20-th century. A minimal surface is one whose mean curvature is identically equal
to zero. Equally and more appealing to intuition, a minimal surfaces is one which
each of its points admits a neighborhood of least area with respect to its boundary.

The doctoral thesis at hand is devoted to the study of minimal surface theory in two
homogeneous and simply connected Riemannian 3-manifolds, namely, the euclidean

three space R3 and ˜PSL2(R), the universal covering of the projective real special
linear group of order two. Our objective is two-fold, on the one hand we initiate

the study of minimal surfaces in ˜PSL2(R), we furnish examples of minimal surfaces

invariant under one parameter groups of isometries of ˜PSL2(R), and we develop
the machinery culminating to a proof of a Jenkins-Serrin type theorem for minimal

graphs in ˜PSL2(R). On the other hand, we furnish a plethora of examples of triply
periodic minimal surfaces embedded in the euclidean space by gluing together sim-
ply periodic minimal surfaces.

The manifold ˜PSL2(R) carries naturally one of the eight maximal geometries pos-
sible on simply connected three manifolds, as described by Thurston. In fact, in
recent years there has been an increasing interest in the study of minimal surface
theory in spaces like S2 ×R, H2 ×R and the Heisenberg group Nil(3), each carrying
a different maximal geometry in the sense of Thurston, and it was only natural to

initiate the theory in ˜PSL2(R). It turns out that ˜PSL2(R) is a Riemannian fibration
over the hyperbolic plane H2, which permits us to deal with graphs in this space

as sections of the fiber bundle projection. The isometry group of ˜PSL2(R) is four
dimensional and is generated by lifts of the isometries on H2 and translations along

the vertical fibers of ˜PSL2(R). We start our investigation by deriving the minimal

surface equation in ˜PSL2(R) and we furnish examples of invariant minimal surfaces.
Following the lines of work of Jenkins and Serrin in R3 and those of Rosenberg and
Nelli in H2 ×R, we then develop the machinery necessary to prove a Jenkins-Serrin
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INTRODUCTION

type theorem in ˜PSL2(R).

Our Jenkins-Serrin type theorem gives necessary and sufficient conditions for the

solvability of the Dirichlet problem for the minimal surface equation in ˜PSL2(R),
allowing infinite boundary values prescribed on arcs of the boundary of a convex
bounded domain in H2, and continuous data on the rest of the boundary. However,
boundary arcs of a bounded domain in H2, where a solution of the minimal surface

equation in ˜PSL2(R) admits infinite values, have to be geodesics.

Then more precisely, let Ω be a convex bounded domain in H2 whose boundary
consists of (open) geodesic arcs A1, .., An, B1, ..., Bm, together with their end points
and convex open arcs C1, C2, ..., Cs. We suppose that no two geodesics Ai and no
two geodesics Bi have a common end point. We give necessary and sufficient condi-

tions for the existence of a minimal section s : Ω → ˜PSL2(R) of the Riemannian
submersion, taking values +∞ on the arcs A1, ...An, −∞ on the arcs B1, ..., Bm

and arbitrary prescribed continuous data on the arcs C1, ..., Cs. For a simple closed
geodesic polygon P , whose vertices are chosen from among the endpoints of the
segments Ai and the segments Bj, let α and β be, respectively, the total H2-length
of the geodesics Ai and the total H2-length of the geodesics Bi which are part of P .
Let γ be the perimeter of P . Note that in the case {Cs} = ∅, P could be the whole

boundary of Ω. We can now state our principal result in ˜PSL2(R),

Theorem. If the family of arcs {Cs} is non empty, then there exists a unique sec-

tion of the bundle π : ˜PSL2(R) → H2 defined in Ω and taking the boundary values
+∞ on the geodesics Ai, the value −∞ on the geodesics Bi and arbitrary continuous
data fs on Cs if and only if

2α < γ and 2β < γ

for each polygon P chosen as above.
If the family of arcs {Cs} is empty, the condition on the polygons P is the same
except that in the case when P is the entire boundary of Ω then the condition is
α = β. Moreover, uniqueness is up to additive constants.

Fundamental to our work in ˜PSL2(R) is the existence of a solution of the Dirichlet

problem, associated to the minimal surface equation in ˜PSL2(R), in a convex boun-
ded domain of H2 with piecewise continuous boundary data. Fundamental also is the
behavior of monotone sequences of solutions in such domains. In their paper, Jenkins
and Serrin make use of the a priori estimates for solutions of the minimal surface
equation to obtain a compactness principle for sequences of solutions and to study
limit behavior of monotone sequences of solutions. They also make use of the Scherk
surface as a barrier, which is fundamental to most of the results. The techniques
developed by Serrin were adapted by Rosenberg and Nelli to show a Jenkins-Serrin
type theorem in H2 × R, where the authors construct a Scherk type surface. Howe-

ver, these techniques do not extend in an obvious way to ˜PSL2(R), which is not
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a product space. To prove our corresponding compactness principle and to develop
necessary tools to study limit behavior of monotone sequences of solutions, we adapt
results of Spruck and we construct barriers adequate to our space.

We next describe our construction of embedded triply periodic minimal surfaces.
During the middle of the nineteenth century, H.A. Schwarz carried an intensive in-
vestigation of periodic minimal surfaces and was able to construct five triply periodic
ones. A minimal surface in the euclidean space is said to be triply periodic if it is
invariant under three independent translations. His method consisted of spanning a
disc-type minimal surface into a non-planar polygonal boundary, and then reflecting
this surface across its boundary lines.

In the 1970’s, the physicist and crystallographer Alan Schoen, discovered many tri-
ply periodic minimal surfaces and constructed models of them. However, his study
of these surfaces was a bit sketchy and thus, among mathematicians, there remained
doubts whether all details could be filled in. It did not take long until Hermann Kar-
cher established rigorously the existence of all of Schoen’s surfaces, and constructed
whole families of newly found triply periodic embedded minimal surfaces, by ap-
plying his so called "Conjugate Plateau Constructions" .

We will construct families of triply periodic embedded minimal surfaces by gluing
simply periodic ones with Scherk type ends. A Scherk type end is one which is
asymptotic to a vertical half-plane. Roughly speaking, the idea underlying the gluing
process is the following : from a distance, a Karcher saddle tower is seen as a set of
vertical half-planes intersecting at a common line. We assume that all of the saddle
towers to be considered, admit the same vertical period (0, 0, T ), which without loss
of generality we normalize to (0, 0, 2π). We scale each of the saddle towers by a
factor of ε2 ( !), so that the vertical period is Pε = (0, 0, ε2T ). Then, given a tiling
T of R2, invariant under two independent translations, we place a scaled Karcher
saddle tower at each of its vertices in such a way that, the number of wings of the
saddle tower is equal to the number of edges ending at the vertex where it is placed,
and each wing goes along an edge. For each edge we glue the corresponding wings
of the scaled saddle towers placed at its ends, resulting in a triply periodic surface
whose horizontal period is that given by the tiling and a vertical period Pε. It is
natural that we require the surfaces to be symmetric with respect to the horizontal
plane as it is the case for the saddle towers under consideration. Of course, we do
not expect the construction to work for arbitrary periodic tilings. For example, it
will be necessary to have a balanced tiling as to place the Karcher saddle towers at
the different vertices as explained above. It turns out that, for our purposes, rigid
and balanced tilings will do. In our work, we establish criteria to help decide the
rigidity of a given tiling. We resume our construction as follows,

Theorem Let T be a balanced tiling in the plane which is invariant by two inde-
pendent translations T1 and T2. Let Γ denote the group generated by T1 and T2, and
denote by T the corresponding quotient tiling in R2/Γ.
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If the quotient tiling T is orientable and rigid then for any ε 6= 0 sufficiently small,
there exists an embedded triply periodic minimal surface Mε with horizontal period
Γ and a vertical period (0, 0, 2πε2) such that :

1. Mε is symmetric with respect to the horizontal plane and depends continuously
on ε.

2. When ε → 0, Mε converges, on compact subsets of R3 and for the ambient
metric, to the set T × R.

3. In a neighborhood of each vertex v of T in the plane, when scaled by ε−2, Mε

looks like a Karcher saddle tower Mv whose period is equal to (0, 0, 2π), and
whose ends are in a one-to-one correspondence with the edges ending at v in
such a way that, the asymptotic vertical half-plane to an end of Mv is parallel
to its corresponding edge and points in the same direction.

More precisely, for each v there exists a horizontal vector νε such that, ε−2(Mε−
νε) converges to Mv on compact subsets of R3.

The construction will be accomplished by furnishing Weierstrass data on appro-
priate Riemann surfaces, where we employ Weierstrass representation of a minimal
surface in its simplest form. Inspired by the work of Martin Traizet, we perform the
gluing by opening the nodes of singular Riemann surfaces with nodes and we invest
the regeneration of the regular differential forms they carry into holomorphic forms.
We adjust the parameters underlying the construction underlying the construction
by applying the implicit function theorem.
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Chapitre 1

Minimal Surfaces

1.1 Notions on surfaces

For our purposes, a surface S in R3 is considered as the image of a 2-manifold Σ
by an immersion X : Σ → R3. X defines a local embedding on Σ and therefore when
we treat local questions on S, we identify Σ and S and confound them. Σ inherits a
metric from R3 as follows : if U and V are tangent vectors to Σ

〈U, V 〉 = 〈DX(U), DX(V )〉R3 .

The Levi-Civita ∇ connection corresponding to the metric induced on Σ is then
defined by the following relation : if U and V are vector fields on Σ

DX(∇UV ) = [U(DX(V )]T ,

where [.]T denotes projection onto the plane DpX(TpΣ) tangent to S at X(p), p ∈ Σ.
Note that U(DX(V )) is equal to the covariant derivative in R3 ofDX(V ) byDX(U).
We restrict our attention to orientable surfaces and we assume that an orientation
is fixed on S. We define the Gauss map N of Σ, N : Σ → S2, as follows : for p ∈ Σ
let N(p) be the unit normal to S at X(p). Since N(p) is normal to both TN(p)S

2 and
TpS, the two linear spaces may be identified and the differential Ap = DpN then
defines a self-adjoint endomorphism of TpΣ.
A is called the shape operator of Σ and it verifies

−〈A(U), V 〉 = U(DX(V )).N ,

an equation which can be simply obtained from DX(V ).N = 0 by taking the R3

covariant derivative by U . The left side term of this equation is the second funda-
mental form of Σ.
The eigenvalues of Ap, p ∈ Σ, and their corresponding eigenvectors are called respec-
tively the principal curvatures and the principal directions of Σ at p. The average of
the principal curvatures is the mean curvature of S (or X, or Σ !) which we denote
by H.
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1.2. MINIMAL GRAPHS

Definition 1 A minimal surface in R3 is one whose mean curvature vanishes at
each of its points.

Remark 1 The Gauss map and the mean curvature of Σ are defined via the immer-
sion X into R3. These quantities may be defined in a similar manner for oriented
hypersurfaces immersed in an oriented Riemannian manifold, and one may therefore
speak of a minimal surface in oriented Riemannian 3-manifolds.

1.2 Minimal Graphs

It is generally admitted that the study of minimal surfaces started with Lagrange
in the 1760’s, when he addressed the following minimization problem : Given a
bounded domain Ω in the plane and a continuous function g defined on its boundary
∂Ω, what smooth functions u defined in Ω and admitting the values g on ∂Ω have
their graphs with the least area. One has the following standard formula (see [19]) :

Proposition 1 (First Variation Formula). Let f : M → R3 be a compact surface
with boundary. Let ft : M → R3 be a smooth variation of f for t ∈ (−1, 1) such that
f0 = f . Let E = f∗(

d
dt

) be the variational field restricted to f0 = f . If A(t) is the
area of ft then

A′(0) = −2

∫

M

〈E,H.N〉 dA (1.1)

where H is the mean curvature of M , N its Gauss map and dA is the area form of
the metric induced by f .

Remark 2

(i) Proposition 1 characterizes minimal surfaces as being the critical point of the
area functional.

(ii) (Second Variation Formula) If we consider the variations ft = f + tφN , where
φ is a smooth function of compact support away from the boundary, we can prove
that

A′′(0) = −
∫

M

φ(∆φ− 2Kφ)dA, (1.2)

where K is the Gaussian curvature of M and ∆ its Laplacian, see [19].

An immediate consequence of Proposition 1 is that u is a solution of the above
minimization problem only if the graph of u has zero mean curvature at inter-
ior points of Ω, i.e. a piece of minimal surface. However, for a surface given by
F (x, y, z) = z−u(x, y) = 0 the mean curvature with respect to the upward pointing
normal can be simply computed to obtain

H = −div


 ∇u√

1 + |∇u|2


 .
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1.2. MINIMAL GRAPHS

Then H ≡ 0 could be written into the quasilinear, second order, elliptic partial
differential equation

(1 + u2
x)uyy + 2uxuyuxy + (1 + u2

y)uxx = 0 (1.3)

known as the minimal surface equation. Therefore, a solution of the minimization
problem is necessarily the solution of a Dirichlet problem in Ω and when Ω is convex
we have the following existence and uniqueness result which allows g to admit a
finite number of discontinuities on ∂Ω.

Theorem 1 Let Ω be a bounded convex domain in the plane. Consider a finite set
of points in ∂Ω, and let C denote the remaining boundary of Ω (which consists of
a finite number of open arcs). Then there exists a solution of the minimal surface
equation in Ω, taking on preassigned bounded continuous data on the arcs C.

It should be noted that the restriction to convex domains is necessary in order that
solutions exist corresponding to arbitrarily given piecewise continuous boundary
data. One asks whether a solution u of (1.3) solves the minimization problem. The
answer is positive if A′′(0) > 0 and elliptic differential equations theory says its
always the case for minimal graphs spanning compact curves in R3. We say that
minimal graphs are stable. More generally, a minimal surface M is said to be stable
if for any of its relatively compact domains O, the Dirichlet problem associated to
the Jacobi operator L = ∆ − 2K = ∆ + |A|2 in O has no negative eigenvalues.
For orientable minimal surfaces, stability is equivalent to the existence of a positive
Jacobi function on M (see [13]). For minimal graphs over planar domains, the Gauss
map N has its image set contained in an open half-sphere, and the inner product
of N with the unit normal to the plane of the domain provides a positive Jacobi
function, from which we conclude that any minimal graph is stable. In fact, any
surface can be expressed as a graph over a domain of the tangent plane around
each of its points. After a rotation, a minimal surface can be locally expressed as
a function u = u(x, y) which verifies the minimal equation (1.3) and hence locally
minimizes the area and it is where minimal surfaces derive their name.

Next we present a result which can be seen as an extension of Theorem 1. Let D
denote the unit disc in the plane.

Theorem 2 (Douglas, Rado)Let Γ be a rectifiable Jordan curve in R3, then there
exists a unique minimal disc, X : D → R3, of least area with X(∂D) = Γ. If Γ
admits a one-to-one orthogonal projection onto a convex curve γ in the plane, then
the minimal disc is in fact a graph over the bounded region enclosed by γ.

In fact the above theorem is a particular case of the well known Plateau problem, see
[19] for example. As far as Theorem 1 is concerned, one may ask whether there exist
with infinite boundary data admitted on arcs of the boundary on Ω as illustrated
by the following example.
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1.2. MINIMAL GRAPHS

The Scherk Surface Let Ω = (−π
2
, π

2
) × (−π

2
, π

2
) and we consider the following

solution of the minimal surface equation (1.3)

u(x, y) = − ln(cos x) + ln(cos y), (x, y) ∈ Ω.

u takes the value −∞ on the vertical boundary segments of Ω and the value +∞
on the horizontal ones. In their paper [16], Jenkins and Serrin give a necessary and
sufficient condition for the existence of a solution of the minimal surface equation
(1.3) with infinite boundary data assigned on boundary arcs of a convex bounded
domain, together with continuous data on the remaining part of the boundary. It
turns out that the boundary arcs where the data is infinite must be straight line
segments. We resume their result as follows.

Let Ω be a convex bounded domain of R2 whose boundary consists of open straight
line segments A1, A2,...,Ak, B1,B2,...,Bl, open convex arcs C1,C2,...,Cs and their end
points. We assume that no two segments Ai or Bj have a common end point. For a
polygon P in Ω whose vertices are chosen from among those of the segments Ai and
Bj, let α and β denote the total lengths of the segments Ai in P and the segments
Bj in P respectively. We let γ denote the perimeter of P .

Theorem 3 If the family of arcs {Cs} is non empty, then there exists a unique
solution of the minimal equation (1.3) defined in Ω and taking the boundary values
+∞ on the geodesics Ai, the value −∞ on the geodesics Bi and arbitrary continuous
data fs on Cs if and only if

2α < γ and 2β < γ

for each polygon P whose vertices are chosen from among those of the segments Ai
and Bj.

If the family of arcs {Cs} is empty, the condition on the polygons P is the same
except that in the case when P is the entire boundary of Ω then the condition is
α = β. Moreover, uniqueness is up to additive constants.

For example, when Ω is the bounded region enclosed by a convex quadrilateral whose
edges are A1, C1, A2, C2, in that order, then the condition in the above theorem
reduces to |A1| + |A2| < |C1| + |C2|. If the edges of Ω were A1, B1, A2, B2 in that
order, then the condition reduces to |A1|+ |A2| = |B1|+ |B2|. For domains Ω having
at most one segment Ai and at most one segment Bj the condition of the theorem
is trivially verified and the corresponding Dirichlet problem is always solvable. If Ω
is bounded by a regular 2n-gon, whose edges are alternately Ai and Bj, then the
condition of the theorem holds for all the polygons P whose vertices are chosen from
among those of the segments Ai and Bj, and the Dirichlet problem for these domains
is always solvable.

Theorem 3 has been extended to (geodesically) convex and bounded domains Ω in
the hyperbolic plane H2 bounded by open geodesic arcs Ai, open geodesic arcs Bj,
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1.3. THE WEIERSTRASS REPRESENTATION

convex arcs Cs and their endpoints. Rosenberg and Nelli [25] have given a necessary
and sufficient condition, similar to that of Theorem 3, for the Dirichlet problem of
the minimal surface equation in H2 ×R with infinite data +∞ on the geodesic arcs
Ai, −∞ on the geodesic arcs Bj and continuous data on the convex ars Cs.

1.3 The Weierstrass representation

We have in R3 a powerful tool to construct and analyze examples of minimal
surfaces. It turns out that each of these surfaces can be realized as the real part
of a holomorphic curve, which allows complex analysis to come into play and the
beautiful machinery of Riemann surfaces theory will be put into action. We show
how to represent a minimal surface in R3 as such and we furnish some examples.

Let S be a minimal surface, whose position vector is X : Σ → R3. We write X =
(x1, x2, x3) and by ∆X we mean (∆x1,∆x2,∆x3), where ∆ is the Laplacian with
respect to metric X induces on Σ. If (ei)1≤i≤2 is an orthonormal basis for TpΣ, p ∈ Σ,
we have the following

∆X =
∑

(∇ei
DX)(ei),

with DX = (dx1, dx2, dx3). However for U and V tangent to Σ we have

(∇UDX)(V ) = U(DX(V )) −DX(∇UV )

= U(DX(V )) − [U(DX(V ))]T

= (U(DX(V )).N)N

= −〈A(U), V 〉N.

This shows that the ∆X = −tr(A)N and as the trace of an endomorphism is the
sum of its eigenvalues we obtain the following formula ∆X = −2HN . This preceding
formula leads to drastic consequences on minimal surfaces as it shows that X, and
thus each of the coordinate functions x, is in fact harmonic for the metric Σ inherits
from R3.
Therefore each of the coordinate functions x gives rise, in a neighborhood of each
p ∈ Σ where dx 6= 0, to a conjugate harmonic function x∗ so that x + ix∗ defines
a conformal coordinate chart around p (knowing that isothermal parameters exist
around each of the points of Σ). Since X is an immersion, i.e. DX 6= 0, we conclude
that at each p ∈ Σ at least one coordinate function satisfies dpxi 6= 0. Therefore,
minimal surfaces in R3 inherit naturally, from their euclidean coordinates, an atlas
of holomorphic functions. We think of Σ as a Riemann surface and we note that X
maps Σ into R3 conformally. For each p ∈ Σ, the endomorphism Ap annihilates its
characteristic polynomial giving that A2

p − tr(Ap)Ap + det(Ap)Id = 0, which shows
that the Gauss map of Σ verifies

〈DN(U), DN(V )〉 = κ2 〈U, V 〉
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1.3. THE WEIERSTRASS REPRESENTATION

where ±κ are the principal curvatures. Therefore, N is anti-conformal. We orient the
unit sphere by its outward pointing normal and we let σ denote the stereographic
projection from the north pole to the complex plan identified with the (x1, x2)-plane.
Then σ is orientation reversing and g = σ◦N : Σ → C∪{∞} is orientation-preserving
and conformal whenever DN 6= 0. Thus g defines a meromorphic function on Σ. We
have shown that a minimal surface carries a natural Riemann surface structure, with
respect to which the Gauss map is meromorphic.
We set X∗ = (x∗1, x

∗
2, x

∗
3), where x∗j is the harmonic conjugate of xj, and note that

X∗ is well defined locally. X∗ is called the conjugate minimal immersion of X and
it is well defined on some covering of Σ. The relation dX∗ = −dX ◦ Rotπ

2
, which

follows easily once we realize that grad(xj) = Rotπ
2
(grad(x∗j)), shows that we have a

globally defined holomorphic form Φ = dX+ idX∗ on Σ. Let Φ = (φ1, φ2, φ3), where
φj = dxj + idx∗j . We note that we may recover X as follows

X = Re

∫
Φ = Re

∫
(φ1, φ2, φ3).

We next encode the properties of X into conditions on the holomorphic differentials
φi. With respect to any local parameter z = u1 + iu2 on Σ,

Φ =
(∂X
∂u1

+ i
∂X∗

∂u1

)
dz =

(∂X
∂u1

− i
∂X

∂u2

)
dz.

Then

Φ2 =
(∂X
∂u1

− i
∂X

∂u2

)
.
(∂X
∂u1

− i
∂X

∂u2

)
dz2

=
( ∣∣∣∣
∂X

∂u1

∣∣∣∣
2

−
∣∣∣∣
∂X

∂u2

∣∣∣∣
2

− 2i
∂X

∂u1

.
∂X

∂u2

)
dz2.

The preceding formula then shows that X is conformal if and only if Φ2 = 0 which
we write as

X is conformal if and only if φ2
1 + φ2

2 + φ2
3 = 0 on Σ.

A similar computation shows that since X is conformal

|Φ|2 = 2

∣∣∣∣
∂X

∂u1

∣∣∣∣
2

|dz|2 .

The metric, say ds2, X induces on Σ can then be written as ds2 = 1
2
|Φ|2, and the

fact that X is a regular immersion encodes to |Φ| > 0. We write this as follows

X is a regular immersion if and only if |φ1|2 + |φ2|2 + |φ3|2 > 0 on Σ.

This representation of a minimal immersion as the integral of a holomorphic form ve-
rifying the above conditions is known as the Weierstrass representation of a minimal
surface.
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Remark 3 Let dh = φ3 = dx3 − idx3 ◦ Rotπ
2
. Then it is not difficult to show that

φ1 = (g−1 − g)
dh

2
and φ2 = i(g−1 + g)

dh

2
, where g is the stereographic projection

of the Gauss map as explained above (see [14]). The Weierstrass representation of a
minimal surface becomes

X = Re

∫ (
(g−1 − g)

dh

2
, i(g−1 + g)

dh

2
, dh

)
. (1.4)

The poles and zeros of g coincide with the zeros of dh since the forms φ are holo-
morphic.

What we have developed above suggests a recipe to construct minimal surfaces.
We start with a given Riemann surface, say Σ, and we furnish three holomorphic
differentials, say φ1, φ2 andφ3, verifying the conditions

φ2
1 + φ2

2 + φ2
3 = 0 on Σ (1.5)

and

|φ1|2 + |φ2|2 + |φ3|2 > 0 on Σ. (1.6)

We set X(p) = Re

∫ p

(φ1, φ2, φ3) and Φ = (φ1, φ2, φ3). Then X defines, up to a

translation, a conformal harmonic regular immersion on Σ provided that we have

X = Re

∫

α

Φ = 0 (1.7)

for all closed cycles α on Σ.
Note that since X is conformal, the conformal structure it induces on Σ (given by the
metric inherited from R3) is compatible with that given on Σ in the first place. This
implies that X is also harmonic for the metric it induces on Σ and hence defines a
minimal immersion. The condition (1.7) is called the period condition and it suffices
to show it holds for the cycles of a homology basis of Σ.

1.4 Examples

We furnish some examples using the Weierstrass representation of a minimal
surface in its form given in Remark 2.

1. The plane. Let Σ = C and consider the Weierstrass data {g, dh} = {1, dz}.
The immersion X gives a plane which is the simplest of minimal surfaces (as the
Weierstrass data indicates !).

2. The Catenoid. Let Σ = C − {0} and {g, dh} = {z, dz
z
}.
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Fig. 1.1 – Catenoid

3. The Helicoid. Let Σ = C and {g, dh} = {ez, idz
z
}.

Fig. 1.2 – A fundamental piece of the Helicoid in a cylinder

4. The Singly periodic Scherk surface. Let Σ = C ∪ {∞} and {g, dh} =

{z, 1

z2 + z−2

dz

z
}.
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Fig. 1.3 – Singly periodic Scherk
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Chapitre 2

Minimal Graphs in ˜PSL2(R)

2.1 Introduction

In recent years there has been an increasing interest in the study of minimal and
constant mean curvature surfaces in simply connected homogeneous Riemannian 3-
manifolds with four dimensional isometry groups. Results in [1], like the existence of
a generalized Hopf-differential or of a Schwarz reflection principle in such manifolds,
suggest that these manifolds are the proper setting for studying global properties of
minimal and cmc surfaces. The geometries of such manifolds have been classified by
Thurston to be either those of the product spaces S2×R and H2×R, the Heisenberg

group Nil(3), or the fiber spaces Berger sphere and ˜PSL2(R)(see [30]).

Certain aspects of the theory of minimal and cmc surfaces in S2 × R, H2 × R and
Nil(3) have been studied for example in, [28], [25], [12], [7] and [1] among others.

In this paper, we study minimal graphs in ˜PSL2(R), known to be a Riemannian
fibration over the hyperbolic plane, and we obtain a Jenkins-Serrin type theorem for
such graphs over convex bounded domains in the hyperbolic plane.We emphasize

that ˜PSL2(R) is not a product space and so one should ask what is meant by graph
in such a space.

A graph in ˜PSL2(R) will be the image of a section of the Riemannian submersion

π : ˜PSL2(R) → H2. A Jenkins-Serrin type theorem gives necessary and sufficient
conditions for the solvability of the Dirichlet problem for the minimal surface equa-
tion allowing infinite boundary values, prescribed on arcs of the boundary of a convex
bounded domain in H2, and continuous data on the rest of the boundary. However,
boundary arcs of a bounded domain in H2, where a solution of the minimal surface

equation in ˜PSL2(R) admits infinite values, have to be geodesics (see section 7).

Then more precisely, let Ω be a convex bounded domain in H2 whose boundary
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consists of (open) geodesic arcs A1, .., An, B1, ..., Bm, together with their end points
and convex open arcs C1, C2, ..., Cs. We suppose that no two geodesics Ai and no
two geodesics Bi have a common end point. We give necessary and sufficient condi-

tions for the existence of a minimal section s : Ω → ˜PSL2(R) of the Riemannian
submersion, taking values +∞ on the arcs A1, ...An, −∞ on the arcs B1, ..., Bm and
arbitrary prescribed continuous data on the arcs C1, ..., Cs.

For a simple closed geodesic polygon P , whose vertices are chosen from among the
endpoints of the segments Ai and the segments Bi, let α and β be, respectively, the
total H2-length of the geodesics Ai and the total H2-length of the geodesics Bi which
are part of P . Let γ be the perimeter of P . Note that in the case {Cs} = ∅, P could
be the whole boundary of Ω.

We have the following

Theorem 4 If the family of arcs {Cs} is non empty, then there exists a unique

section of the bundle π : ˜PSL2(R) → H2 defined in Ω and taking the boundary
values +∞ on the geodesics Ai, the value −∞ on the geodesics Bi and arbitrary
continuous data fs on Cs if and only if

2α < γ and 2β < γ

for each polygon P chosen as above.

If the family of arcs {Cs} is empty,the condition on the polygons P is the same except
that in the case when P is the entire boundary of Ω then the condition is α = β.
Moreover, uniqueness is up to additive constants.

In R3 this theorem corresponds to that of Jenkins and Serrin proved in [16], and in
H2 ×R a corresponding result was obtained in [25] by Nelli and Rosenberg. In their
paper, Jenkins and Serrin make use of the a priori estimates for solutions of the
minimal surface equation, proved in [31], to obtain a compactness principle for se-
quences of solutions and to study limit behavior of monotone sequences of solutions.
They also make use of the Scherk surface as a barrier, which is fundamental to most
of the results. The techniques developed by Serrin in [31] were adapted in [25] to
show a Jenkins-Serrin type theorem in H2×R. To obtain a priori gradient estimates
for solutions of the minimal surface equation and to prove a compactness principle,
we adapt a result in Spruck’s [33] and we construct explicit barriers adequate to our
space.

The paper is organized as follows : in section 2 we give a model for ˜PSL2(R), compute
its metric in the coordinates and give the expression of its Levi-Civita connection.

We then characterize the isometry group of ˜PSL2(R) based on ideas from [3] and
[30]. We show that this group is generated by the lifts of isometries of H2 and trans-
lations along the fibers.
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In section 3 we derive the minimal surface equation in ˜PSL2(R) and furnish examples
of minimal graphs invariant under actions of one-parameter groups of isometries ge-
nerated by lifts of isometries of H2. The rest of the paper is dedicated to develop
the machinery necessary to prove our Jenkins-Serrin type theorem where we follow
the main lines in [16].

In section 4 we prove an estimate for the gradient of a solution of the minimal sur-
face equation which implies a compactness principle for sequences of solutions of the

minimal surface equation in ˜PSL2(R) uniformly bounded on compacts of a bounded
open subset of H2.

In section 5 we prove the existence of a solution of the Dirichlet problem for the

minimal surface equation in ˜PSL2(R) in a convex bounded open subset of H2 with
boundary data having possibly a finite number of discontinuities.

In sections 6 and 7 we prove a series of lemmas and propositions which will serve
as machinery to prove our Jenkins-Serrin type theorem. Once this machinery is es-
tablished, the lines of proof are similar to that of the corresponding Jenkins-Serrin
theorem in [16] and the reader will be referred to that paper for further details.

2.2 The space ˜PSL2(R)

The 3-dimensional Lie group of 2 × 2 real matrices of determinant 1 is denoted
SL2(R). The quotient Lie group SL2(R)/{±Id} is denoted PSL2(R) and its univer-

sal covering ˜PSL2(R). Of course ˜PSL2(R) is a Lie group itself and so admits left
invariant metrics. For our purposes, it will be convenient to introduce a model for

˜PSL2(R) and write down explicitly the metric that interests us. In fact we shall

show that ˜PSL2(R) is a Riemannian fibration over the hyperbolic plane, the reader
can refer to [30].

Remark 4 A homogeneous simply connected 3-manifold M with a 4-dimensional
isometry group, is a Riemannian fibration over a 2-dimensional space form, and
whose fibers are geodesics tangent to a unitary Killing field, say ξ. These manifolds
are classified, up to isometries, by the curvature κ of the fibration base and the bundle
curvature τ . The number τ is such that ∇Xξ = τX× ξ, for any vector field X (∇ is

the Levi-Civita connection of M). As we shall see in what follows, ˜PSL2(R) belongs
to this class of manifolds and that the parameters κ and τ have the values −1 and
−1

2
respectively.
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2.2.1 A model for ˜PSL2(R)

It is known that the group of orientation preserving isometries of the hyperbolic
plane H2 is PSL2(R). Let UH2 denote the unit tangent bundle of H2, i.e. the sub-
manifold of TH2 consisting of tangent vectors of unit length. It is easy to see that
PSL2(R) acts transitively on UH2 and the stabilizer of each point under this action

is trivial. This allows us to identify PSL2(R) and UH2 and consequently ˜PSL2(R)

and ŨH2.

The submanifold UH2 is diffeomorphically a trivial circle bundle over H2, meaning

that UH2 ≃ H2×S1. This implies that ˜PSL2(R) ≃ H2×R again from a diffeomorphic
point of view.

2.2.2 Metric on ˜PSL2(R)

A Riemannian metric on a manifold M induces a natural metric on the tangent
bundle TM . We explain how this is generally done and we fix some terminology on
the way, the reader can refer to [10]. Let (p, v) ∈ TM and V a tangent vector to TM
at (p, v). Choose a curve α : t → (p(t), v(t)) with p(0) = p, v(0) = v and V = α′(0).
Define

‖V ‖2
(p,v) = ‖dπ(V )‖2

p + ‖Dv
dt

(0)‖2
p,

where π : TM →M is the bundle projection and
D

dt
is the covariant derivative along

the curve t → p(t). The value of ‖V ‖(p,v) is independent of the choice of the curve
α.

A vector at (p, v) ∈ TM which is orthogonal to the fiber π−1(p) ≃ TpM is said to be
horizontal, and one which is tangent to the fiber is said to be vertical. We identify
the vertical tangent space in T(p,v)(TM) to TpM . We have

(i) ‖V ‖(p,v) = ‖V ‖p if V is vertical, and,
(ii) ‖V ‖(p,v) = ‖dπ(V )‖p if V is horizontal.

Horizontal tangent spaces have the same dimension as tangent spaces to M which
implies, together with the identity (ii), that dπ induces isometries between horizontal
tangent spaces and spaces tangent to M , i.e.,

dπ : TM →M

is a Riemannian submersion.

Now the metric on H2 induces a metric on TH2 which restricts to a metric on UH2.
So we have a metric on PSL2(R) which lifts to a metric on its universal covering
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˜PSL2(R). The fact that PSL2(R) acts on UH2 by isometries implies that the metric
induced on PSL2(R) is left invariant. This metric lifts obviously to a left invariant

metric on ˜PSL2(R).

To see that ˜PSL2(R) is a Riemannian fibration over H2 note that the fibres of UH2

are 1-dimensional, hence horizontal tangent spaces to UH2 coincide with those of

TH2 and π restricts to a Riemannian submersion on UH2. As ŨH2 and UH2 are
locally isometric we deduce that π induces a Riemannian submersion on ŨH2 onto

H2. The metric on ˜PSL2(R) being left invariant (hence complete) we have ˜PSL2(R)
a complete homogeneous simply connected Riemannian manifold.

At this point we have given a model for ˜PSL2(R) and assigned it a metric. We next
express this metric in coordinates, the reader can refer to [7].

Let (x, y) → ξ(x, y) be a conformal parametrization of H2 and let λ be the conformal
factor so that the metric of H2, in these coordinates, is λ2(dx2 +dy2). As v ∈ UH2 is
identified with its base point and the angle θ it makes with ∂x we have the following
local parametrization of UH2

(x, y, θ) → (ξ(x, y),
1

λ
(cos θ∂x + sin θ∂y)).

Let V be a tangent vector to ˜PSL2(R) at a point (p, v) and let α : t → (p(t), v(t))
be a curve passing through (p, v) at t = 0 and tangent to V over there. We write

p(t) = (x(t), y(t)) and v(t) =
1

λ

(
cos θ(t)∂x + sin θ(t)∂y)

)
. Using properties of the

covariant derivative along the curve t→ p(t) we compute

Dv

dt
= − λ′

λ2
(cos θ∂x + sin θ∂y) +

θ′

λ
(− sin θ∂x + cos θ∂y)

+
1

λ
(cos θ∇p′(0)∂x + sin θ∇p′(0)∂y),

with λ′ = x′λx+y
′λy, p

′(0) = x′∂x+y
′∂y,∇p′(0)∂x = x′∇∂x

∂x+y
′∇∂y

∂x and ∇p′(0)∂y =
x′∇∂x

∂y + y′∇∂y
∂y. The Christoffel symbols for the metric λ2(dx2 + dy2) on H2 are

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 =
λx
λ

−Γ2
11 = Γ2

22 = Γ1
12 = Γ1

21 =
λy
λ
.

We finally obtain

Dv

dt
=

1

λ2
(λθ′ + y′λx − x′λy)(cos θ∂y − sin θ∂x).

Thus
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‖V ‖2
(p,v) = λ2(x′2 + y′2) + 1

λ2 (λθ
′ + y′λx − x′λy)

2

.

Setting z = θ on the universal covering we get the following expression for the metric

on ˜PSL2(R) :

ds2 = λ2(dx2 + dy2) + (−λy
λ
dx+

λx
λ
dy + dz)2.

Remark 5 We can see that in our model the fibers are the vertical lines and that a
unitary vector field tangent to the fibers is ξ = ∂z. We can also see that translations
along the fibers (x, y, z) → (x, y, z+a) are isometries generated by ξ. Thus the fibers
are the trajectories of a unit Killing field and so are geodesics.

2.2.3 An orthonormal frame on ˜PSL2(R)

Let {e1, e2} be the orthonormal frame on H2 with e1 = λ−1∂x and e2 = λ−1∂y

and let E3 be the vector field on ˜PSL2(R) whose expression in coordinates is ξ.

Denote by E1 and E2 the horizontals lifts to ˜PSL2(R) of e1 and e2, i.e.,

dπ(Ei) = ei and 〈Ei, E3〉 = 0, 1 6 i 6 2.

We remark that dπ(∂x) = ∂x and dπ(∂y) = ∂y, then a simple computation gives
the expression of Ei in coordinates,

E1 =
1

λ
∂x +

λy
λ2
∂z, E2 =

1

λ
∂y −

λx
λ2
∂z and E3 = ∂z.

In what follows let X̃ denote the horizontal lift to ˜PSL2(R) of a vector field X on

H2 ; recall that ∇X̃ Ỹ = ∇̃XY + 1
2
[X̃, Ỹ ]v for vector fields X,Y on H2. Then the

Riemannian connection of ˜PSL2(R) is calculated in the basis {Ei} as follows :

∇E1E1 = ∇̃e1e1 = −λy
λ2
E2, ∇E2E2 = ∇̃e2e2 = −λx

λ2
E1.

As E3 is a unitary killing field we have, for 1 6 i 6 3,

〈∇E3E3, Ei〉 = −〈∇Ei
E3, E3〉 = 0,

hence,

∇E3E3 = 0.

For i, j ∈ {1, 2} we have,

〈∇Ej
Ei, Ej〉 = −〈∇Ej

Ej, Ei〉 and 〈∇Ej
Ei, Ei〉 = 0,
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2〈∇Ei
Ej, E3〉 = 〈[Ei, Ej], E3〉 − 〈[Ei, E3], E3〉 − 〈[Ej, E3], E3〉,

and

[Ei, E3] = 0.

A direct computation of [E1, E2] gives

[E1, E2] =
λy
λ2
E1 −

λx
λ2
E2 + ΛE3

with

Λ =
λ2
x + λ2

y

λ4
− λxx + λyy

λ3
= −∆ log λ

λ2
.

The last term of the equality is known to be the expression of the curvature, of H2

in this case, in terms of the conformal factor in isothermal parameters. Therefore,
Λ = −1 and

〈∇E1E2, E3〉 = −〈∇E2E1, E3〉 = −1

2
.

We thus obtain

∇E1E2 =
λy
λ2
E1 −

1

2
E3

∇E2E1 =
λx
λ2
E2 +

1

2
E3.

Moreover the facts that for 1 6 i 6 2,

[Ei, E3] = 0, 〈∇E3Ei, Ei〉 = 0,
〈∇E3Ei, E3〉 = −〈∇E3E3, Ei〉 = 0,

〈∇E3E1, E2〉 = 〈∇E1E3, E2〉 = −〈∇E1E2, E3〉 =
1

2

〈∇E3E2, E1〉 = 〈∇E2E3, E1〉 = −〈∇E2E1, E3〉 = −1

2

conclude that

∇E3E1 = ∇E1E3 =
1

2
E2,

∇E3E2 = ∇E2E3 = −1

2
E1.

We resume our computation

41



2.2. THE SPACE ˜PSL2(R)

∇E1E1 = −λy
λ2
E2, ∇E2E2 = −λx

λ2
E1,

∇E3E3 = 0,

∇E1E2 =
λy
λ2
E1 −

1

2
E3,

∇E2E1 =
λx
λ2
E2 +

1

2
E3,

∇E3E1 = ∇E1E3 =
1

2
E2,

∇E3E2 = ∇E2E3 = −1

2
E1.

Remark 6 The equation ∇E3E3 = 0 is the geodesic equation for vertical fibers.

Remark 7 The fact that [E1, E2] is not horizontal implies that the horizontal plane
field generated by E1 and E2 is not integrable, meaning that there exists no horizontal

surfaces in ˜PSL2(R).

2.2.4 Isometries of ˜PSL2(R)

It is known that ˜PSL2(R) has a four dimensional isometry group. See [30] for
example, a standard reference on the geometries of 3-manifolds. However in [30] this
group is characterized using Lie group theory. In what follows is what the author of
this paper found a worth while simplified geometric characterization of this group
based on ideas from [30] and [3].

The metric induced on the tangent bundle TM of a Riemannian manifold M is
intrinsic enough that it is respected by the lifts of isometries of M to TM . In fact,
each map f ∈ C∞(M,M) lifts to a map df ∈ C∞(TM, TM) such that
df(p, v) = (f(p), dpf(v)). When f is an isometry, df induces isometries on tangent
spaces of TM . This can be easily seen as follows.

Let (p, v) ∈ TM and V ∈ T(p,v)(TM) and choose a curve α(t) = (p(t), v(t)) in TM
such that α(0) = (p, v) and α′(0) = V . We have,

‖dv(df)V ‖2
(f(p),dpf(v) = ‖dpf(p′(0))‖2

f(p) + ‖Ddf(v)

dt
(0)‖2

f(p),

where
D

dt
is the covariant derivative along the curve β(t) = df(α(t)). As dpf is an

isometry and

Ddf(v)

dt
= df(

Dv

dt
)
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it follows directly that

‖d(p,v)(df)V ‖(f(p),dpf(v)) = ‖V ‖(p,v),

proving our claim.

In particular, the isometry group of ˜PSL2(R) contains the lifts of the isometries
of H2. We note also that vertical translations along the fibers are isometries of

˜PSL2(R). These isometries read in coordinates as (x, y, z) → (x, y, z + a). So the

isometry group of ˜PSL2(R) contains the group G generated by the lifts of isometries
of H2 and vertical translations.

In fact, we shall show that G contains all the isometries of ˜PSL2(R). We begin with
proving the following proposition found in [3].

Proposition 2 The sectional curvature along a plane P ⊂ T(p,v)( ˜PSL2(R)) is maxi-
mal when P contains the line L(p,v), the line tangent to the fiber at (p, v), and is
minimal when P is orthogonal to L(p,v).

Proof. Let P be a plane generated by two orthonormal vectors X and Y. Then the
sectional curvature along P is given by

〈
R(X,Y )X,Y

〉
, where R is the curvature

tensor of ˜PSL2(R). We have 〈R(X,Y )X,Y 〉 =
−7

4
+ 2(〈X, ξ〉2 + 〈Y, ξ〉2) (see [7],

proposition 2.1). As ξ is unitary we have 〈X, ξ〉2 + 〈Y, ξ〉2 6 1. So the sectional
curvature will be maximal when 〈X, ξ〉2 + 〈Y, ξ〉2 = 1, and this is possible only when
〈ξ, Z〉 = 0 for any vector Z such that {X,Y, Z} forms an orthonormal basis of the

tangent space to ˜PSL2(R) at (p, v). This means that the sectional curvature will be
maximal when ξ ∈ P , i.e. when P contains the vertical line tangent to the fiber.
Similarly we show that the sectional curvature is minimal when P is orthogonal to
the vertical line tangent to the fiber 2

We next show that isometries of ˜PSL2(R) are fiber preserving. The proposition
above implies that the differential of an isometry ϕ sends L(p,v) to Lϕ(p,v). This
follows from the fact that the differential of an isometry will send two planes along
which the sectional curvature is maximal, to two planes along which the curvature
is maximal. As the fiber π−1(p), tangent at the point (p, v) to L(p,v), is a geodesic,
its image under ϕ is the geodesic tangent to the line Lϕ(p,v) at the point ϕ(p, v).
The fiber through ϕ(p, v) is a geodesic tangent to the former line at ϕ(p, v), so we
conclude that it is the geodesic in question. We have then the following

Proposition 3 The isometries of ˜PSL2(R) are fiber preserving, i.e. the images by
an isometry of two points lying on the same fiber belong to the same fiber.

This property will allow each isometry of ˜PSL2(R) to induce an isometry on H2 the
following manner,
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Lemma 1 Every isometry ϕ on ˜PSL2(R) induces an isometry f on H2 such that
f ◦ π = π ◦ ϕ.

Proof. The equation f ◦π = π ◦ϕ defines f the obvious way as ϕ is fiber preserving.
For a vector v ∈ TpH

2 such that v = d(p,v)π(V ), V is the horizontal lift of v, we
have dpf(v) = dpf(d(p,v)π(V )) = dϕ(p,v)π(d(p,v)ϕ(V )). As V is horizontal and ϕ is
an isometry we have d(p,v)π(V ) also horizontal. The fact that π is a Riemannian
submersion concludes that f is indeed an isometry 2

We proceed to show the following technical lemma found in [30], which will aid

giving the finishing touch to our characterization of isometries of ˜PSL2(R).

Lemma 2 Fix a point (p, v) ∈ ˜PSL2(R). We may compose any isometry α of
˜PSL2(R) with isometries lying in G to obtain an isometry β which fixes (p, v) and

whose differential at (p, v) is the identity on the horizontal tangent plane at (p, v).

Proof. Let f be the isometry induced by α on H2. We compose α with a vertical

translation sending α(p, v) to (f(p), dpf(v)) to obtain an isometry α′ of ˜PSL2(R).

Let df−1 denote the lift of f−1 to ˜PSL2(R) and set β = df−1◦α′. This is an isometry

of ˜PSL2(R) fixing (p, v) and leaving each horizontal vector at (p, v) invariant. In fact,
for a horizontal vector V at (p, v) we have

d(p,v)β(V ) = d(f(p),dpf(v))df
−1(d(p,v)α(V )).

We denote the restriction of dπ to horizontal tangent planes by dπ◦ and we set
w = dpπ(V ), so we have

d(p,v)α(V ) = dpf(w) and d(f(p),dpf(v))df
−1(d(p,v)α(V )) = dpπ

−1
◦ (w) = V .

We used the fact that d(p,v)dg(V ) = dpπ
−1
◦ (dpg(w)), for any lift dg of an isometry g

of H2
2

At this point it is easy to prove our claim that G contains all the isometries of
˜PSL2(R). Let ϕ be an isometry and (p, v) a point of ˜PSL2(R). We compose ϕ

with isometries in G and we obtain an isometry ψ which fixes (p, v), and whose
differential at (p, v) is the identity on the horizontal plane at (p, v). Consequently ψ
leaves invariant the fiber through (p, v) as it is fiber preserving.

Let ℓ be a piecewise geodesic loop in H2 based at p with non-trivial holonomy and ℓ̃

be its horizontal lift to ˜PSL2(R) starting at (p, v). Let (p, w) denote the other end of

ℓ̃. Now ψ(ℓ̃) is piecewise geodesic since so is ℓ̃ and as ψ is an isometry (see Remark 6

below). Since ψ fixes (p, v) and the horizontal plane over there we deduce that ψ(ℓ̃)

passes through (p, v) and has the same horizontal tangent vector as ℓ̃ there. Hence
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ψ(ℓ̃) equals ℓ̃ and in particular ψ must fix (p, w).

As ψ is an isometry and the points (p, v) and (p, w) are distinct, due to non trivial
holonomy of the geodesic loop based at p below in H2, it follows that ψ fixes each
point of the fiber through (p, v). Then ψ is an isometry which fixes a point and whose
differential over there is the identity.This implies that ψ leaves invariant geodesics
through (p, v).

As our manifold is complete we can join (p, v) to any other point by a geodesic.
Being an isometry ψ fixes each point of these geodesics and so ψ is the identity. This
allows us to deduce that ϕ is a composition of elements of G.

We resume the result in the following,

Theorem 5 The isometry group of ˜PSL2(R) is generated by the lifts of the isome-
tries of H2 together with the vertical translations along the fibers.

Remark 8 Theorem 2 implies that the isometry group of ˜PSL2(R) is four dimen-
sional and contains no orientation reversing isometries.

Remark 9 Assume that γ : t → γ(t) is a geodesic in H2 starting at a point p.

We can lift γ to a horizontal geodesic in ˜PSL2(R), one whose velocity vector at
each point is horizontal, starting at any point (p, v) in the fiber above p. Fix such
a point (p, v) and let v(t) be the parallel transport of v along γ. The curve γ̄ : t →
(γ(t), v(t)) starts at (p, v). The fact that v(t) is parallel implies that γ̄ is horizontal.
To show that γ̄ a geodesic we suppose to the contrary that it is not. We choose convex

neighborhoods W ⊂ ˜PSL2(R) of (p, v) and U ⊂ H2 of p such that π(W ) = U . Take
two points Q1 = (q1, w1) and Q2 = (q2, w2) in γ̄ ∩ W , joined by an arc ᾱ such
that L(ᾱ) < L(γ̄) = L(γ). In H2, γ is a minimizing geodesic joining q1 and q2.
The arc α = π(ᾱ) verifies L(α) 6 L(ᾱ), which contradicts the fact that γ is length
minimizing (see [10], p.79).

2.3 Minimal graphs in ˜PSL2(R)

We fix our model of ˜PSL2(R) as H2 × R endowed with the metric

ds2 = λ2(dx2 + dy2) + (−λy
λ
dx+

λx
λ
dy + dz)2,

as described above.

We denote by S◦ ⊂ ˜PSL2(R) the surface defined by z = 0. We identify a domain
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Ω ⊂ H2 and its lift to S◦. We define the graph Σ(u) of u ∈ C0(Ω̄) on Ω as

Σ(u) = {(x, y, u(x, y)) ∈ ˜PSL2(R)|(x, y) ∈ Ω}.

These graphs are basically images of sections of the bundle projection

π : ˜PSL2(R) → H2,

i.e. images of maps s : Ω ⊂ H2 → ˜PSL2(R) with π ◦ s = IH2 . For such a map

let u(x, y) be the signed distance from the lift of (x, y) ∈ H2, the point of ˜PSL2(R)
whose coordinates are (x, y, 0), to s(x, y) ∈ π−1(x, y) along the geodesic fiber through
(x, y, 0). The fibers here being oriented positively by ξ. This function u defined by s
defines a graph, in the sense of the above definition, which is the image of s. Clearly,
each function u ∈ C0(Ω̄),Ω ⊂ H2, defines a section of the bundle projection.

For a smooth function u set F (x, y, z) = z − u(x, y) so that Σ(u) = F−1(0). As F is
smooth we will have

η =
∇F
|∇F |

a unit normal field to Σ(u).

A simple computation shows that

∇F = (
λy
λ2

− ux
λ

)E1 + (−λx
λ2

− uy
λ

)E2 + E3.

Set

α =
λy
λ2

− ux
λ
, β = −λx

λ2
− uy

λ
and W = |∇F | =

√
1 + α2 + β2,

so that

η =
α

W
E1 +

β

W
E2 +

1

W
E3.

We parameterize the graph of a smooth function u by

(x, y) → φ(x, y) = (x, y, u(x, y)),

with (x, y) ∈ Ω the domain of definition of u. It is easy to see that for the metric on
˜PSL2(R) we have

〈φx, φx〉 = λ2(1 + α2), 〈φx, φy〉 = λ2αβ, 〈φy, φy〉 = λ2(1 + β2),
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giving the metric induced on the graph

g = λ2
(
(1 + α2)dx2 + αβdxdy + αβdydx+ (1 + β2)dy2

)
.

To calculate the mean curvature H of Σ(u), with respect to the upwards pointing

normal η, choose v1, v2 ∈ T ( ˜PSL2(R)) so that
{
v1, v2, η

}
is an orthonormal basis of

T ( ˜PSL2(R)).

As η is a unitary field we have 〈∇ηη, η〉 = 0 and

2H = −
2∑

1

〈∇vi
η, vi〉

= −
2∑

1

〈∇vi
η, vi〉 − 〈∇ηη, η〉

= − div(η).

Therefore 2H = −div

( ∇F

|∇F|

)
, where div and ∇ denote respectively the divergence

and the Levi-Civita connection in ˜PSL2(R).

Since E1 and E2 are the horizontal lifts of e1 and e2 , the facts that ∇E3E3 = 0 and
that π is a Riemannian submersion allow us to write

div

(
α

W
E1 +

β

W
E2

)
=

2∑

1

〈
∇Ei

(
α

W
E1 +

β

W
E2

)
, Ei

〉
˜PSL2(R)

=
2∑

1

〈
∇ei

dπ

(
α

W
E1 +

β

W
E2

)
, ei

〉
H2

=divH2

( α

λW
∂x +

β

λW
∂y

)
.

Since E3 is a Killing field we have div(E3) = 0, and

div
( 1

W
E3

)
=

〈
∇

( 1

W

)
, E3

〉
+

div(E3)

W
=

∂

∂z

( 1

W

)
= 0.

Therefore

2H = divH2

(
α

λW
∂x +

β

λW
∂y

)
= divH2

(
dπ(η)

)
.

We also have,
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2H =
1

λ2
divR2

(
λα

W
∂x +

λβ

W
∂y

)
,

as divH2(X) =
1

λ2
divR2(λ2X) for any vector fieldX on H2. The equation of a minimal

graph is then

divR2

(
λα

W
∂x +

λβ

W
∂y

)
= 0. (2.1)

2.3.1 Examples of minimal surfaces and minimal graphs in ˜PSL2(R)

In this section we find minimal graphs invariant under the action of the one para-

meter groups of isometries of ˜PSL2(R) generated by the lifts of rotations, parabolic
and hyperbolic isometries of H2. We also determine the minimal surfaces invariant
under translation along the fibers.

Example 1 Let γ be a geodesic of H2. The vertical cylinder over γ, Cγ = π−1(γ) ⊂
˜PSL2(R), is a minimal surface and this can be seen as follows : Let T and η be

respectively a unit tangent field and a unit normal field to γ, and let T̃ and η̃ be their

corresponding horizontal lifts to ˜PSL2(R). We then have {T̃ , E3} an orthonormal
basis on Cγ and η̃ a unit normal to Cγ. The mean curvature of Cγ at a point v is then

2H = −
〈
∇̄T̃ η̃, T̃

〉
−

〈
∇̄E3 η̃, E3

〉
−

〈
∇̄η̃η̃, η̃

〉

=
〈
∇̃H2

T T , η̃
〉

=
〈
∇H2

T T, η
〉

= the geodesic curvature of γ at the point π(v),

and as γ is a geodesic we deduce that H = 0, and the cylinder Cγ is thus minimal. We
notice that these minimal surfaces are invariant under vertical translations and they
are in fact the only ones. A minimal surface invariant under vertical translations is
π−1(γ), where γ is a curve of H2. The geodesic curvature of γ is shown again by the
above computation to be zero and hence γ is geodesic.

Example 2 The 1-parameter group of isometries of H2, given in the half plane
model of H2 by (x, y) → (ǫx, ǫy), induces a 1-parameter group of isometries on

˜PSL2(R). In our model of ˜PSL2(R) these isometries read as (x, y, z) → (ǫx, ǫy, z).
A minimal graph invariant by this group of isometries is that of a solution u of (2.1)
verifying u(r, θ) = u(θ), (r, θ) are polar coordinates on the upper half plane . Here
we have

λ =
1

y
, α = −yux − 1 and β = −yuy, y > 0.
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Let ω := W 2 = 1 + α2 + β2, equation (2.1) then implies

ω
( ∂

∂x
(λα) +

∂

∂y
(λβ)

)
− λ

2
(αωx + βωy) = 0. (2.2)

An invariant solution u verifies

ux =
∂θ

∂x
uθ = −sin θ

r
uθ,

uy =
∂θ

∂y
uθ =

cos θ

r
uθ,

ω = 2 − 2 sin2 θuθ + sin2 θu2
θ,

uxx =
(∂θ
∂x

)2

uθθ +
∂2θ

∂2x
uθ =

sin2 θ

r2
uθθ + 2

sin θ cos θ

r2
uθ,

uyy =
(∂θ
∂y

)2

uθθ +
∂2θ

∂2y
uθ =

cos2 θ

r2
uθθ − 2

sin θ cos θ

r2
uθ.

Equation (2.2) implies that

ωuθθ −
1

2
ωθ(uθ − 1) = 0 (2.3)

from which we deduce that either
(i) uθ = 1, or
(ii)

2
uθθ

uθ − 1
=
ωθ
ω

which is equivalent to
(uθ − 1)2

ω
= C, C ≥ 0.

The cases (i) and (ii) are resumed in

(1 − C sin2 θ)(u2
θ − 2uθ) = 2C − 1, C ≥ 0.

For 0 6 C < 1, this first integral defines a 1-parameter family of graphs over the
hyperbolic plane, given up to an additive constant by

u(r, θ) = u(θ) = ±
√
C

∫ θ

0

√
1 + cos2 θ√

1 − C sin2 θ
dθ + θ, 0 < θ < π.

For example, when C = 0 we obtain up to vertical translations, half a (euclidean)
Helicoid over the hyperbolic plane.

When C =
1

2
the above solutions simplify to u(r, θ) = θ ± θ + constant. So on

the one hand we obtain up to vertical translations, half a Helicoid stretched in the
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vertical direction. It is the surface over the hyperbolic plane obtained by rotating,
in euclidean terms, the x−axis about the z−axis, and translating it vertically twice
as fast. On the other hand we obtain translates of the plane {z = 0} as invariant
minimal surfaces which correspond to the solutions u(r, θ) = constant.

For C = 1, we obtain solutions defined in the first and the second quadrants of the
hyperbolic plane. The solutions are

u(r, θ) = u(θ) =

∫ θ

0

√
1 + cos2 θ

cos θ
dθ + θ

(
= −

∫ θ

0

√
1 + cos2 θ

cos θ
dθ + θ respectively

)
, 0 < θ <

π

2
,

defined in the first quadrant and taking values 0 on the positive x−axis and +∞
(−∞ respectively) on the y−axis. On the other hand the solutions

u(r, θ) = u(θ) =

∫ θ

π
2

√
1 + cos2 θ

cos θ
dθ + θ

(
= −

∫ θ

π
2

√
1 + cos2 θ

cos θ
dθ + θ, respectively

)
,
π

2
< θ < π,

defined in the second quadrant and taking values +∞ (−∞ respectively) on the
y−axis and 0 on the negative x−axis. The solutions obtained so far define complete
minimal graphs.

For C > 1, the equation 1 − C sin2 θ = 0 has two solutions, say θ1 and θ2 = π − θ1,
in ]0, π[ such that θ1 <

π
2
< θ2. The first integral defines a one-parameter family of

disconnected graphs defined in the region {0 < θ < θ1}
⋃{θ2 < θ < π}. We have,

up to additive constants, the solutions

u(r, θ) = u(θ) =
√
C

∫ θ

0

√
1 + cos2 θ√

1 − C sin2 θ
dθ + θ

(
= −

√
C

∫ θ

0

√
1 + cos2 θ√

1 − C sin2 θ
dθ + θ respectively

)
, 0 < θ < θ1,

and

u(r, θ) = u(θ) =
√
C

∫ π

θ

√
1 + cos2 θ√

1 − C sin2 θ
dθ + θ

(
= −

√
C

∫ π

θ

√
1 + cos2 θ√

1 − C sin2 θ
dθ + θ respectively

)
, θ2 < θ < π.

One can see easily that the solutions have finite values over the lines θ = θ1 and
θ = θ2 and admit vertical tangent planes over there. However, the solutions obtained
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for these values of the parameter C do not define complete minimal graphs.

One obtains complete minimal surfaces above the region {0 < θ ≤ θ1} for example,
when one considers unions of graphs u(r, θ) above that region. We consider the

graphs obtained for both factors ±
√
C of the integral in the above expression of u

and translate them vertically to take values θ1 over θ = θ1.To see that the union
defines a regular surface above θ = θ1 we simply show that θ is a smooth function
of z near z = θ1.

We have z = u(θ) which implies that the derivatives of θ with respect to z are given
by

∂u

∂θ
=

1

θ′
and

∂2u

∂θ2
= − θ′′

θ′3
.

We compute ω and ωθ in terms of θ and its derivatives then substitute in (2.3) to
obtain after necessary simplifications,

θ′′(2 − sin2 θ) + sin θ cos θ(θ′ − 1)(2θ′ − 1) = 0. (2.4)

As the graphs u(r, θ) admit vertical tangent planes at the points z = θ1, θ defines a
C1-function of z and the equation (2.4) shows then that θ is in fact smooth. 2

Example 3 Consider the disc model for the hyperbolic plane. Rotations, in eucli-
dean terms, about the center of the disc are isometries of H2. The lifts of these

isometries to ˜PSL2(R), seen in our model, are euclidean screw motions. The image
of a point (x, y, z) is obtained by rotating the (x, y) part around the z−axis then
translating it along the z−axis by the same amount. We can then compose the lift
of a rotation on H2 with a translation along a vertical fiber to obtain an isometry

of ˜PSL2(R) which is rotation about the fiber. So we have a 1-parameter group of

isometries of ˜PSL2(R) which are, in our model, rotations about the z−axis.

A minimal graph invariant by this group is that of a solution u of (2.2) verifying
u(r, θ) = u(r), (r, θ) polar coordinates on the disc.

Here we have,

λ =
1

1 − x2+y2

4

, α = −ux
λ

+
y

2
and β = −uy

λ
− x

2
, x2 + y2 < 4.

An invariant solution verifies

ux =
∂r

∂x
ur =

x

r
ur,

uy =
∂r

∂y
ur =

y

r
ur,
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ω = 1 +
r2

4
+

1

λ2
u2
r,

uxx =
(∂r
∂x

)2

urr +
∂2r

∂2x
ur =

x2

r2
urr +

y2

r3
ur,

uyy =
(∂r
∂y

)2

urr +
∂2r

∂2y
ur =

y2

r2
urr +

x2

r2
ur.

Equation (2.2) implies that

ω(urr +
1

r
ur) −

1

2
urωr = 0,

from which we deduce that either

(i) u ≡ constant
or
(ii)

2
urr
ur

+
2

r
=
ωr
ω

which is equivalent to

r2u2
r = Cω, C > 0.

This implies that

ur = ±2

√
r2 + 4

Cr2 − (r2 − 4)2
,

with C > 0 and 0 < r◦ < r < 2, r◦ =

√
8 + C −

√
(8 + C)2 − 64

2
.

Remark that ur(r◦) = ±∞ and that the solutions are either increasing or decreasing
in r. In a fashion similar to that in the above example, we show that the union of
the graphs corresponding to both values of ur and taking the value 0 at r◦ define a
regular surface. Then this first integral defines up to vertical translations, a family
of minimal surfaces of catenary type. As C varies in ]0,+∞[ the asymptotic angles
at infinity between the members of the family and the cylinder ∂H2 × R assume all
the values in ]0, π[.

Remark also that up to a vertical translation, when C → +∞, r◦ → 0 and the limit
surface is the doubly covered hyperbolic plane(identified with z = 0). When C → 0,
r◦ → 2 and up to a vertical translation the family degenerates to the circle at infinity
∂H2 (doubly covered).
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Example 4 The 1-parameter group of isometries of H2, given in the half plane
model of H2 by (x, y) → (x + a, y), induces a 1-parameter group of isometries on

˜PSL2(R). In our model of ˜PSL2(R) these isometries read as (x, y, z) → (x+a, y, z).

A minimal graph invariant by this group of isometries is that of a solution u of (2.1)
verifying u(x, y) = u(y), y > 0.

We have

λ =
1

y
, α = −1, β = −yuy and ω = 2 + y2u2

y,

and so equation (2.2) implies that

ωuyy −
1

2
uyωy = 0.

We deduce that either u ≡ constant, or uy = ±
√

2√
C2 − y2

, C > 0. This equation

defines up to additive constants, surfaces symmetric (in euclidean terms) with respect
to {z = 0}. These surfaces are the union of the two graphs

u(x, y) = ±
√

2 arcsin
( y
C

)
∓

√
2π

2

over the region {0 < y ≤ C}. As C → +∞ the limit surface is {z = 0} (doubly
covered).

2

Remark 10 There exists no compact complete minimal surface in ˜PSL2(R). For
otherwise, if such a surface Σ exists, we may then translate down any minimal
surface z = constant not intersecting Σ until there is a first contact point. This
implies that the two surfaces are tangent and one above the other. By the maximum
principle Σ will be equal to a surface z = constant. This is a contradiction as the
surfaces z = constant are not compact.

Remark 11 There exist no complete proper minimal surfaces in ˜PSL2(R) with
bounded projection into H2. For assume that such a surface Σ exist and remark
that we may choose values of C for which the surfaces of example 1 either intersect
or are disjoint with Σ. This means that there’s a value of C for which there’s a first
point of contact between Σ and the corresponding example. This point cannot be at
∞ as can be easily seen. Hence the two surfaces will be tangent which is impossible
by the maximum principle.
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2.4 Gradient Estimates

We will next prove an estimate for the gradient of a solution u : Ω ⊂ H2 → R

of (2.1), which will be fundamental for proving later results, following the lines of
[33]. For this aim we will need the following formulae which hold for surfaces in

3-manifolds and in particular for surfaces Σ ⊂ ˜PSL2(R) :

|∇Σf |2 = |∇f̃ |2 − 〈∇f̃ , η〉2 (2.5)

∆Σf = 2〈∇f̃ , η〉H + ∆f̃ − 〈∇η∇f̃ , η〉 (2.6)

∆Σg(f) = g′(f)∆Σf + g′′(f)|∇Σf |2, (2.7)

where f is a function defined on Σ, or the restriction to Σ of a function

f̃ : ˜PSL2(R) → R2,

H is the mean curvature of Σ and η a unit normal field on Σ. We will also need the
following fact, if X : M → N is a constant mean curvature isometric immersion of
a surface M in a 3-manifold N , and if η is a unit normal field to M and ξ a Killing
field on N then the function n = 〈η, ξ〉 verifies the following equation

∆Σn = −(|A|2 +Ric(η))n, (2.8)

where |A| is the norm of the second fundamental form of M and Ric is the Ricci
curvature of N .

For minimal graphs in ˜PSL2(R), n =
1

W
, so that

∆Σ
1

W
= −(|A|2 +Ric(η))

1

W
(2.9)

with

Ric(η) = −3

2
+

2

W 2
,

which we compute using the equations of proposition 2.1 in [7].

Remark 12 Equation (2.9) implies that minimal graphs in ˜PSL2(R) are stable.
This follows directly from the definition of stability of a minimal surface and Theorem
1 in [13].

We finally note that a function φ : Ω → R lifts as a section of π to a function on
˜PSL2(R), whose restriction to Σ will be also denoted by φ. Then using (2.5) we

obtain

|∇Σφ|2Σ =
1

λ2W 2

(
(φ2

x + φ2
y) + (βφx − αφy)

2
)
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which implies that

|∇Σφ|2Σ >
1

W 2
|Dφ|2H2 . (2.10)

Theorem 6 Let u be a non-negative solution of the minimal surface equation (2.1)
in a bounded domain Ω ⊂ H2. Then at each point p ∈ Ω we have

W (p) 6 C

where C is a positive constant which depends only on u(p), the distance of p to ∂Ω
and on bounds of λ and its derivatives on Ω.

Proof. We fix a point p ∈ Ω. We introduce the function f = µ(x)W on a geodesic
ball Bρ(p) ⊂ Ω ⊂ H2, for which we will derive a maximum principle by computing
∆Σf . The function µ is to be defined. We have

∆Σf = W∆Σµ+ 2〈∇ΣW,∇Σµ〉 + µ∆ΣW

= W∆Σµ+
2

W

(
〈∇ΣW,∇Σf〉 − µ|∇ΣW |2

)
+ µ∆ΣW.

We then obtain

∆Σf − 2

W
〈∇ΣW,∇Σf〉 = µ

(
∆ΣW − 2

W
|∇ΣW |2

)
+W∆Σµ.

However from (2.7) we get

∆Σ
1

W
= − 1

W 2
∆ΣW +

2

W 3
|∇ΣW |2,

and (2.8) then implies that

∆ΣW − 2

W
|∇ΣW |2 = (|A|2 +Ric(η))W,

so that

∆ΣW − 2

W
|∇ΣW |2 > Ric(η)W > −3

2
W

We get

∆Σf − 2

W
〈∇ΣW,∇Σf〉 > W

(
∆Σµ− 3

2
µ
)
.

The idea is to define µ so that ∆Σµ− 3

2
µ > 0.

We set

µ(x) = eKφ − 1, and φ(x) = −u(x)
2u◦

+ 1 −
(d(x)

ρ

)2
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on the ball B(p, ρ), where u◦ = u(p), d is the geodesic distance from p and K > 0
a constant to be determined. We next bound ∆Σµ− 3

2
µ from below. Using (2.7) we

obtain

∆Σµ = KeKφ∆Σφ+K2eKφ|∇Σφ|2.

As u = h|Σ , h = z in the given model of ˜PSL2(R) and Σ minimal, (2.6) implies that

∆Σ u = ∆h− 〈∇η∇h, η〉,

showing that we can bound ∆Σu by a constant independent of u. Similarly we bound
∆Σd

2 which shows that

∆Σφ > −C1

( 1

u◦
+

1

ρ2

)
,

where C1 is a constant. The inequality (2.10) implies that in Bρ(p)

|∇Σφ|2Σ >
1

W 2
|Dφ|2H2 >

1

W 2

( |Du|2
H2

4u2
◦

− 2

u◦ρ
|Du|H2

)
,

which implies that when

|Du|H2 >
16u◦
ρ

we have

|∇Σφ|2Σ >
|Du|2

H2

8u2
◦W

2
.

Now as

W 2
6 1 + 2|Du|2H2 + 2

((λx
λ2

)2
+

(λy
λ2

)2
)

(2.11)

we obtain

|Du|2
H2

W 2
> C2

|Du|2
H2

1 + |Du|2
H2

,

where C2 is a positive constant which depends only on bounds of λ and its derivatives

over Ω. Hence on the set where |Du|H2 > max(1,
16u◦
ρ

) we find

∆Σµ− 3

2
µ > C ′eKφ

(C
u2
◦
K2 −

( 1

u◦
+

1

ρ2

)
K − 1

)
,

where C and C ′ are positive constants which depend on bounds of λ and its deriva-
tives. We next choose
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K >
u2
◦

2C

( 1

u◦
+

1

ρ2
+

√
( 1

u◦
+

1

ρ2

)2
+

4C

u2
◦

)

so that ∆Σµ− 3

2
µ > 0 on the set |Du|H2 > max(1,

16u◦
ρ

).

If

|Du|H2 ≤ max(1, 16u◦
ρ

)

then inequality (2.11) proves our claim on W (p). Otherwise, we consider the open
set

U = {x ∈ Bρ(p)/φ > 0, |Du|H2 > max(1,
16u◦
ρ

)},

and note that p ∈ U .Then by the maximum principle, the point p◦ where f achieves
its maximum on U belongs to ∂U with f(p◦) > 0. As φ < 0 on ∂Bρ(p) we have

∂U ∩ ∂Bρ(p) = ∅

and therefore

p◦ ∈ {|Du|H2 = max(1,
16u◦
ρ

)} ∩ {φ > 0}.

Therefore

f(p) = µ(p)W (p) 6 Cµ(p◦)

√
1 +max2(1,

16u◦
ρ

)

and

W (p) 6 CeK
2

√
1 +max2(1,

16u◦
ρ

),

where C is a positive constant which depends only on bounds of λ and its derivatives.
The proof is completed. 2

Corollary 1 Let u be a bounded solution of the minimal surface equation (2.1) in
a domain Ω ⊂ H2. Then at any point p ∈ Ω we have

W (p) ≤ C

where C is a positive constant which depends only on max
∂Ω

|u|, the distance of p to

∂Ω and on bounds of λ and its derivatives on Ω.

Theorem 7 Let u be a solution of the minimal surface equation (2.1) in Ω with
W 6 M at a point p ∈ Ω. Then there exists R, which depends only on M,u(p) and
d(p, ∂Ω), such that W 6 2M on D(p,R).
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Proof. We shall derive an estimate on ‖∇W‖, the norm of the R2-gradient of W ,
from which the bound on W follows readily. The graph of u is parametrized by

(x, y) −→ ψ(x, y) = (x, y, u(x, y)),

and a unit normal field to the graph is

η =
α

W
E1 +

β

W
E2 +

1

W
E3.

The partial derivatives of ψ,

ψx = ∂x + ux∂z = λE1 − λαE3

and

ψy = ∂y + ux∂z = λE2 − λβE3,

are such that

‖ψx‖2
˜PSL2(R)

6 λW and ‖ψy‖2
˜PSL2(R)

6 λW .

We shall estimate the partial derivatives of α and β by applying the Schoen curvature
estimate. For this purpose we need to calculate ‖∇ψx

η‖,

∇ψx
η =

∂

∂x

( α

W

)
E1 +

α

W
(λ∇E1E1 − λα∇E3E1)

+
∂

∂x

( β

W

)
E2 +

β

W
(λ∇E1E2 − λα∇E3E2)

+
∂

∂x

( 1

W

)
E3 +

1

W
(λ∇E1E3 − λα∇E3E3),

so that

∇ψx
η = U + V

with

U =
( ∂

∂x

( α

W

)
+
λy
λ

β

W

)
E1

+
( ∂

∂x

( β

W

)
− λy

λ

α

W

)
E2

+
∂

∂x

( 1

W

)
E3.

and
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V =
λαβ

2W
E1 +

λ(1 − α2)

2W
E2 −

λβ

2W
E3.

It is easy to see that

‖U‖2
˜PSL2(R)

6 2
(
‖∇ψx

η‖2
˜PSL2(R)

+ ‖V ‖2
˜PSL2(R)

)
.

We wish to estimate ‖U‖ ˜PSL2(R)
as it is the term which contains derivatives of α and

β. We have

∂

∂x

( α

W

)
=

1

W 3

(
(1 + β2)αx − αββx

)

∂

∂x

( β

W

)
=

1

W 3

(
(1 + α2)βx − αβαx

)

∂

∂x

( 1

W

)
= −ααx + ββx

W 3
.

Therefore,

‖U‖2
˜PSL2(R)

=
1

W 4
(α2

x + β2
x) +

( 1

W 2
(αxβ − αβx) +

λy
λ

)2

−
(λy
λ

)2 1

W 2
.

Its easy to see that

‖V ‖ ˜PSL2(R)
6 λW .

The shape operator of the graph, which is stable (c.f. Remark 2.9, is Ãψx = −∇ψx
η

and the Schoen curvature estimate implies that |Ã| 6 C in a disc about each point

on the graph, a constant which depends only on the ˜PSL2(R) distance of the point
from the boundary of the graph. The inequality

‖Ãψx‖ ˜PSL2(R)
6 |Ã|‖ψx‖ ˜PSL2(R)

,

implies that at each point p ∈ Ω

α2
x + β2

x 6 λ2CW 6 + λ2W 6 +
(λy
λ

)2

W 2,

and yet

α2
x + β2

x 6 CW 6,

C is a constant which depends only on u(p), the distance of p from ∂Ω and on
bounds of λ and its derivatives over compacts of Ω.
Similarly we obtain

∇ψy
η = U ′ + V ′
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with

U ′ =
( ∂

∂y

( α

W

)
− λx

λ

β

W

)
E1

+
( ∂

∂y

( β

W

)
+
λx
λ

α

W

)
E2

+
∂

∂y

( 1

W

)
E3,

and

V ′ =
λ(β2 − 1)

2W
E1 −

λαβ

2W
E2 +

λα

2W
E3

The facts

‖U ′‖2
˜PSL2(R)

=
1

W 4
(α2

y + β2
y) +

( 1

W 2
(αβy − βαy) +

λx
λ

)2

−
(λx
λ

)2 1

W 2
,

and

‖V ′‖ ≤ λW

imply that

α2
y + β2

y 6 CW 6,

C is a constant which depends only on Ω, u(p) and the distance of p from the
boundary of Ω.

Note that ∇W =
1

W
(ααx + ββx, ααy + ββy), hence the estimates obtained on the

partial derivatives of α and β imply that at each point p ∈ Ω,

‖∇W‖ 6 CW 3.

This estimate will allow us to conclude our proof. Let R = 1
2
dR2(p, ∂Ω) and introduce

the function f(r) = W (r, θ) in D(p,R) ⊂ Ω, where r and θ are the polar coordinates
with origin p. We fix θ 6= 0 and we remark that f(0) = W (p) ≤M and

f ′(r) =
∂W

∂r
6 ‖∇W‖ 6 Cf(r)3.

Integrating this inequality we obtain that f(r) 6 2M for r ∈ [0, 3
8M2C

[, which reads
into W is bounded by 2M on D(p,min(R, 3

8M2C
)). 2

The above estimates imply that the first and second derivatives of a solution u at a
point p, admit bounds which depend only on the value of u at p, the distance of p
from the boundary and on Ω. Then the classical Ascoli theorem implies the following
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Compactness principle. Let (un) be a uniformly bounded sequence of solutions
of the minimal surface equation (1)in a domain Ω. Then there exists a subsequence
which converges to a solution in Ω, the convergence being uniform on every compact
subset of Ω.

2.5 Preliminary Existence Theorems

In what follows C will denote a rectifiable Jordan curve in ˜PSL2(R). Let D de-

note the solution of the Plateau problem for C (exists as ˜PSL2(R) is homogeneous,
see [24]), a compact minimal disc with least area, having C as boundary. It is known
that D has a tangent plane at each interior point, see [19]. Let h denote the function

defined on ˜PSL2(R) whose expression in the model described above is h = z and
set mC = min

C
(h) and MC = max

C
(h). We suppose that m < M for our curve C for

otherwise D will be a piece of a surface defined by h = constant.
For a curve γ ⊂ H2, we denote C(γ) the convex hull of γ, i.e. the smallest (geo-
desically) convex subset of H2 containing γ and RC = π−1(C

(
π(C)

)
), the region in

˜PSL2(R) above the convex hull of the projection of C. Note that C is contained in
RC . The following proposition corresponds in R3 to the result that a minimal surface
is contained in the convex hull of its boundary.

Proposition 4 The minimal disc D is contained in RC

⋂{mC 6 h 6 MC}.

Proof. There exists a minimal disc ∆ defined by h = constant not intersecting D. If
D had an interior point p above (respectively below) all other points of C, we would
translate ∆ downwards (respectively upwards) along vertical fibers so that ∆ is
eventually tangent to D. This is impossible by the maximum principle as we assume
h non-constant on C. Therefore D is contained in {mC 6 h 6 MC}. Similarly we
show that D is contained in RC , except that instead of considering minimal discs
h = constant, we consider cylinders above geodesics of H2 and instead of vertical

translation we use the fact that these cylinders foliate ˜PSL2(R). Note that the
interior of D is strictly contained in the interior of RC

⋂{mC 6 h 6 MC}. 2

The next proposition asserts the existence of a solution for the Dirichlet’s problem

for the minimal surface equation in ˜PSL2(R), over a convex bounded domain of H2

with prescribed continuous boundary data.

Proposition 5 (Rado′s Lemma in ˜PSL2(R)) If C admits a one-to-one projection
onto a convex curve in H2, then the interior of D can be obtained as the image of a
minimal section of π.
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Proof. Let C be a curve in H2 × R, as described above, which has a one-to-one
projection onto a convex curve of H2. We want to prove that the interior of D is a
graph over Ω, the open convex subset of H2 bounded by the π(C).
Consider a vertical translate D′ of D, above D, such that D ∩ D′ = ∅. We suppose
that D◦ is not a graph, so that there are two distinct points P and Q of D◦, say P
above Q, lying on the same fiber. Let P ′ and Q′ be the corresponding translates of
P and Q on D′. We can translate D′ down as to have P ≡ Q′. So at one point, when
translating D′ down, a translate D′ will have a first point of contact with D without
having D ≡ D′. By the maximum principle, this point of contact is not interior to
both discs. So either the interior of one disc will touch the boundary of the other,
or the boundaries of both discs touch at first. However, the above proposition shows
that the interior of each disc lies in R◦

C , and the boundaries lie on ∂RC as they have
convex projections to H2. So we are left with the only possibility that the first point
of contact is a boundary point for both, which is a contradiction for the boundary
is projected one-to-one into S◦ 2

In the next proposition we show that it is possible to claim existence of solutions
when boundary data has a finite set of discontinuities. We will first prove the exis-
tence of a particular minimal graph which will be of use as a barrier later on.

Lemma 3 Let T be an isosceles geodesic triangle in H2 with (open) sides Si such
that length(S1) = length(S2), and c ∈ R∗. Let ∆ denote the open bounded region
of H2 bounded by T . There exists a non-negative solution u of the minimal surface
equation (1) defined in ∆ ∪ {T − vertices of Si} such that u = 0 on S1 and S2, and
u = c on S3.

Proof. Consider such a triangle in S◦ and let C ⊂ ˜PSL2(R) be the Jordan curve
formed by S1, S2, the translate of S3 to height h = c, and the two fiber segments
joining the vertices of S3 to those of its translate. Let Σ be the interior of the solution
of the Plateau problem for C. We shall show that Σ is a graph, thus showing the
existence of our minimal section with the desired values on ∂T .
Assume to the contrary that Σ is not a graph, so that there exist two points P and
Q of Σ lying on the same fiber, say P above Q, with d(P,Q) = d > 0. Let fǫ be a
family of isometries of H2 converging to the identity in C1−topology, such that

fǫ(Si)
⋂ C(T ) = ∅, i = 1, 2.

Let f̃ǫ denote the lift of fǫ to ˜PSL2(R) as explained in 2.4, and Σǫ,t = f̃ǫ(Σ) +
(0, 0, t), c.t > 0. For |t| ≥ d and ǫ small enough, we have

Σǫ,t ∩ C = ∅, and ∂Σǫ,t ∩ Σ = ∅.

We suppose, without loss of generality, that c > 0 and we remark that for ǫ small
enough we’ll have
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‖f̃ǫ − Id ˜PSL2(R)
‖∞ <

d

2
.

To see the former equality we remark that the boundary of Σǫ,d is composed of the

arcs Cǫ,i = f̃ǫ(Si) + (0, 0, d), plus the fiber segments joining the extremities of Cǫ,1
to Cǫ,3 and Cǫ,2 to Cǫ,3. We can see that

h|Cǫ,i
> d

2
, (i = 1, 2), and h|Cǫ,3 > c+ d

2
.

Then these inequalities show that for ǫ small enough Σǫ,d is above z = d
2

and hence

Σǫ,d ∩ Si = ∅.

Moreover, Σǫ,d lies in π−1(fǫ(T )) by proposition 4, so that

Σǫ,d ∩ CS3 = ∅,

where CS3 is the cylinder above S3, completing the proof that Σǫ,d ∩ C = ∅.
To show that ∂Σǫ,d ∩Σ = ∅, we first need to remark that Σ ⊂ π−1(T ). This implies
that Σ cannot intersect but possibly Cǫ,3 of ∂Σǫ,d. However the fact that z|Cǫ,3 > c+ d

2
shows no intersection in this case either as Σ is below z = c.
Therefore,

∂Σǫ,d ∩ Σ = ∅.

Now the maximum principle implies that for ǫ small enough we have

Σǫ,d ∩ Σ = ∅.

If we let ǫ→ 0 we shall thus obtain that the limit surface, Σd = Σ+(0, 0, d), tangent
to Σ at P ∈ Σ. By the maximum the two surfaces should be equal ; a contradiction.
Therefore, Σ is a graph as was claimed. 2

We now extend the result of proposition 5 to include Jordan curves containing finitely
many vertical fiber segments.

Proposition 6 Let Ω be a bounded convex domain in H2 and consider a finite set
of boundary points of Ω. Let C denote the remaining boundary of Ω, which consists
of a finite number of open arcs. Then there exists a solution of the minimal surface
equation in Ω taking preassigned bounded continuous data on the arcs C.

Proof. Let f be the bounded continuous data on C and fn a bounded sequence of
continuous functions on ∂Ω which converges uniformly to f on compacts of C. Let
un be the solution of the minimal surface equation in Ω with boundary values fn.
Proposition 4 implies that the sequence un is uniformly bounded on compact sets of
Ω, and hence by the compactness principle admits a subsequence which converges
to a solution u in Ω.
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The function u takes the values f on C as shown below using a standard barrier
technique. Indeed, there exist barriers at each point of C, i.e., at each point P of C
and for each pair of positive numbers K and δ, there exist a neighborhood V of P
and a non-negative solution v in V ∩ Ω such that

(i) V ∩ Ω is contained in the geodesic disc of radius δ about P ,
(ii) v > K on ∂V ∩ Ω,
(iii) v = 0 at P .

We may take V to be an isosceles triangle, having its equal sides intersecting in Ω
and tangent to ∂Ω at P on its third side, and v the solution in this triangle which
takes values K on the equal sides and 0 on the third side. The existence of v is
assured by lemma 3.

We shall show that u extends by continuity to f along C. Let P ∈ ∂Ω, fix ǫ > 0 and
let v be a barrier at P defined in a triangle V as described above. As fn is continuous
at P then ∂Ω contains a neighborhood of P on which

fn < f + ǫ.

The continuity of f at P allows us to assume that in this neighborhood

fn < f(P ) + 2ǫ

and hence in this neighborhood

fn < v + f(P ) + 2ǫ.

We choose K such that

sup
∂V ∩Ω

(un) < K + f(P )

for the maximum principle would then imply the following inequality

un < v + f(P ) + 2ǫ in V ∩ Ω

Taking n→ ∞ implies that

u(x) ≤ v(x) + f(P ) + 2ǫ in V ∩ Ω.

By a similar argument we obtain the inequality

u(x) ≥ w(x) + f(P ) − 2ǫ in V ∩ Ω,

where w is the barrier in the triangle V , chosen as for v above, except that w takes
values −K on the equal sides and 0 on the third side. The constant K is chosen such
that

inf
∂V ∩Ω

(un) > −K + f(P ).

Taking ǫ→ 0 and x→ P , we get that lim
x→P

u(x) = f(P ) and the proof is completed.2
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2.6 The Conjugate Function

Let u be a solution of the minimal surface equation in a simply connected domain
Ω. The equation

divR2

(
λα

W
∂x +

λβ

W
∂y

)
= 0

amounts to the fact that the differential

ω =
−λβ
W

dx+
λα

W
dy

is exact in Ω. We may then consider the function ψ defined in Ω, such that dψ = ω,
and we shall call it the conjugate function of u. The gradient of ψ, for the H2-metric,
is

Dψ =
−β
λW

∂x +
α

λW
∂y

and

|Dψ|H2 =

√
α2 + β2

W
< 1,

it follows that ψ is Lipschitz continuous and hence extends continuously to the
closure of Ω and hence dψ may be integrated along boundary arcs of Ω regardless
of the boundary values of u. The following is obvious

Lemma 4 Let u be a solution of the minimal surface equation in a bounded domain
Ω ⊂ H2 and C a piecewise smooth curve lying in the closure of Ω. Then,

|
∫

C

dψ| 6 |C|,

where |C| denotes the H2-length of C.

Moreover, if C is a simple closed curve then

∫

C

dψ = 0.

We remark that if C lies in Ω, the fact that |Dψ| < 1 implies that

|
∫

C

dψ| < |C|.

We show next that this will be the case when C is a convex arc of the boundary of
Ω, provided that u is continuous there.
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Lemma 5 Let u be a solution of the minimal surface equation in a domain Ω and
C a convex arc of the boundary of Ω. If u is continuous on C then

|
∫

C

dψ| < |C|.

Proof. It is clearly enough to prove the result for a sub-arc of C ; this allows us
to assume, without loss of generality, that Ω is convex with u continuous on its
boundary. Let C ′ denote the open sub-arc of the boundary which is complementary
to C and let a be a real constant. The minimal surface equation admits a solution
u∗ which is equal to u on C ′ and u+ a on C, as guaranteed by the above results.
We set

ũ = u∗ − u and ψ̃ = ψ∗ − ψ.

Observe that ũx = −λ(α∗ − α) and ũy = −λ(β∗ − β), then integration by parts and
a standard "approximation" at the end-points of C show that

∫

∂Ω

ũdψ̃ = −
∫

Ω

[
ũx

(λα
W

− λα∗

W ∗

)
+ ũy

(λβ
W

− λβ∗

W ∗

)]
dxdy

= −
∫

Ω

λ2(β − β∗)
( β

W
− β∗

W ∗

)
+ λ2(α− α∗)

( α

W
− α∗

W ∗

)
dxdy

= −
∫

Ω

〈
Wη −W ∗η∗, η − η∗

〉
˜PSL2(R)

dAH2

= −
∫

Ω

(W +W ∗)

2
(η − η∗)2dAH2 ,

where α∗, β∗, W ∗ and η∗ are defined in terms the partial derivatives of u∗ in the
same fashion we defined α, β, W and η in terms of the partial derivatives of u. The
field η∗ is normal to the graph of u∗

The above computation then implies that

a

∫

C

dψ̃ < 0.

Using the fact that

|
∫

C

dψ∗| 6 |C|

and giving a the values ±1 complete the proof. 2

Lemma 6 Let Ω be a domain in H2 whose boundary contains a geodesic segment
Γ. Suppose that ∂Ω is oriented so that the orientation on Γ coincides with that
induced by the outward pointing normal to Γ. If u is a solution of the minimal
surface equation in Ω assuming boundary value plus infinity on Γ then
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∫

Γ

dψ = |Γ|.

Proof. We consider the half plane model for the hyperbolic plane. We can suppose
that Ω ⊂ {x < 0, y > 0} and that Γ is a segment of the geodesic {x = 0, y > 0} of
H2.
We remark that the H2-gradient of ψ, the conjugate function of u, is

Dψ = Rotπ
2
dπ(η),

where η is the upwards pointing unit normal to the graph Σ of u, and we show that
η extends continuously to the boundary segment Γ.

We think of ˜PSL2(R) as a subset of R3 and we choose a sequence (pn) of points with
constant ordinates in Ω which converges to an interior point p of Γ. We set µn =
d(p, pn) and qn = (pn, u(pn)) and we consider the affine transformations hn(X) =

1√
µn

(X − qn) on R3.

Let Σn = hn(Σ) and note that 0 ∈ Σn, for all n, and that the normal ηn to Σn at
the origin is the same as that of Σ at the point qn. It is then enough to show ηn(0)
admits a limit as n→ ∞ and define η(p) as this limit.

We admit for now that the sequence (An), An the second fundamental form of Σn

for the euclidean metric, is uniformly bounded in a neighborhood of the origin, a
claim we will prove below. Hence the sequence Σn converges on this neighborhood,
up to a subsequence. As Σn is contained in {x 6

√
µn} and asymptotic to the plane

{x =
√
µn}, the limit surface will be tangent to the plane {x = 0} at the origin.

The sequence (Nn), Nn the normal to Σn for the euclidean metric at the origin,
therefore converges to ∂x. However the equality

ηn =
G−1Nn√

〈G−1Nn, Nn〉R3

,

where the matrix G is such that 〈X,Y 〉 ˜PSL2(R)
= 〈GX, Y 〉R3 , implies that ηn is also

convergent and this proves our claim that η extends by continuity to the interior of
Γ.

The facts that at interior points of Γ

〈η, E3〉 ˜PSL2(R)
= lim〈ηn, E3〉 ˜PSL2(R)

=
〈∂x, E3〉R3√
〈G−1∂x, ∂x〉R3

= 0
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and

〈dπ(η), e2〉H2 = 〈η, E2〉 ˜PSL2(R)

=
〈∂x, E2〉R3√
〈G−1∂x, ∂x〉R3

= 0

imply that the extension of η to the boundary is such that

〈dπ(η), e1〉H2 = −1,

e1 being also the outwards pointing normal to Γ.

Now as Rotπ
2

preserves the metric on tangent spaces of H2 and as Γ is oriented by
e1 we obtain,

∫

Γ

dψ = −
∫

Γ

〈Dψ, e2〉H2ds

= −
∫

Γ

〈Rotπ
2
dπ(η), e2〉H2ds

= −
∫

Γ

〈dπ(η), e1〉H2ds

= |Γ|.

To complete the proof we now estimate the second fundamental form An of Σn. Since
u→ ∞ when p→ Γ we may choose discs D(qn, R) centered at qn in Σ with intrinsic

radius R independent of n, and since minimal graphs in ˜PSL2(R) are stable (see
Remark 2.9), Schoen’s curvature estimate implies that

|Ã| 6 C in D(qn,
R
2
),

where Ã is the second fundamental form of Σ for the ˜PSL2(R) metric and C is an
absolute constant.

However, if N and A denote the normal and the second fundamental form of Σ with
respect to the euclidean metric we have

Ã(X,Y ) = 〈∇XY, η〉 ˜PSL2(R)

=
〈∇XY,N〉R3√
〈G−1N,N〉R3

=
1√

〈G−1N,N〉R3

(
〈∇XY,N〉R3 + 〈∇XY −∇XY,N〉R3

)
,
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where ∇ is the Levi-Cevita connection of Σ for the Euclidean metric. Then Ã controls
A as follows

A(X,Y ) 6
√
〈G−1N,N〉R3Ã(X,Y ) − 〈∇XY −∇XY,N〉R3 .

The tensor ∇XY −∇XY can be easily seen to be controlled by ‖X‖, ‖Y ‖ and the

Christofel symbols of ˜PSL2(R) which shows that |A| is bounded in a neighborhood

of qn. Then Ãn, the second fundamental form of Σn with respect to ˜PSL2(R) metric,
is bounded by C

√
µn in the disc D(0, R

2
√
µn

). In a similar fashion, one obtains the

following estimates

An(X,Y ) 6
√
〈G−1Nn, Nn〉Ãn(X,Y ) − 〈∇XY −∇XY,Nn〉.

which imply that (An)n is uniformly bounded in a neighborhood of the origin and
the proof is completed. 2

Lemma 7 Let Ω be a domain in H2 as in Lemma 6 and let (un) be a sequence of
solutions of (1) in Ω. Assume that each (un) is continuous in Ω ∪ Γ and that (un)
diverges uniformly to infinity on compact subsets of Γ while remaining uniformly
bounded on compact subsets of Ω. Then

lim
n→∞

∫

Γ

dψn = |Γ| .

On the other hand, if the sequence diverges uniformly to infinity on compact subsets
of Ω while remaining uniformly bounded on compact subsets of Γ, then

lim
n→∞

∫

Γ

dψn = − |Γ| .

Proof. We follow the same lines of proof as in Lemma 6 except that we choose the
points qn = (pn, un(pn)) instead, where (pn) is in Ω and converges to an interior
point of Γ. We consider the surfaces Sn = hn(Σn) in R3, where Σn is the graph of un
and hn is as defined in the proof of Lemma 6, for purposes similar to those in that
proof. We let An denote the second fundamental form of Sn and ηn the normal to
Sn at the origin, which is the same as that to Σn at qn.

The facts that un is continuous in Ω ∪ Γ and that the sequence (un) diverges uni-
formly on compacts of Γ, allow us to choose discs centered at qn on Σn, of radius R
independent of n, as in the proof of Lemma 6.

Moreover, we note that the sequence (un) converges to a solution in Ω with u taking
the value +∞ on Γ. This fact together with Schoen’s curvature estimate for each
Σn, imply in a similar way as in the proof of Lemma 6 that (An)n is uniformly boun-
ded in a D(0, R). The sequence (ηn) can then be proved to converge to a horizontal
vector η along Γ with
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〈dπ(η), e1〉 = −1

and then

lim
n→∞

∫

Γ

dψn = −
∫

Γ

〈dπ(η), e1〉ds = |Γ|

To prove the second part of the lemma we make the obvious adjustments to the
proof and further details are left to the reader. 2

2.7 The Monotone Convergence Theorem

Later existence results depend on the limit behavior of monotone sequences of
solutions of the minimal surface equation. In this section we develop the necessary
tools to deal with these sequences. These are similar, as well as the last two sections
above, to the results in [16].

Lemma 8 (Straight Line Lemma) Let Ω ⊂ H2 be a bounded domain whose boun-
dary consists of a geodesic segment γ and an arc C, with Ω lying on one side of γ.
Then for any compact K ⊂ Ω there exists N , depending only on the distance from
K to γ, such that

m−N 6 u 6 M +N in K,

for any solution u of the minimal surface equation (2.1) which is bounded in Ω, with
m 6 u 6 M on C.

Proof. Let f1 and f2 be two isometries of H2 sending the positive y-axis to the
geodesic Γ which contains γ such that the image of the quadrant Q1 = {(x, y)|x >
0, y > 0} by f1 will contain Ω, and the image of the quadrant Q2 = {(x, y)|x < 0, y >
0} will contain Ω. Let O = f1(Q1) = f2(Q2) and note that the minimal graphs of
example 2 can be used to obtain a positive solution and a negative solution of the
minimal surface equation in O, which take respectively the value +∞ and −∞ on

Γ. Simply, let f̃1 and f̃2 denote the respective lifts of f1 and f2 to ˜PSL2(R) and

consider the images by f̃1 and f̃2 of the graphs in example 2, which correspond to
C = 1 and defined over Q1 and Q2 respectively. We obtain two graphs on O which,
up to vertical translations, have the desired properties. Assume these graphs to be
those of solutions v1 ≥ 0 and v2 ≤ 0 of (2.1).
Let u a solution of the minimal surface equation in Ω with m 6 u 6 M on C. Then
on the boundary of Ω we shall have

m+ v2 6 u 6 M + v1.

The maximum principle then implies that the inequalities hold in Ω. Now, for any

compact K of Ω ∪ C, let N = max{max
K

v1,
∣∣∣min
K

v2

∣∣∣} which depends only on the

distance from K to γ. We clearly have that
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m−N 6 u 6 M +N in K,

which concludes our proof. 2

Remark 13 One direct consequence of this lemma is that no solution of the minimal
surface equation can take infinite values on a non-geodesic boundary arc of a convex
domain. Assume to the contrary that there exists a solution u of (2.1) in a convex
domain Ω taking the value +∞ (-∞) on a non-geodesic open boundary arc C. By
restricting ourselves to proper parts of C we may assume U , the convex hull of C in
Ω, bounded by C and its end points and an open geodesic segment γ contained in Ω.
We shall obtain a contradiction by showing that u must be equal to +∞ (-∞) in U .
Let a = inf

γ
u (= sup

γ

u) which may be assumed a positive (negative) real number (if

we restrict ourselves to proper parts of C). For each n, let un be the solution of the
minimal surface equation in U taking the values n (−n) on C and a on γ. By the
maximum principle, we have then un 6 u (un > u) in U . Hence by the Straight Line
Lemma we have that on each compact in U ∪ C and for each n, n − N 6 un 6 u
(−n + N > un 6 u) with N independent of n. Letting n → ∞ implies that u has
infinite values in U which is absurd.

The following two theorems are essential for studying convergence of monotone se-
quences of solutions.

Theorem 8 (Monotone Convergence Theorem) Let (un) be a monotonically
increasing sequence of solutions of the minimal surface equation in a domain Ω.
If the sequence is bounded at a point p ∈ Ω, then there exists a non-empty open set
U ⊂ Ω such that the sequence (un) converges to a solution in U , and diverges to
infinity on the complement of U . The convergence is uniform on compacts of U , and
the divergence is uniform on compacts of V = Ω − U .

Proof. Assume that |u0| ≤ c near p, and consider the sequence of non-negative
solutions (vn) such that vn = un + c. Hence, each Wn(p) ≤ Cn, where Cn is the
constant given by theorem 6. Then theorem 7 implies that each Wn is bounded in
a disc centered at p and of radius Rn, with Rn depending on un(p), d(p, ∂Ω) and
bounds of λ and its derivatives. As (un(p)) is bounded, then we can find a disc D
centered at p on which (Wn) is uniformly bounded. The mean value theorem then
implies that (un) is then uniformly bounded in this disc. The compactness principle
therefore implies that (un) has a convergent subsequence and as (un) is monotone
it converges on this disc. The compactness principle implies also that the limit is
a solution of the minimal surface equation and so U is a non-empty open set. The
divergence is uniform on compacts of V as the sequence is monotonically increasing.
The divergence set V is by no means arbitrary, it has a very particular geometric
structure. We resume the properties of V in the following

Theorem 9 (Divergence Set Structure Theorem.)Let (un) be a monotonically
increasing sequence of solutions in Ω. If the divergence set V 6= ∅, then int(V ) 6= ∅,
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and ∂V is composed of non-intersecting geodesic segments of Ω and possibly parts
of ∂Ω. Moreover, no two interior geodesic segments of ∂V can have a common end
point at a convex corner of V , nor any component of V consist only of a geodesic
segment of Ω.
Furthermore, if Ω is bounded in part by a convex arc C with each un continuous in
Ω ∪ C and (un) either diverges to infinity on C or remains uniformly bounded on
compacts of C, then no interior geodesic segment Γ forming part of the boundary of
V can terminate at an interior point of C.

For the proof of this theorem, one can employ the lemmas of section 6 above in ways
similar to those in the proofs of Lemma 5 and Lemma 6 in [16]. In fact, Remark
13 above implies that, if V 6= ∅, ∂V consists of non intersecting geodesic segments
of Ω and possibly parts of the boundary of Ω. To prove that no component of ∂V
is only a geodesic segment T of Ω, one applies Lemma 6 above to Ω1 and Ω2, the
components of Ω on either side of T . A contradiction is obtained since in Ω1, say,
one obtains

lim
n→∞

∫

T

dψn = |T |

and in Ω2 one obtains

lim
n→∞

∫

T

dψn = − |T | .

To see that no interior geodesic segments of ∂V can have a common end point, we
notice that Remark 13 above implies that such a point must be in ∂Ω. We suppose
then ∂V admits two geodesic segments T1 and T2 in Ω with a common end point Q
in ∂Ω and we choose two points Q1 and Q2 on T1 and T2 respectively, so that the
open geodesic triangle ∆, with vertices Q, Q1 and Q2, lie in Ω. By Lemma 4 above,

∫

QQ1

dψn +

∫

Q1Q2

dψn +

∫

Q2Q

dψn = 0.

The triangle may lie in U or V , since no component of ∂V is only a geodesic segment.
In the former case, one applies Lemma 7 above to obtain

lim
n→∞

∫

QQ1

dψn = |QQ1| and lim
n→∞

∫

QQ2

dψn = |QQ2|

assuming that QQ1Q2 determines the positive orientation of ∆. However, Lemma 4
implies

∣∣∣∣
∫

Q1Q2

dψn

∣∣∣∣ ≤ |Q1Q2|

72



2.8. A JENKINS-SERRIN TYPE THEOREM

which is a contradiction with the triangle inequality in H2. If ∆ lies in V one obtains
a similar contradiction by applying the second part of Lemma 7. To prove the second
part of Theorem 6, we notice that if C is not geodesic, Lemma 8 implies that on
compacts in the convex hull of C

min
C

(un) −N ≤ un ≤ max
C

(un) +N

with N independent of n, and the proof of the claim is immediate since the above
inequality implies that the interior of the convex hull of C lies either in U or in V .
We then assume that C is geodesic, and that Γ terminates at an interior point Q
of C. Suppose first that the sequence diverges on C. Let P be a point of Γ, and
choose a point R on C such that the geodesic segment RP lies in U . The results we
have proved in the first part of the theorem allow this choice. We apply Lemma 4
and Lemma 7 in the triangle QPR in a fashion similar to that in the triangle ∆,
to obtain a contradiction with the triangle inequality in H2. In case the sequence
remains uniformly bounded on compacts of C, a similar contradiction results by
choosing the segment RP in V . 2

2.8 A Jenkins-Serrin Type Theorem

This is theorem 4 stated in the introduction. We note that a section s of π :
˜PSL2(R) → H2 takes the value +∞ (−∞ resp.) on a geodesic segment Ai (Bj

resp.) if the image by s of each geodesic t → γ(t) of Ω ending at Ai (Bj resp.) gets
out of every compact and if 〈γ′(t), ξ〉 > 0(< 0, resp.), where ξ = ∂z in our model of

˜PSL2(R).

As was remarked above, having fixed the model for ˜PSL2(R) the existence of the
section s on Ω with the prescribed boundary data is equivalent to the existence of a
real function u defined in Ω with corresponding data on the boundary. The function
u is constructed as a limit of monotone sequence of solutions of the minimal surface
equation whose behavior is studied using the monotone convergence theorem, the
divergence set structure theorem and the properties of the differential dψ corres-
ponding to u. Once the convergence is established, we need to show that the limit
will assume the appropriate boundary values. This will be assured by the Boundary
Values Lemma below.

We proceed to prove the existence of particular solutions of (2.1) which will be used
as barriers in the proof of the Boundary Values Lemma.

Lemma 9 Let P be a convex quadrilateral in H2, formed by geodesic segments A1,
A2, C1 and C2 such that A1 ∩ A2 = ∅ and |A1| + |A2| < |C1| + |C2|. Then there
exists a solution of (2.1) in P which takes the boundary values +∞ on A1 ∪ A2 and
non-negative values on C1 ∪ C2.
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Proof. Let P be a convex quadrilateral in H2, formed by geodesic segments A1, A2,
C1 and C2 such that A1∩A2 = ∅ and |A1|+ |A2| < |C1|+ |C2|. Let un be the solution
of the minimal surface equation in P taking boundary values n on each Ai and 0 on
each Ci. The sequence un is seen to converge to a solution u in P as follows. Let V
denote the divergence set and remark that either the interior of V is equal to that of
P , or otherwise by Theorem 9 an interior geodesic segment bounding V must have
its endpoints from amongst those of the Ai’s.

The interior of V cannot be equal to that of P for otherwise :
∫

A1∪ A2

dψn +

∫

C1∪ C2

dψn = 0

and then one takes the limit as n→ +∞ and uses Lemma 7 and Lemma 4 to obtain
∫

C1∪ C2

dψn = −
(
|C1| + |C2|

)
and

∫

A1∪ A2

dψn ≤ |A1| + |A2|.

This implies that |A1| + |A2| ≥ |C1| + |C2| which is not true.

Thus assume that V is non-empty and bounded by a geodesic triangle ∆ whose
vertices are endpoints of the Ai’s. Let δ denote the perimeter of ∆. One would
obtain

∫

∆−Ai

dψn +

∫

Ai

dψn = 0.

Again passing to the limit and using Lemma 7 and Lemma 4 the following holds
∫

∆−Ai

dψn = −(δ − |Ai|) and

∫

Ai

dψn ≤ |Ai|,

which leads to a contradiction with the triangle inequality.

Therefore, V = ∅ and the sequence (un) converges on compact sets of P to a solution
of (2.1). We note that since (un) is increasing (by the maximum principle), u takes
the value +∞ on the segments Ai. Although at this point we do not know yet that
u = 0 on the Ci’s, a fact which we will be able to prove later, we remark that u ≥ 0
on each Ci. 2

Lemma 10 Let P be a convex quadrilateral in H2 formed by geodesic segments A1,
A2, C1 and C2 such that A1 ∩A2 = ∅. If |A1| + |A2| < |C1| + |C2|, then there exists
a solution v of the minimal surface equation in P taking the boundary values +∞
on A1 ∪ A2 and has bounded values on C1 ∪ C2.

Proof. Let C̃i be a horizontal lift of Ci to ˜PSL2(R) and let un be the solution of the
minimal surface equation in P taking boundary values n on each Ai and boundary

values given by C̃i on Ci. One may translate vertically each of the C̃i, so that each
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un ≥ 0. The sequence un is increasing and converges to a solution u in P by argu-
ments similar to those in Lemma 9.
The limit u takes the boundary value +∞ on each Ai as the sequence (un) is increa-

sing. The boundary values of u on Ci are given by C̃i and this follows by standard
barrier techniques, as in the proof of Proposition 6, once we show the sequence (un)
to be uniformly bounded near each point of Ci. We complete the proof by showing
this last point.

As C̃i is a horizontal geodesic, observations in [1] ensures that the graph of un extends

by symmetry about C̃i to a graph (a graph since otherwise by the maximum prin-
ciple, the surface obtained by symmetry would coincide with the cylinder π−1(Ci)).
Let p be a point of Ci and choose a sufficiently small geodesic rectangle R as in
Lemma 9, which has two of its sides orthogonal to Ci and which contains p in its
interior. Let v denote the solution of (2.1) in R taking the values +∞ on the sides
orthogonal to Ci and non-negative values on the other two sides, say Sj, 1 ≤ j ≤ 2.
The existence of v is assured by Lemma 9. The maximum principle then implies that
for each n, un ≤ v+M over R, where M = sup |un| and the supremum is taken over
the Sj’s. One considers a small neighborhood of p in R, and the preceding inequality
proves that un is bounded around p. 2

Lemma 11 (Boundary Values Lemma) Let Ω be a domain and C a compact
convex arc in its boundary. Let (un) be a sequence of solutions of the minimal surface
equation, which converges uniformly on compacts of Ω to a solution u. Suppose that,
on the one hand, each (un) is continuous in Ω ∪ C and that the boundary values
converge uniformly on compacts of C to a limit function f . Then u is continuous
in Ω ∪ C and takes the values f on C. If C, on the other hand, were a geodesic
segment where the boundary values diverge uniformly to infinity, then u will take on
the boundary value infinity on C.

Proof. For the first part where the boundary values of (un) converge uniformly on
compact subsets of C it suffices to show the sequence (un) uniformly bounded in the
neighborhood of any interior point of C and then employ a standard argument of
the theory of barriers (again similar to that in the proof of proposition 6 above). If
C is not geodesic then the result follows by the Straight Line Lemma. In case C is
a geodesic segment, the preceding lemma furnishes the ingredient necessary to show
the required boundedness of (un) near interior points of C in a fashion similar to
that of Lemma 7 in [16] or the corresponding Boundary Values Lemma in [5].
The part where C is geodesic and (un) taking infinite values there can be proved in
a fashion similar to that of Lemma 8 in [16]. However, to prove (un) bounded from
below as is done in [16] we may prove a lemma similar to Lemma 10 above except
that the solution takes values −∞ on the sides Ai. Then we follow the same lines of
proof of the Boundary Values Lemma in [5]. 2

Remark 14 Let P be a geodesic rectangle as in Lemma 10. In order to prove the
existence of a solution of (2.1) in P taking bounded values on the Ci’s and values
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−∞ on the Ai’s, one can proceed as follows. Let r denote the reflection of H2 in A1,

and r̃ its lift to ˜PSL2(R). Consider the image P ′ of P by r, and find by Lemma 10
a solution v in P ′ taking the values +∞ on A1 and r(A2), and bounded values on
each r(Ci). The image by r̃ of the graph of v is the graph of a solution u of (2.1)
over P, which takes the sought boundary values.

Having developed the necessary machinery in this paper, the existence part of Theo-
rem 4 could be proved following the same lines of proof in [16] and [25]. To see that
the conditions in Theorem 4 are necessary, we let u be a solution of the minimal
surface equation in a domain Ω and we consider a polygon P , such that Ω and P
are as described in that theorem. By Lemma 4 above

∫

P−{Ai∈P}
dψ +

∑

Ai∈P

∫

Ai

dψ = 0,

with P oriented by the outward pointing normal. Lemma 6 implies that

∑

Ai∈P

∫

Ai

dψ = α,

and if P 6= ∂Ω then Lemma 5 implies that

∫

P−{Ai∈P}
dψ < γ − α.

If P = ∂Ω, which is possible only if the family {Ci} = ∅, then again by Lemma 6,
one would obtain

∫

P−{Ai∈P}
dψ = −β.

This argument shows that the conditions 2α < γ for all possible polygons P 6= ∂Ω
chosen as in Theorem 4, and that α = β when P = ∂Ω are necessary. A similar
argument shows that the conditions on the segments Bi are necessary as well.

To show that the conditions of Theorem 4 are sufficient, we employ the Monotone
Convergence Theorem, the Divergence Structure Theorem and the lemmas of sec-
tions 6 through 8 in the same fashion as in [16] or [25]. We furnish only a sketch of
the proof and we refer the reader to section 5 in [16] for further details, where the
constructions of solutions held in that paper carry word for word to our case. The
proof can be broken down into proving existence of solutions of Dirichlet problems
related to the one stated in Theorem 4.
Step 1. We consider the Dirichlet problem in Theorem 4, and we suppose that the
family {Bi} is empty. Assume also that the assigned data on the arcs {Ci} is bounded
below. Then the conditions 2α < γ for each simple closed polygon P whose vertices
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are chosen from among the endpoints of the Ai’s are sufficient for the existence of a
solution.
Step 2. We consider the Dirichlet problem in Theorem 4, and we suppose that the
family {Ci} 6= ∅. Then the conditions 2α < γ and 2β < γ for each simple closed
polygon P whose vertices are chosen from among the endpoints of the Ai’s and the
Bi’s are sufficient for the existence of a solution.
Step 3. We consider the Dirichlet problem in Theorem 4, and we suppose the family
{Ci} = ∅. Then the conditions α = β when P = ∂Ω and 2α < γ and 2β < γ for
each simple closed polygon P whose vertices are chosen from among the endpoints
of the Ai’s and the Bi’s are sufficient for the existence of a solution.

To complete the proof of Theorem 4, we next give a proof of the uniqueness, which
is up to an additive constant when the family {Ci} = ∅, inspired by [4].

Proof of uniqueness. Let u1 and u2 be two different solutions of the minimal
surface equation with the same boundary data (possibly infinite). If {Ci} = ∅ we
suppose that u1−u2 is not a constant. Note that either of the subset of Ω, {u1 > u2}
or {u1 < u2} is non-empty . We suppose without loss of generality that {u1 > u2} 6= ∅
and we choose ǫ small enough so that Ωǫ = {u1 − u2 > ǫ} is non-empty and that
∂Ωǫ is regular.
We consider the closed differential dΨ = dψ1 − dψ2, ψ1 and ψ2 the conjugate func-
tions of u1 and u2 respectively, and we obtain a contradiction by showing that∫
∂Ωǫ

dΨ 6= 0.
As u1 and u2 have the same boundary data ∂Ω does not intersect ∪Ci, besides
Lemma 6 implies that dΨ = 0 on ∪Ai

⋃∪Bj. Then the only part of ∂Ωǫ which

contributes to the integral
∫
∂Ωǫ

dΨ, denoted ∂̃Ωǫ, is that contained in Ωǫ defined by
u1 − u2 = ǫ. Then the vector

v = Rotπ
2

(
∇(u1 − u2)

)
= −λ(β1 − β2)∂x + λ(α1 − α2)∂y

is tangent to ∂̃Ωǫ and the integral
∫
∂Ωǫ

dΨ reduces to integrating dΨ.v. However, a
computation similar to that of lemma 5 shows that

dΨ.v = λ2 (W1 +W2)

2
(η1 − η2)

2

which is a positive quantity (ηi is the normal to the graph of ui). This leads to a
contradiction and the proof is completed. 2
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Chapitre 3

Construction of Triply Periodic

Minimal Surfaces

3.1 Introduction

During the middle of the nineteenth century, H.A. Schwarz carried an intensive
investigation of periodic minimal surfaces and was able to construct five triply perio-
dic ones. A minimal surface in the euclidean space is said to be triply periodic if it is
invariant under three independent translations. His method consisted of spanning a
disc-type minimal surface into a non-planar polygonal boundary, and then reflecting
this surface across its boundary lines.
In the 1970’s, the physicist and crystallographer Alan Schoen, discovered many tri-
ply periodic minimal surfaces and constructed models of them. However, his study
of these surfaces was a bit sketchy and thus, among mathematicians, there remained
doubts whether all details could be filled in. It did not take long until Hermann Kar-
cher established rigorously the existence of all of Schoen’s surfaces, and constructed
whole families of newly found triply periodic embedded minimal surfaces, by ap-
plying his so called "Conjugate Plateau Constructions" [18].

In this paper, we will construct families of triply periodic embedded minimal sur-
faces by gluing simply periodic ones with Scherk type ends. A Scherk type end is
one which is asymptotic to a vertical half-plane. Our construction is motivated by
the following observation : it is known that the Schwarz P -surface can be deformed
in a one parameter family Pε, with periods (1, 1, 0), (1,−1, 0) and (0, 0, ε), such that
when ε → 0, Pε converges to the set T × R, where T is the standard tiling of the
plane by unit squares. We reverse the process, given a tiling T of the plane, which
is invariant under two independent translations, we construct a family Mε of triply
periodic embedded minimal surfaces, each of which has a horizontal period equal
to that of the tiling, which converges to T × R. Of course, we do not expect the
construction to work for arbitrary periodic tilings as will be seen later.

Roughly speaking, the idea underlying the gluing process is the following : from a
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distance, a Karcher saddle tower (see Section 3.3 below) is seen as a set of vertical
half-planes intersecting at a common line. We assume that all of the saddle towers
to be considered, admit the same vertical period (0, 0, T ), which without loss of ge-
nerality we normalize to (0, 0, 2π). We scale each of the saddle towers by a factor
of ε2 ( !), so that the vertical period is P (ε) = (0, 0, ε2T ). Then, given a tiling T of
R2, invariant under two independent translations, we place a scaled Karcher saddle
tower at each of its vertices in such a way that, the number of wings of the saddle
tower is equal to the number of edges ending at the vertex where it is placed, and
each wing goes along an edge. For each edge we glue the corresponding wings of the
scaled saddle towers placed at its ends, resulting in a triply periodic surface whose
horizontal period is that given by the tiling and a vertical period P (ε). It is natural
that we require the surfaces to be symmetric with respect to the horizontal plane as
it is the case for the saddle towers under consideration. We let Lε denote the lattice
generated by the periods of the tiling and Pε.

The construction will be accomplished by furnishing Weierstrass data on appro-
priate Riemann surfaces, where we employ Weierstrass representation of a minimal
surface in its simplest form. On a Riemann surface Σε, we furnish three holomorphic
differentials, say φε1, φ

ε
2, φ

ε
3, verifying the conditions

φε1
2 + φε2

2 + φε3
2 = 0 on Σε (3.1)

|φε1|2 + |φε2|2 + |φε3|2 > 0 on Σε, (3.2)

and we set Xε(p) = Re

∫ p

Φε, where Φε = (φε1, φ
ε
2, φ

ε
3).

The inequality (2) implies that Xε is an immersion. The equation (1) amounts to
the conformality of the harmonic map X which, together with (3.2), implies that Xε

is a minimal immersion. Up to translations, Xε immerses Σε into a triply periodic
minimal surface whose period is Lε provided that we have

Periodα(Φε) = Re

∫

α

Φε ∈ Lε (3.3)

for all closed cycles α on Σε.

Inspired by the work of Martin Traizet [34] and [35], we perform the gluing by
opening the nodes of singular Riemann surfaces with nodes and we invest the re-
generation of the regular differential forms they carry into holomorphic forms. We
adjust some parameters underlying the construction, by applying the implicit func-
tion theorem, so that (3.1), (3.2) and (3.3) hold.

The paper is organized as follows. In section 2, we fix notation for the tilings un-
der consideration and define what a balanced and a rigid tiling is, and we furnish
sufficient conditions for rigidity. In section 3 we remind the reader of the needed
properties of Karcher saddle towers then we state our main result and give some
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examples. In section 4, we present the machinery we will employ throughout our
construction and we write equations corresponding to (1), (2) and (3) in terms of
the parameters underlying the construction introduced in that same section. In sec-
tion 5, we apply the implicit function theorem to show that we may choose our
parameters as to solve the equations presented in the preceding section. Finally, we
complete the proof of the main result of the paper and we prove that the surfaces
obtained are embedded.

3.2 Notions On Tilings

3.2.1 Definitions and Notations

We consider a periodic tiling T of the plane by straight edge polygons, which is
invariant by two independent translations T1 and T2. The bounded domains enclosed
by these polygons are said to be the faces of T , and whose edges and vertices are said
to be the edges and vertices of T respectively. Two faces of T are said to be adjacent
if they have a common edge. We do not suppose T1 and T2 to be the smallest periods
of T and we let Γ denote the group generated by these two vectors.

The tiling T projects onto a tiling of the quotient R2/Γ which we also denote by
T and which we suppose to have finitely many vertices. We shall assume that each
vertex is incident with at least three edges and that each edge bounds exactly two
faces. We say that e ends at v if v is an extremity of e, and we write e = vv′ for an
edge e of T whose extremities are v and v′.

In the quotient, let V , E and F denote respectively, the set of vertices, the set of
edges and the set of faces of T . We consider the sets

Ev = {e : e ends at v} and Ef = {e : e ∈ ∂f}

respectively the set of edges ending at a given vertex v ∈ V (i.e. having v as an
extremity) and the set of edges bounding a given face f ∈ F . We also consider

Vf = {v : v is a vertex of f},

the set of vertices of a face f ∈ F . We let nv, ne and nf denote respectively the
cardinal of V , E and F . Since the quotient R2/Γ has an Euler characteristic equal
to 0, we obtain the following equation

nv − ne + nf = 0.

For v ∈ V we denote by d(v) the cardinal of Ev, which is the number of edges ending
at v, and we say d(v) is the degree of v.

For later purposes, it is convenient to prescribe a sign to each vertex and to each
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edge of T . We denote the arbitrarily prescribed sign of a vertex v by σ(v) = ±1 and
for e = vv′ we let σ(e) := σ(v)σ(v′).

Proposition 7 Each face of T has an even number of edges with a negative sign.

Proof. Let f ∈ F ,

∏

e∈∂f
σ(e) =

∏

{e=vv′:e∈∂f}
σ(v)σ(v′)

=
∏

v∈Vf

σ(v)
∏

v′∈Vf

σ(v′)

=
( ∏

v∈Vf

σ(v)
)2

= 1.

which ends the proof. 2

We identify R2 and the complex plane C and we index the components of the vectors
in Cnv by v ∈ V. We follow a similar convention for Cne and Cnf . For each vertex
v ∈ V, we consider the lifts e ∈ Ev to edges of the tiling in the plane ending at some
lift zv of v. Then the resultant

Rv =
∑

e∈Ev

zv′ − zv
|zv′ − zv|

depends only on v.

We deform the quotient tiling T by h = (hv) ∈ Cnv as follows : We start by lifting
each edge e = vv′ of T to an edge of the tiling in the plane, whose vertices say, are
zv and zv′ . Then we consider the segment whose vertices are zv + hv and zv′ + hv′
modulo Γ. For ‖h‖ small enough we obtain a tiling of R2/Γ which we denote by Th

for which the resultants

Rv(h) =
∑

e∈Ev

zv′ + hv′ − zv − hv
|zv′ + hv′ − zv − hv|

depend only on the vertices v. We note that T0 = T and that Rv(0) = Rv.

Definition 1 A tiling is said to be orientable if we can label its faces with + and −
signs so that adjacent faces admit opposite signs.

We note that if T is orientable then each vertex of T is incident with an even number
of edges. If T is orientable, an orientation of T induces an orientation on the edges
in the following sense : one assigns to an edge e in the boundary ∂f of a face f an
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initial vertex, denoted init(e), and a terminal vertex denoted ter(e), by tracing ∂f
in the direct sense if f admits a + sign and in the indirect sense otherwise. We write

~e =
−→
vv′ to denote that init(e) = v and ter(e) = v′. Once an orientation is fixed on

an orientable tiling T , we let σ(f) denote the sign associated to f .

To each edge e of an oriented tiling we associate the complex number ze as follows :
we lift e to an edge of the tiling in the plane at some lift zinit(e) of init(e) and we set
ze = zter(e) − zinit(e). Then the resultant at a vertex v can be written as

Rv =
∑

ter(e)=v

ze
|ze|

−
∑

init(e)=v

ze
|ze|

.

Similarly for the tiling Th, the resultants can be written as

Rv(h) =
∑

ter(e)=v

ze + he
|ze + he|

−
∑

init(e)=v

ze + he
|ze + he|

,

where he = hter(e) − hinit(e) and h = (hv)v. We let RT (h) = (Rv(h))v.

Definition 2 The tiling T is said to be balanced if the resultant at each vertex of T
is zero, i.e., RT = (Rv)v = 0.

We fix a vertex v of the tiling in the plane. For i ∈ {1, 2} we denote by vi the
translate of v by Ti, and we choose a path Pi of consecutive edges of T which joins
v to vi. Let BTi

denote the homology class of Pi in the quotient, say that an edge
e ∈ BTi

if e can be lifted to an edge of the path Pi.

In what follows we assume that T is an oriented tiling. We associate to each f ∈ F
and to each BTi

a linear form on Cne as follows :

φf (x) =
∑

e∈∂f
xe, φBTi

(x) =
∑

e∈BTi

xe,

where x = (xe)e ∈ Cne . Then we consider the following subspace of Cne ,

W =
(
∩f kerφf

)
∩

(
∩i kerφBTi

)
.

We note that
∑

f∈F
σ(f)φf = 0, so that W is defined by (nf−1)+2 = nf +1 equations

and

dimC W ≥ ne − (nf + 1) = nv − 1.

Remark 15 The dimension of W is in fact equal to nv − 1. This follows from the
fact that the set of cycles formed by ∂f , f ∈ F , and BTi

, 1 ≤ i ≤ 2, generate the
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cycle space C(T ) of the multi-graph given by the quotient tiling T , whose dimension
is given by the number of edges and the number of vertices : ne − (nv − 1) = nf + 1
(see chapter 1 in [9]).

One way to compute the dimension of W is the following : we write W as the solution
space of a system of linear equations M.z = 0, where z = (ze)e ∈ Cne and M is a
(nf + 2)×ne matrix, and we look at its rank. If we number the edges of T from 1 to
ne and the faces from 1 to nf then M = (mij) is the matrix defined as follows : For
1 ≤ i ≤ nf , mij = 1 if ej ∈ ∂fi, and for nf + 1 ≤ i ≤ nf + 2, mij = 1 if ej ∈ BTi−nf

.

All other entries of M are 0.

M is the transpose of the matrix of the cycles ∂f ’s, and BTi
’s, in the canonical basis

of E(T ) (see [9] for more details). Since the noted cycles generate the space C(T )
whose dimension is nf + 1, the rank of M is then equal to nf + 1. The dimension of
W, the kernel of M , is then nv − 1.

We also consider the subspace of Cnv

Wv = {(xv)v :
∑

v

xv = 0},

whose dimension dimC Wv = nv−1. However, W and Wv are canonically isomorphic
and will be identified.

Proposition 8 Let T be an oriented tiling. The transformation which sends (zv)v ∈
Cnv to (ze)e ∈ Cne with ze = zv′ − zv for ~e =

−→
vv′, is an isomorphism from Wv ⊂ Cnv

onto W ⊂ Cne.

Proof. The fact that ∂f ’s and BTi
’s are cycles formed of consecutive edges of T im-

plies that the image of Wv by the noted transformation is contained in W . Moreover,
the transformation is easily seen to be injective on Wv. Since both spaces admit the
same dimension the transformation is an isomorphism. 2

Definition 3 The tiling T is said to be rigid if DRT (0) : Wv → Wv is an isomor-
phism.

The rigidity, as well as the orientability, of T depend on the period Γ. To see this,
consider the regular tiling of the plane with unit squares and take T1 = (3, 0) and
T2 = (0, 3). Then T is clearly orientable, and as we will see not rigid. On the other
hand, if we take T1 = (1, 3) and T2 = (3, 2) then T is to the contrary rigid and not
orientable. In fact the tiling by unit squares is orientable if and only if T1 and T2

are both of the form (n,m) with n+m an even. We next prove general criteria for
rigidity.

3.2.2 Rigid tilings

Roughly speaking, the tiling T is rigid if it admits no infinitesimal deformations
which preserve the resultants at the corresponding vertices. In this section we provide
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(a) Rigid (b) Non rigid

Fig. 3.1 – Examples of tilings

some criteria to decide the rigidity of a given tiling.

Theorem 10 A tiling T all of whose faces are triangles is rigid, regardless of the
period Γ.

Before we proceed with the proof of this theorem we make the following observations.
For h = (hv)v ∈ Cnv set

ℓ(h) =
∑

e∈E
ℓe(h)

where

ℓe(h) = |zv′ + hv′ − zv − hv|
= |ze + he|

for e = vv′.

The functional ℓ is the sum of the lengths of the edges of Th, and it is clear that
ℓ is differentiable, in the real sense, in a neighborhood of h = 0. We recall that if
f(x) = ‖x‖, x ∈ R2 − {0}, then

Df(x)h =

〈
x

‖x‖ , h
〉

and

D2f(x)hh =
1

‖x‖3 (‖x‖2 ‖h‖2 − 〈x, h〉2)
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for all h ∈ R2. Note that D2f(x)hh ≥ 0 and D2f(x)hh = 0 if and only if x and h
are parallel.

Then for e = vv′, the total differential of ℓe at h

Dℓe(h)k = Dhv
ℓe(h)kv +Dhv′

ℓe(h)kv′ ,

where the partial differential of ℓe with respect to hv, at h = (hv)v, is calculated
usinf by the above formula for f to be

Dhv
ℓe(h)kv =

〈
zv + hv − zv′ − hv′

|zv′ + hv′ − zv − hv|
, kv

〉
,

and the total differential of ℓ at h is then

Dℓ(h)k =
∑

e

Dℓe(h)k

=
∑

e

Dhv
ℓe(h)kv +Dhv′

ℓe(h)kv′

=
1

2

∑

v

∑

e∈Ev

Dhv
ℓe(h)kv +

1

2

∑

v′

∑

e∈Ev′

Dhv′
ℓe(h)kv′

=
∑

v

〈Rv(h), kv〉

In particular, we can see that Dℓ(0) = 0 if and only if RT = 0 which implies that
balanced tilings are critical points for the total-edge-length functional.

We differentiate the equation

Dℓ(h)k =
∑

v

〈Rv(h), kv〉

to obtain

D2ℓ(0)hh =
∑

v

〈DRv(0)h, hv〉.

Thus

DRT (0)h = 0 only if D2ℓ(0)hh = 0.

On the other hand,

D2ℓ(0)hh =
∑

e

D2ℓe(0)hh

with
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D2ℓe(0)hh = D2
hvhv

ℓe(0)hvhv + 2D2
hvhv′

ℓe(0)hvhv′ +D2
hv′hv′

ℓe(0)hv′hv′ ,

for e = vv′. We calculate these second derivatives using the formula for D2f given
above and we obtain

D2ℓ(0)hh =
∑

e

1

|ze|3
(
|ze|2 |he|2 − 〈ze, he〉2

)
.

Therefore D2ℓ(0)hh = 0 is equivalent to that fact that for each edge e = vv′, ze and
ze + he are parallel. We have just proved

Proposition 9 Let T be a tiling such that DRT (0)(h) = 0 for some h ∈ Cnv .
Then the edges of the tiling Th, obtained by deforming T by h, are parallel to the
corresponding edges of T .

Now we turn to the proof of the theorem which follows readily from the established
facts. Suppose that all the faces of T are triangles and that DRT (h) = 0 for some
h ∈ Cnv . The conclusion above implies that the faces of Th are also triangles which
are homothetic to the corresponding ones of T . The connectedness of the tiling
implies that we have the same homothety factor for all triangles. Since h ∈ Wv = W
then T and Th have the same period, which implies that the homothety factor is 1
and that hv = hv′ for any two vertices of T . Hence Th is a translate of T and since∑

v hv = 0 we get that h = 0, which proves the theorem.

In fact we do not need all the faces to be triangles. The above proof adapts to the
following situation

Theorem 11 Let T be a tiling in which every edge bounds at least a triangle and
that any two triangles in T can be connected by a path of adjacent triangles. Then
T is rigid.

We end this section by giving a criterion for the rigidity of regular tilings by units
squares.

Theorem 12 Let T be the regular tiling of the plane by unit squares whose periods
are taken to be T1 = (n1,m1) and T2 = (n2,m2). Then T is rigid if and only if
(n1, n2) and (m1,m2) are couples of relatively prime numbers.

Proof. We remark that (m1,m2) (resp. (n1, n2)) is a couple of relatively prime num-
bers if and only if the horizontal (resp. vertical) lines of the tiling project into a
single horizontal (resp. vertical) line in the quotient R2/Γ. If we have more than one
horizontal (resp. vertical) line in the quotient it is easy to see that we can deform
the tiling by displacing one of the horizontal (resp. vertical) lines while keeping the
others fixed (to displace a line we may displace its lift in R2 then consider the dis-
placed line in the quotient). This implies that the condition (n1, n2) and (m1,m2)
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are couples of relatively prime numbers is necessary.

Reciprocally, we suppose that DRT (0)h = 0 for a tiling whose horizontal (resp.
vertical) edges lie on the same horizontal (resp. vertical) line, with h ∈ Wv.
We choose a vertex v ∈ V and we translate Th back to v by hv(1, .., 1) ∈ Cnv . We
notice that the translations of T , which correspond to vectors of Cnv with equal
components, are in the kernel of DRT (0). Thus we obtain a deformation of T by
h − hv(1, .., 1) ∈ Cnv which is in the kernel of DRT (0). Proposition 3 then implies
that we obtain a tiling whose horizontal (resp. vertical) edges lie on the horizon-
tal (resp. vertical) line of T through v, which implies that the two tilings coincide.
Hence, h = hv(1, .., 1) and as h ∈ Wv we conclude that h = 0.

3.3 Main Result

In this section we present the main result of the paper. We first proceed with a
reminder of some properties of the Karcher saddle towers.

3.3.1 Karcher Saddle Towers

These are simply periodic minimal surfaces with 2k Scherk type ends, k ≥ 2,
which can be constructed by taking conjugates of Jenkins-Serrin graphs over equila-
teral convex 2k-gons, and completing them by symmetries, see [17]. For k = 2 these
surfaces are also known as the simply periodic Scherk surfaces.

(a) Scherk singly periodic (b) A Karcher saddle tower
with eight ends

Fig. 3.2 – Karcher saddle towers

In fact, for any set {v1, ..., v2k} of distinct horizontal vectors of equal length, k ≥ 2,
such that

∑
vi = 0 there exists such a surface with 2k ends each of which is parallel

to some vector vi. This surface can be constructed as follows : The set of vectors {vi}
noted above defines a strictly convex equilateral 2k-gon whose edges we alternately
label +∞ and −∞. As the polygon is equilateral (and non-special in the sense of
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[27]), the existence of a minimal graph over its interior and taking the values +∞
and −∞ on the corresponding boundary edges is guaranteed by the Jenkins-Serrin
theorem (see [16]). The graph is a conformal disc bounded by vertical lines over the
vertices of the polygon. Therefore, the conjugate surface of such a Jenkins-Serrin
graph is bounded by horizontal arcs which lie alternately in two horizontal planes.
The conjugate surface, which is a graph (by a theorem of R. Krust), meets these
planes perpendicularly and can be extended by reflection to a complete Karcher
saddle tower. The intrinsic distance between adjacent vertical lines is the same as
between the corresponding planar symmetry lines. Since a Jenkins-Serrin graph has
a limiting normal as we approach the edges (which is a horizontal vector orthogonal
to the corresponding edge), the intrinsic distance between adjacent vertical lines is
equal to the length of the edges of the polygon. Therefore, the vertical period of the
Karcher saddle tower is twice the length of the edges of the polygon.

The normals at the ends of the Jenkins-Serrin graph and its conjuagte are the same,
so a rotation about the vertical axis of the Karcher saddle tower by π

2
implies that the

ends are in the direction of the edges vi. We note that the only horizontal normals of
a Jenkins-Serrin graph are along the vertical boundary lines, otherwise the surface
could not be a graph. This implies that the only horizontal normals to the Karcher
saddle tower lie on the lines of planar symmetry and along these the normal rotates
monotonely, from one limiting normal on one edge to the limiting normal on an
adjacent edge. Hence, the length of arc of great circle, described by the Gauss map
along a horizontal symmetry line of the Karcher saddle tower (which is the conjugate
of the vertical line bounding the Jenkins-Serrin graph over the meeting point Ai of
vi and vi+1) is π−ai, where ai is the exterior angle of the polygon at Ai. This implies
that

∑

i

π − ai = 2πd

where d is the degree of the Gauss map. Since the sum of exterior angles of our
polygon is 2π, then the above equation becomes

2kπ − 2π = 2πd

and the degree of the Gauss map is therefore k − 1.

If we quotient the Karcher saddle tower by its smallest period we obtain a conformal
sphere with 2k punctures and then we can see that we may assume the lines of planar
symmetry and the punctures to lie on the real line. In other words, if Φ0 = (φ0

1, φ
0
2, φ

0
3)

denotes the Weierstrass data over a punctured sphere of the a Karcher saddle tower,
then we may assume that the poles of Φ0 lie on the real line which is a line of
planar symmetry. As the zeros of φ0

1 are realized at points where the Gauss map is
horizontal, then we may assume these zeros to be real.

The main result of the paper is the following
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Theorem 13 Let T be a balanced tiling in the plane which is invariant by two
independent translations T1 and T2. Let Γ denote the group generated by T1 and T2,
and denote by T the corresponding quotient tiling in R2/Γ.

If the quotient tiling T is orientable and rigid then for any ε 6= 0 sufficiently small,
there exists an embedded triply periodic minimal surface Mε with horizontal period
Γ and a vertical period (0, 0, 2πε2) such that :

1. Mε is symmetric with respect to the horizontal plane and depends continuously
on ε.

2. When ε → 0, Mε converges, on compact subsets of R3 and for the ambient
metric, to the set T × R.

3. In a neighborhood of each vertex v of T in the plane, when scaled by ε−2, Mε

looks like a Karcher saddle tower Mv whose period is equal to (0, 0, 2π), and
whose ends are in a one-to-one correspondence with the edges ending at v in
such a way that, the asymptotic vertical half-plane to an end of Mv is parallel
to its corresponding edge and points in the same direction.

More precisely, for each v there exists a horizontal vector νε such that, ε−2(Mε−
νε) converges to Mv on compact subsets of R3.

Example Consider the tiling of R2 by unit squares, and let T1 = (1, 1) and
T2 = (−1, 1). In R2/Γ, T has two vertices and two faces. Each Mv is a singly perio-
dic Scherk surface.

(a) A tiling T (b) A member of the family
Mε

(c) The same Mv for
each v

Remark 16 If one thinks of Mε as gluing, for each e = vv′, Mv and Mv′ along their
ends parallel to e, then Mε would depend on the signs one associates to the vertices
and faces of the tiling in the sense explained in the next section and as illustrated by
examples 1 and 2.
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3.3.2 Examples

One can apply Theorem 13 to carefully tailored tilings as to recover many of the
(deformed) classical examples of triply periodic minimal surfaces. For a given tiling,
the family of surfaces resulting from Theorem 13 depend on how one "places" the
Mv’s as it is shown in the examples below. In fact, the level curves of a Karcher
saddle tower in a plane of symmetry, say the plane x3 = 0, can be arranged about
their asymptotic lines in exactly two ways, as demonstrated in the figure below. The
dotted lines represent the level curves in the symmetry plane x3 = −π.

(d) Level curves of a
given saddle tower

(e) Level curves of
the same saddle
tower translated
by half its vertical
period

Fig. 3.3 – A singly periodic Sherk surface

We consider a tiling T as in Theorem 13 on which we fix an orientation. We fix a
sign on each of the vertices of T and at a vertex v we place Mv as demonstrated in
the figure below, which without loss of generality shows the placement for a saddle
tower with six ends.

(a) Level curves a gi-
ven saddle tower

(b) Level curves
of the same saddle
tower translated
by half its vertical
period

Fig. 3.4 – The positioning of Mv at a vertex v of T depending on the sign of faces
surrounding it
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Therefore, for v ∈ V, one may place Mv at v in two ways and when one glues
Mv and Mv′ along their ends pointing along e = vv′, the obtained surface depends
on how each of the surfaces was placed at v and v′ in the first place. One can think
that for e = vv′, Mv and Mv′ are both placed following the same rule, as explained
in the figure above, if σ(e) > 0 and following opposite rules otherwise.

Example 1. The following configuration corresponds to a member of the P-surface
family. The dots represent the vertices of the tiling and the solid lines its edges.
Then nv = 2, ne = 4 and nf = 2 which implies that in the quotient the genus of the
obtained surface is equal to three.

(a) P configurtaion (b) A fundamental piece of a defor-
med P-surface

Example 2 The following is the CLP surface.

(c) CLP configuration (d) A fundamental piece of a defor-
med CLP-surface

Example 3 The following is the H surface.
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(e) One possible H configuration (f) Another H configuration
depending on the choice of
period of the plane tiling

(g) The plane tiling with the two
periods giving the above configura-
tions shown

(h) A deformed H-
surface in a box

Example 4 The following is the H’-T surface.

Fig. 3.5 – H’-T configuration
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(a) The tiling in the plane (b) A deformed H’T-
surface fundamental
piece

3.4 The setting of the construction

One may ask what Riemann surfaces are candidates for the construction ? To
answer this question we first recall that conformally the Karcher surfaces are punc-
tured spheres. Then we note that once the gluing is performed as explained in the
introduction, in the quotient of R3 by the lattice Lε , our surfaces would look like nv
sphere connected with ne necks. In the quotient, the necks correspond to the glued
wings and will be along the edges.

These observations inspire us to define the Riemann surfaces underlying our construc-
tion by opening the nodes of a Riemann surface with nodes. The conformal types of
these surfaces are to be fixed by adjusting some parameters related to their construc-
tion, in such a way that the Weierstrass data to be furnished, will define conformal
minimal immersions whose periods lie in the lattice Lε. The Weierstrass data on
the initial Riemann surface with nodes will give Karcher saddle towers on each its
component punctured spheres. We refer the reader to [15] and [20] for more details
on Riemann surfaces with nodes and the degeneration of Riemann surfaces. For the
techniques implied in this and later parts of the paper, we refer the reader to [34]
and [35].

3.4.1 A degenerate Riemann Surface

For each vertex v of the quotient tiling T we consider a copy of the sphere

C∪ {∞}, which we denote by Ĉv. We fix d(v) points pv1, p
v
2, ..., p

v
d(v) in Ĉv taken on

the real axis. We assume that these points form an increasing sequence and we put
these points in a one-to-one correspondence with the edges ending at v as follows :
we number the edges ending at v in the direct sense then associate the point pvi
with the edge numbered i. In what follows we denote by pve the point of Ĉv which
corresponds to e. We let p = (pve) v∈V

e∈Ev

.
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For each edge e = vv′ we identify the points of Ĉv and Ĉv′ which correspond to

e, namely, pve ∈ Ĉv and pv
′

e ∈ Ĉv′ . We refer to the point which results from this
identification as the node at e. Thus we obtain a Riemann surface with nodes, i.e.,
a connected complex space in which every point has a neighborhood isomorphic to
either |z| < 1 in C or |z| < 1, |w| < 1, z.w = 0 in C2.

3.4.2 Opening the nodes

For our purposes we open the node at e = vv′ as follows : Let

d = min
e6=ẽ

{dist(pve, pvẽ), dist(pv
′

e , p
v′

ẽ )}

and consider the local coordinates in Ĉv and Ĉv′ , z
v
e = z−pve in a neighborhood of pve

and zv
′

e = z − pv
′

e in a neighborhood of pv
′

e . Choose 0 < ǫ <
d

2
and a real parameter

te such that 0 < |te| < ǫ2. We require te to be positive if σ(e) = −1 and negative
otherwise (σ(e) is as in Proposition 7). We remove the discs

Dv
e = {|zve | <

|te|
ǫ
} and Dv′

e = {
∣∣∣zv′e

∣∣∣ < |te|
ǫ
},

and we identify the points of the annuli

U v
e = {|te| ≤ |zve | ≤ ǫ} and U v′

e = {|te| ≤
∣∣zv′e

∣∣ ≤ ǫ},

by the mapping

zve .z
v′

e = te.

Let t = (te)e∈E , and consider the neighborhoods of 0 ∈ Rne N (0) = {t| |te| < ǫ2}
and N ∗(0) = {t|∀e ∈ E , 0 < |te| < ǫ2}. By opening the ne nodes for t ∈ N ∗(0)
of the Riemann surface with nodes described above, we obtain a regular Riemann
surface Σt,p which depends holomorphically on the parameters t = (te)e and the
points p = (pve) v∈V

e∈Ev

and whose genus is g = ne − (nv − 1) = nf + 1.

We notice that if te = 0 for some e = vv′ ∈ E , the procedure of opening a node,
in fact, produces a node by identifying pve and pv

′

e , so that for t ∈ N (0) one would
possibly obtain Riemann surfaces with nodes. When t = 0 we obtain Σ0,p the
Riemann surface with nodes defined above with a node at each e, and we say that
Σt,p degenerates into Σ0,p. In our work, we will be interested only in the surfaces
obtained by opening the nodes for t ∈ N ∗(0).

Remark 17 Since the points pve and the parameters te are real, complex conjugation
is well defined in Σt,p, t ∈ N ∗(0).
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3.4.3 A generator set for the homology group of Σt,p

We fix an orientation on T and we introduce on Σt,p, t ∈ N ∗(0), a system
of cycles {Ae}e, {Bf}f , {BT1 , BT2} defined up to homology, which generates the
respective homology group of the underlying surface.

1. For each edge ~e =
−→
vv′, we let Ae denote the positively oriented circle Cǫ(p

v
e).

2. For each face of T we define a corresponding cycle Bf . Let ~e =
−→
vv′ be an

edge of f ∈ F and let e′ ∈ Ef be such that ter(e′) = init(e). We associate a
composition of oriented curves to e, denoted be, as described below.

Fig. 3.6 – A curve be for σ(f) = −1 and σ(e) = −1

(a) If σ(f) = −1 we remark that pve′ < pve with no other points pvẽ in between
(except when pve′ = pvd(v) and pve = pv1 but still we think of pv1 as succeeding

pvd(v). One starts tracing the real line at pvd(v) till the point at ∞ in Ĉv, and

one continues till pv1 !). We proceed as follows :

i. If σ(e) = +1, in which case te < 0 and the point zve = te
ǫ

is identified

with the point zv
′

e = ǫ, we consider :

A. The real segment Sinit(e) in Ĉv which goes from the point zve′ = ǫ
to the point zve = −ǫ.

B. The real segment Ce in Ĉv which goes from the point zve = −ǫ to

the point zve = −|te|
ǫ

.

In the case pve′ = pvd(v) and pve = pv1, Sinit(e) goes from zve′ = ǫ to the
point zve = −ǫ passing through the point at ∞.

ii. If σ(e) = −1, in which case te > 0 and the point zve = −te
ǫ

is identified

with the point zv
′

e = −ǫ, we consider
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A. The real segment Sinit(e) in Ĉv as defined above.

B. The real segment Ce in Ĉv also as defined above.

C. The negatively oriented semi-circle C
1
2
−(pv

′

e ) = {
∣∣zv′e

∣∣ = ǫ : Re(zv
′

e ) >
0}

In this case, the semi circle C
1
2
−(pv

′

e ) goes from the point zv
′

e = −ǫ to
the point zv

′

e = ǫ.

The curve be joins the point zve′ = ǫ and the point zv
′

e = ǫ.

(b) If σ(f) = +1 we remark that pve < pve′ with no other points pvẽ in between
(the case , and we proceed as follows :

i. If σ(e) = +1, in which case te < 0 and the point zve = |te|
ǫ

is identified

with the point zv
′

e = −ǫ, we consider :

A. The real segment Sinit(e) in Ĉv which goes from the point zve′ = −ǫ
to the point zve = ǫ.

B. The real segment Ce in Ĉv which goes from the point zve = ǫ to the

point zve = |te|
ǫ

.

ii. If σ(e) = −1, in which case te > 0 and the point zve = te
ǫ

is identified

with the point zv
′

e = ǫ, we consider

A. The real segment Sinit(e) in Ĉv as defined above.

B. The real segment Ce in Ĉv also as defined above.

C. The positively oriented semi-circle C
1
2
+(pv

′

e ) = {
∣∣zv′e

∣∣ = ǫ :

Re(zv
′

e ) > 0}
In this case, the semi circle C

1
2
+(pv

′

e ) goes from the point zv
′

e = ǫ to the
point zv

′

e = −ǫ.
The curve be joins the point zve′ = −ǫ and the point zv

′

e = −ǫ.
For f ∈ F , we define Bf to be the oriented cycle which is the composition of
the oriented curves (be)e∈Ef

.

3. We fix i ∈ {1, 2} and we associate to BTi
, a cycle BTi

as follows. Consider a
path Pi of consecutive edges of T , joining a vertex v◦ to its translate by Ti.

In the quotient, Pi is a closed cycle formed by edges of T . To each v ∈ Pi we
associate a composition of curves, which we denote by bvi , defined as follows :

Let e and e′ denote the consecutive edges of Pi which end at v. We number
the edges in Ev in the direct sense, and we suppose that e takes the number m
and e′ the number n, 1 ≤ m < n ≤ d(v). We consider the n−m faces around
v bounded by the edges numbered m, m+ 1,..., n− 1, n, and we let fk denote
such a face which is bounded by the edges numbered m + k − 1 and m + k,

1 ≤ k ≤ n−m. In Ĉv, we associate to a face fk the curve bvi,k defined as follows :
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(a) If σ(v).σ(fk) > 0 (v and fk have the same sign) then bvi,k is the real segment
which goes from the point zvm+k−1 = ǫ to the point zvm+k = −ǫ.

(b) If σ(v).σ(fk) < 0 then bvi,k is the composition of the following curves :

i. The negatively oriented semi-circle C
1
2
−(pvm+k−1) which joins the points

zvm+k−1 = −ǫ to the point zvm+k−1 = ǫ.

ii. The real segment which goes from the point zvm+k−1 = ǫ to the point
zvm+k = −ǫ.

iii. The positively oriented semi-circle C
1
2
+(pvm+k) which joins the points

zvm+k = −ǫ to the point zvm+k−1 = ǫ.

We let bvi be the composition of all the curves bvi,k, 1 ≤ k ≤ n−m. Now to each
e = vv′ in Pi we associate a curve bei defined as follows :

(a) If σ(e) = +1 then v and v′ have the same sign, in which case we remark
that if bvi ends at zve = ±ǫ then bv

′

i starts at zv
′

e = ∓ǫ and vice versa. The
fact that te < 0 implies that the point zve = ±ǫ is identified with zv

′

e = ± te
ǫ

and thus the curves bvi and bv
′

i could be joined by the segment which goes
from zv

′

e = ± te
ǫ

to zv
′

e = ∓ǫ. We let bei be this segment.

(b) If σ(e) = −1 then v and v′ have opposite signs, in which case we remark
that if bvi ends at zve = ±ǫ then bv

′

i starts at zv
′

e = ±ǫ and vice versa. The
fact that te > 0 implies that the point zve = ±ǫ is identified with zv

′

e = ± te
ǫ

and thus the curves bvi and bv
′

i could be joined by the segment which goes
from zv

′

e = ± te
ǫ

to zv
′

e = ±ǫ. We let bei be this segment.

The oriented cycle BTi
is defined as the composition of all the oriented curves

bei , e ∈ Pi, and the oriented curves bvi , v the vertex of e ∈ Pi.
A cycle Ae, e = vv′, goes around the neck which joins Ĉv and Ĉv′ . A cycle Bf goes
through each of the necks which correspond to e ∈ ∂f , and joins the necks which

correspond to two consecutive edges e, e′ ∈ ∂f which end at v, by a curve in Ĉv.
Similarly, a representative cycle of BTi

goes through the necks which correspond to
e ∈ Pi, and joins two such necks which correspond to two edges ending at a common
vertex, by a curve in the sphere which corresponds to that vertex. It is clear, from
the topological picture of Σt,p, t ∈ N ∗(0), that the set of cycles {Ae}∪{Be}∪{BTi

}
generates the homology group of Σt,p.

Remark 18 By Proposition 7 each face f ∈ F has an even number of edges with
a negative sign. Thus, as it follows from the definition, each cycle Bf contains an
even number of semi-circles, each of which corresponds to an edge of f whose sign is
−1. Similarly, each cycle BTi

contains an even number of semi-circles, contributed
by faces whose sign is −1, as seen in the definition of BTi

.

3.4.4 Regular differentials

In this section, following the lines of Masur [20], we extend the notion of holo-
morphic differentials to that of regular differentials on Riemann surfaces with nodes.
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For our purposes, we restrict ourselves to the Riemann surfaces with nodes Σ0,p.

Definition 4 A regular differential ω on Σ0,p is a 1-form such that for each v ∈ V,

ω is holomorphic in Ĉv − {pve}e∈Ev
and ω admits a pole of order ≤ 1 at pve, for each

e ∈ Ev. Moreover, for each e ∈ E with e = vv′, the residues of ω at pve and pv
′

e must
be opposite.

We let Ω1(Σ0,p) denote the space of regular 1-forms on Σ0,p. The space Ω1(Σ0,p)
has dimension g, where g is the genus of Σt,p for t ∈ N ∗(0). In fact, more generally
Σt,p can be constructed by opening the nodes of Σ0,p for t ∈ Cne near 0, and the
space Ω1(Σt,p) depends holomorphically on the parameters t in the following sense :
Proposition 4.1 of [20] says that there exists a basis ω1,t, ..., ωg,t of Ω1(Σt,p), the space
of holomorphic forms on Σt,p, which depends holomorphically on t in a neighborhood
of 0. For t = 0 the forms ωi,t degenerate to a basis of regular differentials ωi,0 on
the Riemann surface with nodes Σ0,p. As we restrict ourselves to real parameters
te, the dependence of Σt,p on t is real analytic. This fact is fundamental for the
construction we have in mind as we’ll apply the implicit function theorem at t = 0,
passing from regular differentials on Riemann surfaces with nodes to holomorphic
differentials on Riemann surfaces.

For each v ∈ V we consider the domain Gv(ǫ) of Σt,p which consists of the complement

in Ĉv of the discs Dv
e(ǫ), where e ranges over the edges ending at v, and we set

G(ǫ) = ∪vGv(ǫ). For our purposes, we need to know that for t close enough to 0, in
which case the domain G(ǫ) is independent of t, the restriction of the ωj,t’s to G(ǫ)
depends holomorphically on t, see [20] for more details.

Proposition 10 The map ω →
( ∫

Ae

ω
)
e∈E

is an isomorphism from Ω1(Σt,p) onto

the subspace of Cne defined by {(xe)e|∀v ∈ V,
∑

ter(e)=v

xe −
∑

init(e)=v

xe = 0}.

Proof. We remark that the noted subspace of Cne is defined by nv − 1 independent
equations and hence its dimension is ne − nv + 1 = nf + 1 = g. Furthermore, we

recall that for each ~e =
−→
vv′, the cycle Ae = Cǫ(p

v
e) is homotopic to −Cǫ(pv′e ) and

then by applying Cauchy’s theorem for ω ∈ Ω1(Σt,p) in each Gv(ǫ) we obtain

∑

ter(e)=v

∫

Ae

ω −
∑

init(e)=v

∫

Ae

ω = 0.

Then the image of the noted map is contained in {(xe)e ∈ Cne |∀v ∈ V,
∑

ter(e)=v

xe −
∑

init(e)=v

xe = 0}. It remains to show that the map is injective. We prove that it is

the case for t = 0 and then by continuity the claim will hold for t ∈ N ∗(0), which
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will be sufficient for our purposes. We suppose that ω ∈ Ω1(Σ0,p) with

∫

Ae

w = 0

for each e ∈ E . Then for each v ∈ V and for each e ∈ Ev, the residues of ω at the

points pve ∈ Ĉv are all zero, which means that ω is holomorphic in Ĉv. Therefore ω
must be identically zero and the proof is completed. 2

3.4.5 The Weierstrass data

We proceed with defining the Weierstrass data for our surface on Σt,p. We require
the real line in Σt,p to be a line of horizontal reflectional symmetry, i.e., we demand
that conjugation in Σt,p correspond to symmetry on our surface with respect to the
plane x3 = 0. This encodes into

For all z ∈ Σt,p, Re

∫ z̄

(φ1, φ2, φ3) = Re

∫ z

(φ1, φ2,−φ3).

We are driven to define the Weierstrass data as follows :

Prescribe for every edge e ∈ E ,
∫

Ae

φ1 = 2πiαe

∫

Ae

φ2 = 2πiβe

and
∫

Ae

φ3 = T ,

where αe, βe ∈ R and T = 2π.

As Proposition 10 indicates, these equations define the forms φi given that for all
v ∈ V,

∑

init(e)=v

αe −
∑

ter(e)=v

αe = 0, (3.4)

∑

init(e)=v

βe −
∑

ter(e)=v

βe = 0. (3.5)

Our choice of the A-periods for the Weierstrass data may be justified by the following

Proposition 11 Let ρ : Σt,p → Σt,p such that ρ(z) = z̄. Then

ρ∗φi = φi (i ∈ {1, 2}),
ρ∗φ3 = −φ3
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Proof. We remark that ρ is orientation reversing and consequently for 1 ≤ i ≤ 3

∫

Ae

ρ∗φi =

∫

ρ(Ae)

φi

= −
∫

Ae

φi.

Then for i ∈ {1, 2}, we obtain

∫

Ae

ρ∗φi =

∫

Ae

φi

=

∫

Ae

φi,

which reads as ρ∗φi and φi, two anti-holomorphic forms, which have the same A-
periods hence they are equal. By a similar argument we prove that ρ∗φ3 = −φ3. 2

The above proposition entails the fact that the Weierstrass data, defined as above,
carries the aspired symmetry.

Remark 19 For t = 0, the forms φi degenerate to regular differentials φ0
i defined

on the Riemann surface with nodes Σ0,p. Restricted to each Cv, these regular diffe-
rentials induce meromorphic forms which we denote by φ0

i,v.

If T is balanced, for each v ∈ V we may consider a Karcher Saddle tower having its
ends in a one-to-one correspondence with the edges ending at v and such that the
asymptotic plane to each end is parallel to its corresponding edge and pointing in the
same direction. For v ∈ V, the corresponding saddle tower is defined by meromorphic

Weierstrass data on Ĉv whose poles we assume real, up to a Moebius transformation
of the sphere.
We let qve be the pole of the Weierstrass data of the saddle tower where the end cor-
responds to e ∈ Ev. We set pve = qve and we choose the αe’s and the βe’s so that
Φ0
v = (φ0

1,v, φ
0
2,v, φ

0
3,v) is the Weierstrass data of the saddle tower placed at v. We

denote the corresponding values of αe and βe by α0
e and β0

e .

In what follows, we emphasize the fact that the parameters αe’s, βe’s and pve ’s are
free parameters to be adjusted. We let α = (αe)e∈E ∈ Rne , β = (β)e∈E ∈ Rne and
p = (pve) v∈V

e∈Ev

and we adapt the point of view that for t = 0, the parameters take

the central values α0 = (α0
e)e∈E , β0 = (β0

e )e∈E and p0 = (qve ) v∈V
e∈Ev

for which Φ0
v is the

Weierstrass data of the saddle tower which corresponds to v, as explained in the
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above remark. We notice that for each v ∈ V,

φ0
1,v =

∑

init(e)=v

α0
e

z − qve
−

∑

ter(e)=v

α0
e

z − qve

φ0
2,v =

∑

init(e)=v

β0
e

z − qve
−

∑

ter(e)=v

β0
e

z − qve

φ0
3,v = −

∑

init(e)=v

i

z − qve
+

∑

ter(e)=v

i

z − qve
.

3.4.6 The period problem

The defining equations of the Weierstrass data Φ = (φ1, φ2, φ3) ensure that the
periods

PerAe
(Φ) := Re

∫

Ae

Φ = (0, 0, T ), (e ∈ E).

This amounts to the fact that the Ae’s open into curves on the surface joining a
point and its vertical translate by T . The geometric picture of the surfaces to be
constructed leads us to require that

(
PerB(φ1), P erB(φ2)

)
= Re

( ∫

B

φ1,

∫

B

φ2) = 0 mod Γ, (3.6)

where B ranges over the cycles {Bf}f . We will show that the symmetry of the
surfaces and the way we perform the gluing process imply that

Re(

∫

B

φ3) = 0 mod T, (3.7)

where B ranges again over the cycles {Bf}f and {BTi
}i.

Proposition 12 For each B ∈ {Bf}f ∪ {BT1 , BT2} we have

Re

∫

B

φ3 = 0 mod T .

Proof. We prove the proposition for the cycles Bf with σ(f) = −1. A similar
proof holds for the cycles Bf with σ(f) = +1. We first remark that the equation

ρ∗φ3 = −φ3 implies that φ3 is purely imaginary on curves lying on the real line.
Therefore, as Sinit(e) and Ce are segments of the real line,

Re

∫

B

φ3 =
∑

{e∈B:σ(e)=−1}
Re

∫

C
1
2
− (p

ter(e)
e )

φ3.
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However,

−
∫

Ae

φ3 =

∫

C
1
2
− (p

ter(e)
e )

φ3 −
∫

ρ(C
1
2
− (p

ter(e)
e ))

φ3

=

∫

C
1
2
− (p

ter(e)
e )

φ3 −
∫

C
1
2
− (p

ter(e)
e )

ρ∗φ3

=

∫

C
1
2
− (p

ter(e)
e )

φ3 +

∫

C
1
2
− (p

ter(e)
e )

φ3,

which implies that

Re

∫

C
1
2
− (p

ter(e)
e )

φ3 = −T
2

Therefore, each edge with a negative sign contributes −T
2

to Re

∫

B

φ3. By proposition

7 each cycle B contains an even number of edges with a negative sign which implies
that

Re

∫

B

φ3 = 0 mod T .

A similar argument could be carried to deal with the cycles BTi
. The conclusion fol-

lows since each BTi
contains an even number of semi-circles, as explained in Remark

18. 2

We now proceed to estimate the integrals of the forms φi on the cycles Bf and BTj
.

For convenience, we say that e ∈ Bf if e ∈ ∂f and e ∈ BTi
if e ∈ Bi.

Proposition 13 For each B ∈ {Bf}f ∪ {BT1 , BT2} we have

Re

∫

B

φ1 =
∑

e∈B
αe ln

|te|
ǫ2

+ A1
B(α, t,p)

Re

∫

B

φ2 =
∑

e∈B
βe ln

|te|
ǫ2

+ A2
B(β, t,p),

where A1
B and A2

B are analytic.

Proof. We adapt the proof of Lemma 1 in [34]. We emphasize the dependence of the
φi’s on t and for simplicity of notation we let φt stand for either of the forms φi,
1 ≤ i ≤ 2. We remark that for e = vv′, the curve Ce and the curves bei ’s, introduced

in the definition of the cycles B, go through the neck which joins Ĉv and Ĉv′ , and
which degenerates to a node when te → 0. We detail the proof for the curves Bf

with σ(f) = −1, knowing that similar computations hold in case σ(f) = +1. We
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start with noticing that
∫

B

φt =
∑

e∈B

∫

be

φt

=
∑

{e∈B:σ(e)=−1}

(∫

Sinit(e)

φt +

∫

Ce

φt +

∫

C
1
2
− (p

ter(e)
e )

φt

)
+

∑

{e∈B:σ(e)=+1}

(∫

Sinit(e)

φt +

∫

Ce

φt

)

=
∑

e∈B

( ∫

Ce

φt + Λe

)
,

where Λe depends holomorphically in the parameters since it consists of integrals

over curves in G(ǫ). To estimate

∫

Ce

φt we develop φt in Laurent series in the annulus

U
init(e)
e around p

init(e)
e , where for simplicity of notation, we denote the parameter

z
init(e)
e by u. Then in U

init(e)
e

φt =
∑

n∈Z

anu
ndu,

where an depends holomorphically on all the parameters and is given by

an =
1

2πi

∫

Ae

φt

un+1
=

1

2πi

∫

|u|= |te|
ǫ

φt

un+1
.

Hence,

∫

Ce

φt =
∑

n∈Z

an

∫ −|te|
ǫ

−ǫ
undu

=a−1 ln
|te|
ǫ2

+
∑

n6=−1

(−1)n+1 an+1

n+ 1

( |te|n+1

ǫn+1
− ǫn+1

)
.

Again, a similar argument could be carried to deal with the cycles BTi
, where the

curves bei introduced in the definition of BTi
are considered instead of the Ce’s.

Therefore, for each B ∈ {Bf}f ∪ {BT1 , BT2}
∫

B

φt =
∑

e∈B
Res(φt, p

init(e)
e ) ln

|te|
ǫ2

+ He.

Taking the real part of the above equation the claim follows immediately with the

analytic term equal to Re(
∑

e

He) of the corresponding holomorphic terms He. 2
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Remark 20 For i ∈ {1, 2},
∑

f

σ(f)Ai
Bf

= 0.

As we explained above, we wish to adjust the parameters to solve the equations

Re(

∫

B

φi) = 0 mod Γ, i ∈ {1, 2}.

For this purpose we introduce the change of variable

|te|
ǫ2

= e−
se
ε2 ,

where the se’s are to be non zero parameters and ε is a parameter which varies near
zero. We let s = (se)e∈E , then the period equations in propostion 13 can be rewritten
as follows :

−ε2Re

∫

B

φ1 =
∑

e∈B
αese − ε2A1

B(α, s,p, ε) (3.8)

−ε2Re

∫

B

φ2 =
∑

e∈B
βese − ε2A2

B(β, s,p, ε). (3.9)

3.4.7 The conformality equations

The minimal immersion defined by the Weierstrass data will be conformal if the
quadratic differential

Q = φ2
1 + φ2

2 + φ2
3

defined on Σt,p is identically zero. Again, we emphasize that Q depends on the
parameters which will be adjusted as to make it vanish. However, to show that this

is possible, we consider the meromorphic differential form ϕ =
Q
φ1

on Σt,p and we

choose our parameters so that ϕ will be identically zero.
The form ϕ has its poles at the zeros of φ1. When t = 0, Remark 19 implies that

φ0
1 admits simple zeros in each of the punctured spheres Ĉv − {pve} as explained

in section 4.1. However, for t ∈ N ∗(0), φ1 admits simple zeros in Σt,p as well.
As a meromorphic differential with simple poles on a closed Riemann surface is
determined by its A-periods and its poles and their corresponding residues, we wish
to adjust our parameters so that the following equations hold :

for each e ∈ E ∫

Ae

ϕ = 0, (3.10)

for each zero ζ of φ1

Res(ϕ, ζ) = 0. (3.11)
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The integrals (3.10) are a priori complex. However, it is straightforward that

∫

Ae

ϕ =

∫

Ae

ρ∗(ϕ) = −
∫

Ae

ϕ,

which implies that the integrals (3.10) are purely imaginary and the equations (3.10)
then correspond to ne real equations.

We set for e ∈ E

Fe(α, β,p, s, ε) =
1

2πi

∫

Ae

ϕ

and we consider the smooth function F = (Fe)e.

3.5 The gluing process. Existence results.

In what follows, we introduce the following change of variables : for each e ∈ E
we write αe = re cos θe and βe = re sin θe. The equations (3.10) can be summed up
into

F (r, θ,p, s, ε) = 0. (3.12)

For ε = 0 we write α0
e = r0

e cos θ0
e and β0

e = r0
e sin θ0

e .

Proposition 14 The parameters r can be prescribed values, as functions of θ, p, s

and ε (which varies in a neighborhood of 0) so that the equations (3.10) hold.

Proof. For ε = 0 the equations (3.10) can be computed explicitly in terms of the
different parameters as follows : the holomorphic forms φi degenerate to the regular
differentials on Σ0,p which induce the meromorphic forms φ0

1,v, φ
0
2,v and φ0

3,v with

simple poles at the points pve . Given that the respective residues at p
init(e)
e of φ0

1,v,φ
0
2,v,

and φ0
3,v are α0

e, β
0
e and −i, it is not difficult to show that for all e ∈ E ,

Fe(α0, β0,p0, s, 0) = Res(ϕ0, p
init(e)
e ) =

(α0
e)

2 + (β0
e )

2 − 1

α0
e

.

The equations (3.10) therefore reduce at ε = 0 to

F (r0, θ0,p0, s, 0) =
((r0

e)
2 − 1

r0
e cos θ0

e

)
e∈E

= 0. (3.13)

The equation (3.13) admits a solution for r0 = (r0
e) with each r0

e = 1, given that each
θ0
e 6= 0. The differential DrF (r0, θ0,p0, s, 0) is easily seen to be an automorphism

of Rne . The implicit function theorem applied at ε = 0, θ0, p0 and arbitrarily fixed
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values of the parameters s implies that there exists r = r(θ,p, s, ε), with ε ∈ I =
(−δ, δ) (δ > 0), θ near θ0 and p near p0 such that (3.12) holds. 2

We restrict ourselves to the values of the re’s given by the above proposition and
we are prompted to find values of the θe’s, p

v
e’s and the se’s so that the other

equations involving these parameters hold. We suppose that δ (as given in the proof
of Proposition 14) is small enough so that for ε ∈ I, |te| < ǫ2 for each e ∈ E .

Remark 21 We set ze = seree
iθe and z = z(θ,p, s, ε) = (ze)e ∈ Cne. For ε = 0,

we let z0
e = r0

esee
iθe = see

iθe and z(0) = z0 = (z0
e)e. Let x = (θ, s), h = (he)e and

k = (ke)e where he(θ,p, s, z, ε) = ke(r, θ,p, s, z, ε) = resee
iθe − ze.

Proposition 15 We can solve h(θ,p, s, z, ε) = 0 for θ and s as functions of z, p

and ε.

Proof. Clearly, he(θ,p0, s, z0, 0) = 0. Again by the implicit function theorem we can
solve the preceding system of equations he = 0 for θ and s once Dxh(θ,p0, s, z0, 0)
is non-singular. However,

Dxh(θ,p0, s, z0, 0) = Drk(r0, θ,p0, s, z0, 0) ◦Dxr(θ,p0, s, 0)+

Dxk(r0, θ ,p0, s, z0, 0)

= Dxk(r0, θ,p0, s, z0, 0)

since r(θ,p, s, 0) = 1 as shown by (3.13).
It is straight forward to compute Dxk(r0, θ,p0, z, 0) and since the se’s are non-zero
we see that it is non-singular. Therefore, the equation h(θ,p, s, z, ε) = 0 can be
solved for θ and s as functions of z, p and ε. 2

The above proposition then implies that the necessary conditions (3.4) and (3.5)
and the period equations (3.8) and (3.9) we wish to solve can be written as

FTi
(z,p, ε) =

∑

e∈BTi

ze − ε2ABi
(z,p, t) = Ti (i ∈ {1, 2}) (3.14)

Ff (z,p, ε) =
∑

e∈∂f
ze − ε2ABf

(z,p, t) = 0 (f ∈ F) (3.15)

Rv(z,p, ε) =
∑

init(e)=v

ze
|ze|

−
∑

ter(e)=v

ze
|ze|

= 0 (v ∈ V) (3.16)

We note that
∑

v

Rv = 0 and
∑

f∈∂f
σ(f)Ff = 0.

which implies that we have as many equations as variables. Fix δ > 0 as in Remark
21, let I = (−δ, δ) and consider the map
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G : Cne × I → Cne+2

where

G(z,p, ε) =
(
(Rv(z, ε))v, (Ff (z,p, ε))f , (FTi

(z,p, ε))1≤i≤2

)
.

We remark that

G(z,p, ε) ∈ Wv ×Wf × C2 ⊂ Cne+2,

where Wv = {(zv)v ∈ Cnv :
∑

v

zv = 0} and Wf = {(zf )f ∈ Cnf :
∑

f

σ(f)zf = 0}.

Proposition 16 If the tiling T is oriented, balanced and rigid, the parameters α, β
and s can be assigned values, as functions of p and ε, which solve the period problem
for φ1 and φ2, and kill the A-periods of ϕ. More precisely, there exist values of α,
β and s as functions of ε (which varies near 0) and p (which varies near p0), such
that for i, j ∈ {1, 2}, for each edge e and each face f of T ,

Re

∫

Bf

φi = 0, Re

∫

BTj

φi = −ε−2T ij

and
∫

Ae

ϕ = 0

where Tj = T 1
j + iT 2

j ∈ C.

Proof. The equations (3.14), (3.15), (3.16) reduce to the equation G(z,p, ε) = 0. We
show that this equation admits solutions for ε 6= 0 by applying the implicit function
theorem for G at ε = 0.

The equation G(z,p0, 0) = 0 corresponds to the following system of equations (3.17),
(3.18), (3.19)

φBTi
(z) =

∑

e∈BTi

z0
e = Ti (i ∈ {1, 2}) (3.17)

φf (z) =
∑

e∈∂f
z0
e = 0 (f ∈ F) (3.18)

Fv(z) =
∑

init(e)=v

z0
e

|z0
e |

−
∑

ter(e)=v

z0
e

|z0
e |

= 0 (v ∈ V). (3.19)

This system admits a solution z0 in Cne given by the tiling T if it is oriented and

balanced. In fact, for each edge ~e =
−→
vv′ of T , the tiling furnishes a z0

e = zv′ − zv as
explained in section 2. These z0

e ’s represent the vectors corresponding to the oriented
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3.5. THE GLUING PROCESS. EXISTENCE RESULTS.

edges of T and obviously solve the equations (3.18) corresponding to the faces f and
those corresponding to the cycles Bi (3.17). The equations (3.19) corresponding to
the vertices are exactly the conditions for T to be balanced since for the chosen
values of the z0

e ’s, the function Rv is the resultant at v as defined in section 2. We
remark that this solution is given by the lengths of the edges of T for the se’s and
their corresponding angles with the real axis for the θe’s. If necessary, we rotate T
in the plane so that each θ0

e 6= 0.

Therefore, there exists a solution of G(z,p0, 0) = 0. The existence of solutions
of G(z,p, ε) = 0 for ε 6= 0 is assured by the implicit function theorem once
DzG(z0,p0, 0) is an isomorphism of Cne onto Wv × Wf × C2. We remark that
X = (Xe)e ∈ Cne is in the kernel of DzG(z0,p0, 0) if and only if X ∈ W and
DRT (0)X = 0, where RT and W are as defined in section 2. Therefore, X ∈ Wv

and to ensure a trivial kernel for DzG(z0,p0, 0), it suffices to assume the rigidity of
the tiling. At this point, the conclusion is that the equation G(z,p, ε) = 0 can be
solved for z as a function of p and ε which vary near p0 and 0 respectively. However
by the preceding proposition, θ and s are given as functions of z, p and ε. Therefore,
the parameters α and β and s have been obtained as functions of p and ε which
vary near p0 and 0 respectively. This completes the proof. 2

We next show that the parameters p can be adjusted so that the equations (3.11)
hold.

Proposition 17 The parameters p can be prescribed values as functions of ε on a
neighborhood of 0 so that the equations (3.11) hold.

Remark 22 When restricted to the values of the parameters α, β, s and p, obtai-
ned in the propositions 14, 16 and 17 as functions of ε on a neighborhood of 0, the
immersion defined by the corresponding Weierstrass data on the corresponding Rie-
mann surface Σt,p into R3/Lε is conformal, where Lε is the lattice of R3 generated
ε2T1, ε

2T2 and (0, 0, T ).

In the remaining part of this section, unless otherwise specified, we fix v ∈ V and we
denote the points pve by an increasing sequence (pvi )i, 1 ≤ i ≤ d(v). We recall that
d(v) is even and that there are as many edges whose initial point is v as edges whose
terminal point is v. We may assume that the correspondence between the punctures
and the edges is such that pvi corresponds to an an edge whose initial point is v when
i is even, and to an edge whose terminal point is v otherwise.

Let I be an interval around 0 in the domain of definition of the parameters α, β and
s as functions of ε and Ω a neighborhood of p0 as given by propositions 14 and 16.

As we explained above φ0
1,v admits d(v)−2 simple real zeros in Ĉv, which we denote

by ζ0
i,v, 1 ≤ i ≤ d(v) − 2.

Remark 23 For ε ∈ I and p ∈ Ω, φ1 admits d(v) − 2 simple zeros in Ĉv as well,
which we denote by ζi,v, 1 ≤ i ≤ d(v)−2. We note that by applying Cauchy’s theorem
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3.5. THE GLUING PROCESS. EXISTENCE RESULTS.

in Ĉv we obtain
d(v)−2∑

i=1

Res(ϕ, ζi,v) = 0 (3.20)

which implies that Res(ϕ, ζd(v)−2,v) = 0 once we have Res(ϕ, ζi,v) = 0 for 1 ≤ i ≤
d(v) − 3.

Let Ωv be the projection of Ω on Ĉv, and consider the mapping

Kv : Ωv × I → Cd(v)−3

defined by

Kv(pv, ε) =
(
Res(ϕ, ζ1,v), .., Res(ϕ, ζd(v)−3,v)

)

with pv = (pvi )i.

Remark 24 Remark 23 implies that Proposition 17 follows readily once we show
that for each v ∈ V, we can prescribe pv as a function of ε so that Kv(pv, ε) = 0.
We note that for v ∈ V, the equation Kv(pv, ε) = 0, which we wish to solve for pv,
is equivalent to a system of d(v) − 3 equations in d(v) variables. To surmount this
obstacle, we remark that the values eventually prescribed to the points p determine
the conformal type of Σt,p, which remains unvaried if we compose each pv with

Moebius transformations of Ĉv. Since such a transformation is defined by assigning
three points in the sphere their images, we may assume that for each v, pvi = p0

i for
d(v)− 2 ≤ i ≤ d(v), which leaves the equation Kv(pv, ε) = 0 with d(v)− 3 variables.

Proof of Proposition 17. Since for ε = 0, Φ0
v defines a conformal immersion on

Ĉv − {p0
i }1≤i≤d(v) we obtain that Q|t=0 = 0. Then we have Kv(p

0
v, 0) = 0, where

p0
v = (p0

i )1≤i≤d(v). By Remark 24, we may assume the last three coordinates of pv
fixed, and once DpKv(p

0
v, 0) is an isomorphism of Cd(v)−3 onto Cd(v)−3, the implicit

function theorem ensures the existence of solutions pv = pv(ε) ∈ Ωv, for the equation

Kv(pv, ε) = 0 with ε 6= 0. For this purpose we suppose that pv(λ) is a curve in Ĉv

which starts at p0
v when λ = 0 with d

dλ
|λ=0Kv(pv(λ), 0) = 0. We suppose that pv

has its last three coordinates fixed, and we show that ṗv(0) = 0.

Remark 25 The hypotheses on pv(λ), namely, pv(0) = p0
v and the fact that

d
dλ
|λ=0Kv(pv(λ), 0) = 0, suggest the existence of meromorphic differential forms,

φ1,λ, φ2,λ and φ3,λ on Ĉv such that

Res(φ1,λ, pj(λ)) = (−1)jα0
j , Res(φ2,λ, pj(λ)) = (−1)jβ0

j

and

Res(φ3,λ, pj(λ)) = (−1)j+1i, 1 ≤ j ≤ d(v)
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and that
d

dλ
|λ=0Res(ϕλ, ζi(λ)) = 0 1 ≤ k ≤ d(v) − 3, (3.21)

where each ζk(λ) is a simple zero of φ1,λ. Here ϕλ =
Qλ

φ1

, Qλ = φ2
1,λ + φ2

2,λ + φ2
3,λ

and for λ = 0 we obtain φ0
1, φ

0
2 and φ0

3.

The above remark indicates that one obtains a variation of the saddle towers. A
proof of the fact that ṗv(0) = 0 follows by showing that the variation field is a
constant vector in R3. A proof of this fact is given in the appendix. Therefore for
each v, the implicit function theorem gives each of the pve ’s as a function of ε such
that the equations (3.11) hold. 2

3.6 Proof of the main result

Let T be a tiling as described in Theorem 13 and let V , E and F denote its
corresponding sets of vertices, edges and faces respectively. By propositions 14, 16
and 17, there exist smooth functions of ε, α = (αe)e∈E , β = (βe)e∈E and t = (te)e∈E
in Rne and p = (pve) v∈V

e∈Ev

in C2ne , defined near 0, such that the holomorphic forms

Φε = (φε1, φ
ε
2, φ

ε
3) defined on the Riemann surface Σε := Σt,p by their periods as

follows :
∫

Ae

Φε = (2πiαe, 2πiβe, T ), e ∈ E

verify the following :

Re

∫

Bf

Φε = (0, 0, τ), f ∈ F

and

Re

∫

BTj

Φε = (−ε−2Tj, τ) ∈ R3, j ∈ {1, 2}

with τ = 0 mod T where we assume, without loss of generality, that T = 2π.
Moreover,

Qε =
∑

i

φεi
2 = 0 on Σε.

We fix a point p◦ such that for each ε small enough, p◦ ∈ Σε, and we set

Xε(p) = Re

∫ p

p◦

Φε, p ∈ Σε.
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3.6. PROOF OF THE MAIN RESULT

Then Xε is a harmonic conformal map of Σε into R3/Lε, where Lε is as in Remark
22.

Proposition 18 For ε 6= 0 small enough, Xε is an immersion.

Proof. We prove that the metric ds2
ε = 1

2
|Φε|2, Xε induces on Σε, is regular. This

amounts to proving that

|Φε|2 = |φε1|2 + |φε2|2 + |φε2|2 > 0 in Σε.

We consider the region G =
⋃

v

Gv of Σε, as it is defined in section 4, and we note

that |Φ0|2 > 0 for z ∈ G, since each Φv
0 is the Weierstrass data of a Karcher saddle

tower on Ĉv. However, over the region G, Φε depends smoothly on ε. Thus for ε
small enough, we have |Φε| > 0 in G. It remains to show that |Φε| > 0 on the annuli

joining the different spheres Ĉv. For this purpose, we show that φε3 has no zeros

in the noted region. In each Ĉv, φ
0
3 admits d(v) poles and consequently it admits

d(v) − 2 zeros in Gv. Hence by continuity, for ε small enough, φε3 admits

∑

v

(d(v) − 2) = 2ne − 2nv

zeros in G. Now it suffices to show that φε3 admits no more zeros in Σε. Since φε3 is
holomorphic on Σε then the number of zeros of φε3 is two less than twice the genus
of Σε, i.e. 2(nf + 1) − 2 = 2ne − 2nv. Therefore, φε3 has all its zeros in G and the
metric is regular. 2

Therefore, for ε 6= 0 small enough, Xε immerses Σε minimally in R/Lε. When lifted
to R3, the surface defined by Xε is a triply periodic minimal surface. In fact, we have
the following

Proposition 19 For ε 6= 0 small enough, Xε is an embedding.

Proof. We fix v ∈ V, we assume that p◦ ∈ Ĉv − {pve}e∈Ev
and we let

Xv
0 (p) = Re

∫ p

p◦

Φv
0, p ∈ Ĉv − {pve}e∈Ev

.

Xv
0 embeds Ĉv − {pve}e∈Ev

in R3 as a Karcher saddle tower.

Since Φε → Φv
0 on compacts of Ĉv − {pve}e∈Ev

when ε → 0, then Xε → Xv
0 over Gv.

This implies that for ε 6= 0 small enough, Xε embeds Gv as Xv
0 does. To show that

Xε is an embedding on G =
⋃

v

Gv, it is therefore enough to show that Xε(Gv) and

Xε(Gv′) are disjoint for v 6= v′. We note that for ε 6= 0 small enough, Xε(Gv) can be
put inside a vertical cylinder Cv as it is the case for Xv

0 (Gv). Therefore it is enough
to show that for ε 6= 0 small enough, Cv and Cv′ are disjoint for v 6= v′. We fix two
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distinct vertices of T , and we choose p ∈ Gv and p′ ∈ Gv′ . We write Xε = (xε1, x
ε
2, x

ε
3),

and we consider a path P of edges joining v and v′. Then for ε 6= 0 small enough,
and by computations similar to those in Proposition 13,

xε1(p
′) − xε1(p) = Re

∫ p′

p

φε1 ≈ −ε−2
∑

e∈P
cos θ0

es
0
e.

If the coefficient of ε−2 is equal to zero, we consider the difference for

xε2(p
′) − xε2(p) ≈ −ε−2

∑

e∈P
sin θ0

es
0
e

where the coefficient of ε−2 cannot be also equal to zero since the path P is not
closed. This shows that Cv and Cv′ can be put arbitrarily far apart. Therefore, for

ε 6= 0 small enough, Xε is an embedding on G =
⋃

v

Gv.

Let Ae, e = vv′, be the annulus of Σε which joins the domains Gv and Gv′ , and have
the bounding circles Cǫ(p

v
e) and Cǫ(p

v′

e ) as explained in section 4. We still need to
understand the behavior of Xε on the annuli Ae of Σε, for each e = vv′ ∈ E . The
geometric picture underlying our construction indicates that Xε(Ae) is a graph and
we show that it is indeed the case. For this purpose, fix an edge e = vv′ and let
g0 and g′0 denote the stereographic projections of the Gauss maps of the Karcher
saddle towers, given by Xv

0 and Xv′

0 respectively. The stereographic projection gε of
the Gauss map of Xε is given in terms of the forms φεi by

gε = −φ
ε
1 + iφε2
φε3

.

By a similar argument as in the proof of Proposition 18, φε3 admits its zeros in
the region G ⊂ Σε. Therefore, gε is holomorphic in a neighborhood of Ae. Let
η = g0(p

v
e) = g′0(p

v′

e ) and note that since gε is holomorphic in a neighborhood of Ae

and we have

|gε(p) − η| ≤ max
p∈∂Ae

|gε(p) − η|.

However, gε converges to g0 in a neighborhood of Cǫ(p
v
e) and to g′0 in a neighborhood

of Cǫ(p
v′

e ) and the values of both g0 and g′0 stay close to η for ǫ small enough. Then
for ε 6= 0 small enough, the values of gε on Ae remain close to η. Let P be the plane
orthogonal to η at a point in Cǫ(p

v
e). We show that Xε is a graph over a region in P .

Let π : Ae → P be the orthogonal projection of Xε to P . Since gε remains close to
η over Ae then π is a local diffeomorphism. However, Ae is compact and connected
then a standard theorem implies that π is then a covering map of Ae onto π(Ae).
We remark that Xε(Ae) is a graph near the circles bounding Ae, again since gε stays
close to η over there. This means that the covering map π is one sheeted which
implies that Xε(Ae) is a graph over π(Ae). We remark that Xε(Ae) and Xε(Ae′) are
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disjoint for e 6= e′. 2

Given the facts established in propositions 18 and 19 the proof of Theorem 13 is
straightforward. In fact, we consider the minimal embeddings Yε = ε2Xε defined on
Σε into R3/Lε, and we let Mε be the lift to R3 of Yε(Σε).
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Annexe A

On the deformation of the Karcher

towers

We provide a proof of a result of independent interest concerning the Karcher
saddle towers. Roughly speaking, we prove that, up to conformal re-parameterizations
of the the sphere, an infinitesimal deformation by minimal surfaces of a Karcher
saddle tower, performed by perturbing the ends while keeping fixed the correspon-
ding limit normals, is a translation.

More precisely, and without loss of generality, we consider the the Riemann sphere

Ĉv, for some v ∈ V, and the corresponding situation of Remark 25. We consider the
following deformation of the Karcher saddle tower corresponding to v :

Xλ(z) =Re

∫ z

Φλ

=Re

∫ z

(φ1,λ, φ2,λ, φ3,λ), z ∈ Ĉv − {p1, ..., pd(v)}.

Remark 26 As a meromorphic differential form on the sphere whose poles are
simple is determined by its poles and their corresponding residues, we obtain that

φ1,λ =

d(v)∑

j=1

(−1)j cos θ0
j

z − pj(λ)
, φ2,λ =

d(v)∑

j=1

(−1)j sin θ0
j

z − pj(λ)

and

φ3,λ =

d(v)∑

j=1

(−1)j+1i

z − pj(λ)
.

Proposition 20 If Hλ denotes the mean curvature of the immersion Xλ then

d

dλ
|λ=0Hλ = 0.
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We prove the following lemmas before proving the above proposition.

Lemma 12
d

dλ
|λ=0ϕλ = 0 if and only if

d

dλ
|λ=0Qλ = 0.

Proof. Write Qλ = Fλ(z)dz
2 and φ1 = fλ(z)dz.

Then

d

dλ
|λ=0ϕλ =

1

f0(z)

d

dλ
|λ=0Fλ(z),

and the claim follows immediately. 2

Lemma 13 The equation Q0 = 0 and the equations (3.21) imply that

d

dλ
|λ=0ϕλ = 0.

Proof. We note that ϕλ has its poles only at the ζi’s, since the residues of ϕλ at
pi(λ)’s can be shown to vanish as in Proposition 14. Therefore,

ϕλ =
∑

i

ri(λ)

z − ζi(λ)
dz,

where ri(λ) = Res(ϕλ, ζi). We take the derivative with respect to λ at λ = 0 of this
expression and we use the the equations (3.21) and that Q0 = 0 to prove the claim.2

Proof of Proposition 20. We denote the metric Xλ induces on Ĉv by gλ and we let
gλ = (gij)1≤i,j≤2 in a local coordinate z = u1 + iu2. Then the quadratic differential
Qλ is given by

Qλ = (g11 − g22 − 2ig12)dz
2

and H is given by the formula

Hλ =
g22b11 + g11b22 − 2g12b12

2det(gij)
,

where bij =
∂2Xλ

∂ui∂uj
.Nλ. Here, Nλ is the Gauss map of Xλ and (bij)1≤i,j≤2 its second

fundamental form.

By lemmas 1 and 2 we obtain that

d

dλ
|λ=0(g11 − g22) = 0 and

d

dλ
|λ=0g12 = 0.
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We note that H(0) = 0 since for λ = 0 we obtain a Karcher saddle tower, and
that each Xλ is harmonic in the sphere deprived of the punctures pi(λ) since Xλ is
the real part of a holomorphic quantity over there. Given these facts, we take the
derivative of Hλ at λ = 0 and the claim follows readily. 2

The formula for the second variation of area then implies that the function

u =

〈
d

dλ
|λ=0Xλ, N

〉
,

where N is the Gauss map of Karcher saddle tower obtained for λ = 0 is a Jacobi
function.

Lemma 14 There exists v ∈ R3 such that u = 〈v,N〉.
Proof. By Theorem 1 in [6] it suffices to show that u is a bounded function on the
saddle tower. This follows immediately if u is bounded around the points pj. We
recall that the Gauss map of the saddle tower admits a limit value at each pj which
is N(pj) = ±(− sin θ0

j , cos θ0
j , 0) and we notice that d

dλ
|λ=0Xλ = Re(Λ(z)) where

Λ(z) = −
( d(v)∑

j=1

(−1)j cos θ0
j ṗj

z − pj
,

d(v)∑

j=1

(−1)j sin θ0
j ṗj

z − pj
, i

d(v)∑

j=1

(−1)j+1ṗj
z − pj

)
.

Then around a point pj we have

u = Re 〈Λ(z), N(z)〉 = Re(Λ1N1 + Λ2N2 + Λ3N3)

with N = (N1, N2, N3) and Λ = (Λ1,Λ2,Λ3).
For z near pj we have

Ni(z) = Ni(pj) + (z − pj)
∂Ni

∂z
(z̃j) + (z − pj)

∂Ni

∂z
(z̃j)

where z̃j is on the segment whose extremities pj and z. A simple computation then
implies that u is indeed bounded around pj and the proof is completed.2 Therefore,

the field Yλ = Xλ − λv is a tangential, i.e.
dYλ
dλ

|λ=0 is tangent to the surface given

by Φ0
v. This permits us to write in local parameters z = u1 + iu2

d

dλ
|λ=0Yλ = ξ1

∂X0

∂u1

+ ξ2
∂X0

∂u2

.

Let ξ = ξ1 + iξ2 and Φ0
v = F0(z)dz, then

∂X0

∂u1

= Re(F0(z)),
∂X0

∂u2

= −Im(F0(z)),
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and
d

dλ
|λ=0Yλ = Re(ξF0(z)). (A.1)

Lemma 15 The field
dYλ
dλ

|λ=0 is holomorphic.

Proof. We notice that since X0 is a conformal

1

2

d

dλ
|λ=0(g11) =

d

dλ
|λ=0

〈
∂Yλ
∂u1

,
∂Yλ
∂u1

〉

=

〈
∂

∂u1

d

dλ
|λ=0Yλ,

∂X0

∂u1

〉

= g0
11

∂ξ1
∂u1

+ ξ1

〈
∂2X0

∂u2
1

,
∂X0

∂u1

〉
− ξ2

〈
∂2X0

∂u2
1

,
∂X0

∂u2

〉
.

Similarly,

1

2

d

dλ
|λ=0(g22) = g0

22

∂ξ2
∂u2

+ ξ2

〈
∂2X0

∂u2
2

,
∂X0

∂u2

〉
− ξ1

〈
∂2X0

∂u2
2

,
∂X0

∂u1

〉
.

Now the facts that X0 is harmonic and that d
dλ
|λ=0(g11 − g22) = 0 imply that

∂ξ1
∂u1

=
∂ξ2
∂u2

.

In a similar fashion, and using the fact that d
dλ
|λ=0(g12) = 0, we can show that

∂ξ1
∂u2

= − ∂ξ2
∂u1

.

Therefore, ξ verifies the Cauchy Riemann equations and hence it is holomorphic.

This implies that
dYλ
dλ

|λ=0 is holomorphic and the prof is completed. 2

Lemma 16 The field
dYλ
dλ

|λ=0 is identically zero on Ĉv.

Proof. Let z be the standard coordinate on C. We have the explicit expression for
d

dλ
|λ=0Yλ

d
dλ
|λ=0Yλ = Re(Λ(z)) + Cte

where G is as in the above lemma.
Therefore, (A.1) implies that ξF0(z) − Λ(z) = Cte and this equation implies that
ξ admits limits at each pj with ξ(pj) = −ṗj(0). As explained in Remark 24, the
curve p(λ) is such that pi(λ) = p0

i for d(v) − 2 ≤ i ≤ d(v). Next we recall that

the number of zeros of a vector field on Ĉv minus the number of it’s poles must be
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equal to two. However,
dYλ
dλ

|λ=0 admits three zeros as it is given by ξ(pi) = 0 for

d(v) − 2 ≤ i ≤ d(v). Therefore
dYλ
dλ

|λ=0 = 0 and the proof is completed. 2

By the above lemma if z is the standard coordinate in C and

d

dλ
|λ=0Yλ = ξ1

∂X0

∂u1

+ ξ2
∂X0

∂u2

then ξ = ξ1 + iξ2 = 0 and consequently ξ(pj) = 0 of 1 ≤ j ≤ d(v) − 3. With
the normalization by Moebius transformations, considered in the proof of the above
lemma, we obtain that ṗ = 0.
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Résumé :

Le cadre de cette thèse est la théorie des surfaces minimales dans deux variétés homogènes,

R3 et ˜PSL2(R). Dans R3, étant donné un pavage T du plan par des polygones, qui soit invariant

par deux translations indépendantes, on construit une famille de surfaces minimales plongées et

triplement périodiques qui désingularise T ×R. Dans cette perspective, et inspiré par le travail de

Martin Traizet, nous ouvrons les nodes d’une surface de Riemann singulière dans le but de coller

ensemble des Karcher saddle towers, chacune placée sur un sommet avec ses bouts au long des

arrêtes qui se terminent sur ce sommet même. Dans une seconde partie, nous étudions les graphes

minimaux dans ˜PSL2(R) et nous fournissons des exemples de surfaces invariantes. Nous obtenons

des estimées du gradient pour les solutions de l’équation des surfaces minimales dans l’espace en

considération et on étudie le comportement des suites monotones de solutions. Nous concluons par

prolonger à ˜PSL2(R) un théorème de Jenkins et Serrin, qui donnent une condition nécessaire et

suffisante pour la solvabilité du problème du Dirichlet de l’équation des surfaces minimales dans

R3, avec des données infinies sur le bord d’un domaine convexe et borné.

Mots clés :

Variétés Homogènes simplement connexes de dimensions trois, Fibrations Riemannienne, Sec-

tions minimales, Surfaces minimales invariantes dans ˜PSL2(R), Théorème de type Jenkins-Serrin,

Surfaces minimales triplement périodiques, Surfaces de Riemann singuliere, différentielles regulière,

Karcher Saddle towers, Pavage rigide du plan.

Abstract :

This doctoral thesis deals with minimal surface theory in two homogeneous manifolds, namely,

R3 and ˜PSL2(R). In R3, given a tiling T of the plane by straight edge polygons, which is invariant by

two independent translations, we construct a family of embedded triply periodic minimal surfaces

which desingularizes T ×R. For this purpose, inspired by the work of Martin Traizet, we open the

nodes of singular Riemann surfaces to glue together simply periodic Karcher saddle towers, each

placed at a vertex of the tiling in such a way that its wings go along the corresponding edges of

the tiling ending at that vertex. On the other hand, in ˜PSL2(R) we study minimal graphs and we

furnish many invariant examples. We derive gradient estimates for solutions of the minimal surface

equation in the underlying space and we study convergence of monotone sequences of solutions.

Finally, we extend to ˜PSL2(R) a result of Jenkins and Serrin who provide a necessary and sufficient

condition for the solvability of the Dirichlet problem of the minimal surface equation in R3, with

infinite data over boundary arcs of a convex bounded region.

Keywords :

Homogeneous simply connected 3-manifolds, Riemannian fibrations, Minimal sections, Inva-

riant minimal surfaces in ˜PSL2(R), Jenkins-Serrin type theorem, Triply periodic minimal surfaces,

Riemann surfaces with nodes, Regular differentials, Karcher saddle towers, Rigid planar tilings.


